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THE ALBUS CMAC

In this section we review the basic operating principles of the CMAC neural network as
proposed by Albus  [2,4-7]. We then present a mathematical description of the conventional
CMAC in a form intended to facilitate software implementation. The notation used is somewhat
different than in the original Albus papers, but the set of equations presented is numerically
equivalent to the original Albus algorithm.

General Operation of the Albus CMAC

The operation of the Albus CMAC [2,4-7,11] can most easily be described in terms of a
large set of overlapping, multi-dimensional receptive fields with finite boundaries. Any input
vector falls within the range of some of the local receptive fields (the excited receptive fields),
and falls outside of the range of most of the receptive fields. The response of the CMAC neural
network to a given input is the average of the responses of the receptive fields excited by that
input, and is not affected by the other receptive fields. Similarly, neural network training for a
given input vector affects the adjustable parameters of the excited receptive fields, but does not
affect the parameters of the remaining majority of receptive fields.

The organization of the receptive fields of a typical Albus CMAC neural network with a two-
dimensional input space is as follows. The total collection of receptive fields is divided into C
subsets, referred to in this document as “layers” (the layers represent parallel N-dimensional
hyperspaces for a network with N inputs). The receptive fields in each of the layers have
rectangular boundaries and are organized so as to span the input space without overlap. Any
input vector excites one receptive field from each layer, for a total of C exited receptive fields for
any input. Each of the layers of receptive fields is identical in organization, but each layer is
offset relative to the others in the input hyperspace. The width of the receptive fields produces
input generalization, while the offset of the adjacent layers of receptive fields produces input
quantization. The ratio of the width of each receptive field (input generalization) to the offset
between adjacent layers of receptive fields (input quantization) must be equal to C for all
dimensions of the input space. The integer parameter C is referred to as the generalization
parameter.

This organization of the receptive fields guarantees that only a fixed number, C, of receptive
fields is excited by any input. However, the total number of receptive fields required to span the
input space can still be large for many practical problems. On the other hand, it is unlikely that
the entire input state space of a large system would be visited in solving a specific problem.
Thus it is not necessary to store unique information for each receptive field. Following this logic,
most implementations of the Albus CMAC include some form of pseudo-random hashing, so
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that only information about receptive fields that have been excited during previous training is
actually stored.

Each receptive field in the Albus CMAC is assumed to be an on-off type of entity. If a
receptive field is excited, its response is equal to the magnitude of a single adjustable weight
specific to that receptive field. If a receptive field is not excited, its response is zero. The CMAC
output is thus the average of the adjustable weights of the excited receptive fields. If nearby
points in the input space excite the same receptive fields, they produce the same output value.
The output only changes when the input crosses one of the receptive field boundaries. The
Albus CMAC neural network thus produces piece-wise constant outputs.

The implementation of the Albus CMAC logically proceeds as follows:

1. Identify the C receptive fields excited by the input.

2. Find the C adjustable weights for those receptive fields in a pool of stored weights.

3. Compute the average of the C adjustable weights.

The Albus CMAC Computation

Consider a classic Albus CMAC neural network with a real valued input vector
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in an N-dimensional input space. Assume that the generalization parameter (the number of
simultaneously excited receptive fields for each input) is C. The first step of the CMAC
computation is to form a normalized integer input vector S’ by dividing each component sj of the

input vector by an appropriate quantization parameter !j:
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The width of each receptive field along the jth axis is equal to C * !j in the original input space,

and is equal to C along all axes in the normalized input space.

The next step of the CMAC computation is to form the vector addresses Ai of the C
receptive fields which contain the input point S’:
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where % represents the modulus operator, and the index i references the C parallel layers of
receptive fields. A

i
 is the normalized N-dimensional address of one corner of the hypercubic

region spanned by the single excited receptive field in layer i. Due to the properties of the
modulus operator, the receptive field address components in the above equation are only valid
for s’j-i positive. A similar expression can be easily formulated, however, for s’j-i negative.

Since the total number of receptive fields in a space of dimension N can be quite large, the
receptive field addresses A

i
 are typically considered as virtual rather than physical addresses.

The next step of the CMAC computation is then to form the scalar physical addresses A’
i of the

actual adjustable weights to be used in the output computation:

" =A h a a ai i i iN( , , ... , )1 2                 (4)

In this equation, h(...) represents any pseudo-random hashing function which operates on the
components aij of the virtual addresses of  the receptive fields, producing uniformly distributed
scalar addresses in the physical weight memory of size M.
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Finally, the CMAC scalar output y(S) is just the average of the addressed weights:
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A vector CMAC output is produced by simply considering the weight memory locations to
contain vector rather than scalar values, and by performing a vector rather than scalar average
in the above equation. The weight memory W can contain integer or real values, depending on
the desired implementation.

Network training is typically based on observed training data pairs S
 
and yd(S), where yd(S)

is the desired network output in response to the vector input S. The memory training adjustment

!W is given by:

!W y S y Sd= #% * ( ( ) ( ) )                (6)

where the same value !W is added to each of the C memory locations W[A’i] accessed in the

computation of y(S). This is equivalent to the well known LMS adaptation rule for linear adaptive

elements. % is a constant training gain. If % is 1.0, the weights are adjusted to force the network

output y(S) to be exactly equal to the training target yd(S). If % is 0.5, the network output is

adjusted to fall halfway between the old output value and the training target. If % is 0.0, the

weights are not changed.

EXTENSIONS TO THE ALBUS CMAC NEURAL NETWORK

In this section we discuss extensions to the conventional Albus CMAC neural network.
When appropriate, modifications to the equations of the previous section are presented in a
form intended to facilitate software implementation. When all of these extensions are
implemented, the algorithms and learning system performance can be quite different than for
the conventional Albus CMAC. However, the extensions are faithful to the original learning
system concepts of Albus, and thus are still appropriately called CMAC algorithms. Note that
some of the frequently described limitations of CMAC (such as only learning integer mappings)
are in fact characteristics specific to the original Albus algorithm, and are neither properties of
nor limitations of the general CMAC concept.

Organization of Receptive Fields

The descriptions in the first section apply to the classic Albus CMAC [2,4-7]. Research at
UNH [12-14] and elsewhere [14,15] has investigated alternative lattice arrangements for the
receptive fields which provide more uniform local generalization in higher dimensional input
spaces. The receptive field mapping used in the conventional CMAC implementation has three
key features which it is desirable to retain:

1. Each input in the multi-dimensional input state space falls into exactly the same number
of receptive fields (C), and this number of overlapping fields is not dependent on the
dimensionality N of the space or the total size M of the physical weight memory.

2. Regardless of the operating point in the multi-dimensional space, a change of one

quantization level !j in any input parameter causes exactly one active receptive field to

become inactive and one new receptive field to become active. This provides for uniform
quantization within the space.

3. The receptive fields are arranged in a geometrically regular way, such that the
coordinates of the C excited receptive fields for any input can easily be determined in
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software, or generated in hardware, without having to compare to independent coordinates
stored for each of the very many receptive fields.

The conventional Albus CMAC implementation achieves these properties by offsetting the
parallel layers of receptive fields along hyperdiagonals in the input space (the effect of the s’j-i
terms in equation 3). All inputs fall within the same number of receptive fields. However, some
inputs fall near the centers of several receptive fields while other inputs fall near the centers of
no receptive fields. This results in inhomogeneous and anisotropic generalization within the
input state space. Ideally, the distribution of receptive fields should be uniform in the multi-
dimensional input space unless prior knowledge of the function to be learned dictates
otherwise.

The above three desirable features of the CMAC mapping can be used to place constraints
on the possible arrangements of receptive fields, through which new arrangements can be
generated. For the following discussion, assume that the N-dimensional input space has been
normalized using equation 2 such that the widths of the receptive fields relative to all N
components of the input are equal to C (the generalization parameter). The first and third items
above suggest that the arrangement should be periodic in the normalized input space, with
period C. This is equivalent to assuming that the receptive fields will be arranged in C parallel
layers, each with non-overlapping receptive fields, and that only the offsets of each layer
relative to the others can be varied when generating new receptive field distributions. In this
case, the distribution of receptive fields throughout the space is uniquely defined by the
arrangement of C receptive field centers in an N-dimensional hypercube of side C (referred to
as the reference hypercube), with one receptive field centered at the corner of the hypercube
(coordinate <0,0,...0>).

The individual receptive fields are hypercubes of side C in the normalized input space, and
C receptive field centers are located inside of any region bounded by a hypercube of side C.
Item 2 in the above list (uniform segmentation of the space) is thus only achieved if the C
receptive field centers are spaced uniformly (with integer separation) when projected onto each
of the N axes of the reference hypercube. Any arrangement which satisfies these criteria
qualifies as a CMAC mapping according to the three items above. However, many of the
possible arrangements (such as the conventional CMAC mapping) have locally nonuniform
distributions.

Parks and Militzer [15] studied the arrangement of receptive fields in CMAC networks using
distance between nearest neighbors as the evaluation criteria, based on the assumption that
the most uniform distribution would have the greatest distance between nearest neighbors
(given a fixed receptive field density in the space). They further assumed that the receptive field
centers were arranged in a lattice defined by a displacement vector

D d d dN= < >1 2, , ... ,                 (7)

such that the coordinate of the ith receptive field in the reference hypercube was

< > =( * )% , ( * )% , ... , ( * )% , , ... ,i d C i d C i d C i C         N1 2 1 2        (8)

In these terms, the conventional CMAC would be defined by a lattice displacement vector of

D
Albus

= < >1 1 1, , ...                 (9)

They performed an exhaustive search of such lattice arrangements for various values of C and
N, and developed tables of best displacement vectors according to their nearest neighbor
distance criteria.

We have developed a simple heuristic for selecting similar displacement vectors for any
values of C and N which provide lattice arrangements equivalent to those found by Parks and
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Militzer [14] without performing a search [12-14]. First, we choose the set of integers in the
range 1 to C/2 which are not factors of C or integer products of factors of C (the value 1 can be
included in the set). These are the candidate values for the displacement vector components
(guaranteeing uniform projection of the centers on the axes of the reference hypercube), from
which N must be selected. If there are more than N candidate values, we choose N (there are
multiple nearly equivalent arrangements). If there are less than N candidates, the best that can
be done is to use all of the candidate values with a minimum number of repetitions of any one
value. However, the resulting mapping will be diagonalized (locally nonuniform) in some
projections to lower dimensional spaces. A better solution in this case is to increase C, in order
to achieve at least N candidates for the displacement vector.

For a CMAC with a three-dimensional input and a generalization of 16, the candidate values
for the displacement vector are 1, 3, 5, and 7. A typical displacement vector might be <1,3,5>
which would produce receptive field locations at <0,0,0>, <1,3,5>, <2,6,10>, and so forth, within
the reference cube.

The CMAC computations described in the first section can easily be modified to
accommodate the displacement vector approach to specifying receptive field placement. In this
case, the virtual addresses of the excited receptive fields are given by
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In place of equation 3. Due to the properties of the modulus operator, the receptive field
address components in the above equation are only valid for s’j-i*dj positive. A similar
expression can be easily formulated, however, for s’j-i*dj negative.

It is impossible to quantify the improvement in performance to be gained in the general case
by using a relatively uniform lattice of receptive fields, rather than the diagonalized arrangement
used by Albus. In our experience, a more uniform arrangement of receptive fields typically
provides learning system  performance equal to or better than that achieved in the same
application using the Albus arrangement (sometimes substantially better), with relatively little
increase in computational effort. We typically select C to be the smallest power of 2 which is
equal to or greater than 4*N, in which case a good displacement vector is simply the first N odd
integers [12].

Receptive Field Sensitivity Functions

We have also investigated CMAC networks with graded, rather than all-or-none, receptive
field sensitivity functions [12-14], as have others [16]. In this case, the CMAC output is
influenced more by receptive fields for which the input vector is near the center of the active
range, and is influenced less by receptive fields for which the input is near the limits of the
active range. The CMAC output is then a weighted average of the C addressed adjustable
parameters, rather than a simple average as in equation 5. This provides a continuous function
approximation (rather than the piece-wise constant function approximation of the conventional
CMAC). Any function which is maximum at the center and decreases smoothly to near 0 at the
edges is satisfactory (e.g., linear decrease) for generating continuous outputs. Smooth outputs
require that the slope of the function also approach 0 near the receptive field edges (e.g., cubic
spline, gaussian, etc.). The critical issue is how to form the multi-dimensional receptive field
sensitivity function from the one-dimensional primitives.

An obvious choice would be to simply base the receptive field sensitivity function on the
radial distance from the center of the receptive field. While there is substantial evidence
supporting the use of radial basis functions for general system approximation [17,18], the fixed,
relatively sparse distribution of receptive fields inherent in CMAC family networks must be
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considered. In the normalized input space defined in the previous section, each CMAC
receptive field spans the interior of a hypercube of side C. The distance from the center to the
nearest edge (the center of a face of the hypercube) of the receptive field is C/2, while the

distance from the center to the farthest edge (a corner of the hypercube) is N½ C/2. A radial
basis function which tapers to a small value at the nearest edge of the receptive field will be
very small in most of the corner region, confining the significant response to a limited region of
the hypothetical receptive field. On the other hand, if the radial basis function tapers to a small
value at the corner, it will have a significant output at the nearest edge of the receptive field,
which is counter to the objective of a tapered receptive field.

A second alternative is to use the distance from the input point to the nearest face of the
receptive field as the single parameter in the sensitivity function (rather than the radial distance
from the center). This provides a receptive field sensitivity function which is maximum at the
center and which has the same value at all points on its boundary. The sensitivity function will
be continuous throughout the receptive field, but will have discontinuous slopes along select
hyperplanes. We have found this to be the preferred alternative for CMAC neural networks [12].

The CMAC computations described in the previous sections can easily be modified to
accommodate non-constant receptive field sensitivity functions. Let aij represent the jth
component of the receptive field virtual address Ai in the normalized input space, as given in
equation 10. Let s''j represent the jth component of the real-valued, normalized input vector S'':
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The corresponding faces of the receptive field occur at s''j = aij - 0.5 and s''j = aij + C - 0.5 in the

normalized space. For an arbitrary input point, the minimum distance 'i to any face of receptive

field i is then given by:

'i i ij ij is a a C s j N         = "" # + + # # "" =min( . , . ) , ,...,0 5 0 5 12        (12)

In this case, 'i = 0 corresponds to any point on a face of the receptive field, while 'i = C/2

corresponds to the single point at the center of the receptive field. 'i varies linearly along any

linear path from any point on a face of the receptive field to the point at the center.  Equation 5
can then be modified to give the new CMAC output:
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In equation 13, f('i) represents the one-dimensional primitive which forms the basis of the

receptive field sensitivity function. In practice, f('i) = 'i is a simple and effective choice for the

sensitivity function, producing piece-wise planar approximations.

Finally, equation 6 which describes the weight adjustment during training must be replaced
by:
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Note that equation 6 described a weight adjustment !W which was added equally to each of

the C adjustable weights representing the C excited receptive fields, while in equation 14 the

weight adjustment !W
i
 for each receptive field is scaled by the magnitude of the receptive field

sensitivity function f('i). If f('i)  = 1 for all 'i, equations 13 and 14 reduce to equations 5 and 6.

It is obvious from comparing equations 5 and 6 to equations 13 and 14 that the
implementation of non-constant receptive field sensitivity functions requires an increase in

computational effort. Thus, in many cases the simpler case of f('i)  = 1 is preferable, even

though it results in piece-wise constant CMAC outputs. When a continuous CMAC output is

important, we generally use f('i) = 'i , which results in piece-wise planar CMAC outputs. We

have also experimented with cubic spline and truncated gaussian functions for f('i).

Paradoxically, learning system performance is usually worse when using these higher order
sensitivity functions for input dimensions greater than two. We feel that this results from their
much smaller magnitude near the edges of the receptive field, which dominates the receptive
field volume in higher dimensional spaces. In applications we thus use either constant or linear
sensitivity functions. Note that when using non-constant sensitivity functions, the arrangement
of receptive fields is critical to good performance. In such cases, near uniform arrangements of
receptive fields always provide substantially better learning system performance [12] than the
diagonalized arrangement used by Albus.

Receptive Field Hashing Considerations

As discussed previously, the total number of receptive fields required to span a multi-
dimensional space (C times) is often too large for practical implementation in terms of the
storage required for the adjustable weights of all possible receptive fields. On the other hand, it
is unlikely that the entire input state space of a large system would be visited in solving a
specific problem. Thus it is only necessary to store information for receptive fields that are
excited during training. Following this logic, most implementations of CMAC neural networks
include some form of pseudo-random hashing to transform the vector virtual address Ai of an
excited receptive field into a scalar address A’i of the corresponding weight storage.

The major requirement of the hashing function is that the generated addresses A’i be
uniformly distributed in the range M of the available physical memory addresses, even for small
changes in Ai. In software implementations of CMAC, we have primarily used a simple hashing
algorithm based on previously generated random number tables:
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where each Tj represents a table of uniformly distributed random values with Rj total table
entries. Here, Rj effectively limits the dynamic range of the jth component of the normalized
input vector, due to wrap-around of the table index. This hashing algorithm is numerically
efficient and produces a good approximation to uniformly distributed addresses in the range 0
to M-1, as long as the dynamic range of the pseudo-random numbers in the tables is at least M.
Note that a single bit change in any component of Ai can cause a large change in A’i, as
desired. In our experience, the quality of the hashing produced is sensitive to the quality of the
uniform random number generator used to fill the Tj tables, but is not sensitive to the specific
seed selected when using a good random number generator.

Hashing collisions are defined by:

" = " .A A A An m n m
     for                     (16)



8

This has the effect of introducing learning interference, in the sense that training adjustments to
two distinct and possibly distant receptive fields affect the same adjustable weights. In many
implementations of CMAC (including that described originally by Albus), hashing collisions are
ignored. This is often reasonable since the CMAC outputs are averages over several receptive
fields (there is no specific desired response for any single receptive field), and since the goal is
often to approximate a target function rather than to reproduce it exactly. In essence, CMAC
training involves satisfying coupled equations using the available adjustable weights. Hashing
collisions increase the coupling between equations (possibly slowing training convergence), but
do not necessarily preclude finding a satisfactory solution. Of course, if hashing collisions are
too frequent, the coupled set of training equations can become greatly overdetermined, with no
satisfactory solutions.

The probability of no hashing collisions when training a single example of novel data is
approximately:
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where Mu / M represents the fraction of the available weight storage that has been affected by
previous training. It is obvious that for reasonable values of the generalization parameter C, the
probability of collision-free training is low unless the utilization of available storage is very low.
Thus, collision-ignorant hashing is best suited to applications which provide opportunity for
repetitive training in order to resolve the additional coupling due to hashing collisions during
training. This could involve repetitive off-line training for a pattern recognition application using a
fixed training set, or could involve continuous on-line training (and thus retraining) in a control
application. The advantage to collision ignorant hashing in applications involving on-line training
is that old-information, which is not reinforced in subsequent training and which may no longer
be useful, will eventually be completely overwritten and will not tie up storage resources.
Complete saturation of the storage capacity will never occur, in the sense that new information
can always be learned (although possibly at the expense of previously trained information).

Collision-free hashing generally involves storing some unique identifier of the virtual
receptive field (such as its virtual address Ai) along with each adjustable weight or weight
vector, so that collisions can be detected and thus avoided. While hashing collisions may be
eliminated, storing unique identifiers can result in a substantial increase in the amount of
storage per receptive field, offsetting the reduction in storage which was the original motivation
for hashing. Collision-resistant hashing can provide a compromise by storing a pseudo-random
hash tag, derived from the receptive field virtual address Ai, along with each adjustable weight
or weight vector. Collisions can then be detected and avoided reliably (but not certainly) by
comparing the stored hash tag with the value derived from the new address. If the tags do not
match, the CMAC weight memory is searched sequentially until either a tag match or an
unallocated location (blank tag) is found.

In our implementation of collision-resistant hashing, we generate the hash tag using the
same pseudo-random generator used for address mapping (equation 15), but with different
random tables, and with a different constant k in the final modulus (M in equation 15).
Assuming that all detected collisions can be avoided, the probability of no hashing collisions
when training a single example of novel data is then approximately:
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where k represents the dynamic range of the hash tag. In contrast to the collision-ignorant
hashing (equation 17), the probability of collision-free training is high even if the utilization of
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available storage is high, assuming a reasonably large value of k. Thus, collision-resistant
hashing provides essentially the same performance as collision-free hashing, typically with
substantially less storage per receptive field. Collision-resistant hashing is best suited to
applications which require long-term retention of previously trained information in the presence
of subsequent training of novel data, without reinforcement of previously trained examples (no
learning interference). This could involve pattern recognition applications where it may be
desirable to train new examples of certain classes as they are encountered, or control
applications which require sequential skill learning. The disadvantage to collision-resistant
hashing in applications involving on-line training is that old-information, which may no longer be
useful, will tie up storage resources indefinitely. This can lead to complete saturation of the
storage capacity.

Weight Magnitude Normalization

The output of the CMAC neural network for any input is an average over C adjustable
weights. During training, individual weights are adjusted in order to reduce the error in the
average. However, there are an infinite number (or in practice, a very large number) of
combinations of weight values which will produce the same average. As a result, training
provides only indirect control of weight magnitude.

This can be a problem during applications which require continuous on-line training. After
the neural network training converges to a low error, residual error and sensor noise can cause
continual small adjustments to the weights. These residual adjustments may average to zero
over time for the CMAC output and yet not average to zero over time for individual weights.
Some weights may drift towards large positive values while others drift towards large negative
values, while maintaining good output  performance in terms of averages over C weights.
These unnecessarily large weights can eventually cause problems, however, in terms of
increased error from hashing collisions and weight saturation for weight implementations with
limited dynamic range.

The problem can be fixed by placing a penalty on large weight magnitudes during training
(similar to the weight decay concept used as part of training for some other neural networks).
Since the CMAC output is an average over multiple weights, an appropriate magnitude
regularization is to penalize individual weights for varying from the average. The weight
adjustment equation (equation 6) is then replaced by

!W y S y S y S W Ai d i= # + # "% %1 2* ( ( ) ( ) ) * ( ( ) [ ] )               (19)

where separate training gains are used to individually emphasize the importance of the

supervised learning versus the weight magnitude normalization. We generally select %
2
 to be at

most equal to %
1
 / 4, since good output performance is generally the most important. Note that

equation 6 described a single weight adjustment !W which was added equally to the C

adjustable weights representing the C excited receptive fields, while in equation 19 the weight

adjustment !W
i
 is different for each weight. A similar modification can be added to equation 14

for training when using non-constant receptive field sensitivity functions.

Variable Input Quantization

One limitation of the CMAC algorithms described in the previous sections is that

quantization and generalization are fixed in the input space by the constants !j and C (!j is the

quantization interval and C * !j is the generalization width for input component j). In some

problems, it may be desirable to have fine quantization and narrow generalization in some
regions of the input space, with coarse quantization and broad generalization in other regions. If

these regions can be identified in advance, the sj /!j terms in equations 2 and 11 can be
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replaced by a more general wj(sj), where each wj() is a fixed nonlinear warping function specific
to each input.

If appropriate regional variations in quantization and generalization can not be determined in
advance, it may be possible to represent input warping functions using models with adaptable
parameters, and to adapt the warping functions during neural network training. Our laboratory
and others have done preliminary experiments on adaptive input space warping, but no detailed
information has yet been published. At least two general approaches have been proposed. In
one approach, warping functions at the CMAC inputs are adapted in order to directly reduce the
CMAC output error (using backpropagation of the error through the CMAC element). In a
second approach, warping functions at the CMAC inputs are adapted in order to reduce the
gradient of the estimated variance of the CMAC output error.

An alternative approach to this problem was reported by Moody [19]. He proposed using a
multi-resolution CMAC in which the receptive fields in each layer were of different size. The
layer with the largest receptive fields was trained first, followed by the layer with the next largest
receptive fields, and so forth. In this way, broad generalization could be achieved where
appropriate by the initial training of the large receptive fields, and fine details could be learned
during the later training of the small receptive fields. Better learning system performance can be
obtained by using complete CMACs in parallel, each with a different resolution [13], rather than
single layers of different size receptive fields as proposed by Moody. The drawback to the multi-
resolution approach (relative to input space warping)  is that the smallest receptive fields are
placed everywhere in the space, even though there may only be a limited region that actually
requires fine quantization. Thus, the memory utilization is unnecessarily high.

THE UNH_CMAC CODE

Copyright c 1989, 1990, 1994, 1995, 1996 The University of New Hampshire.
All rights reserved.

The file unh_cmac.c is a C language implementation of a multiple CMAC driver. Prototypes
and constants are defined in unh_cmac.h. The code includes multiple (and programmable)
designs for the receptive field lattice and the receptive field sensitivity functions. It was
developed in the Robotics Laboratory of the  Department of Electrical and Computer
Engineering at the University of New Hampshire. This C source code is not available for sale
from UNH, and can not be resold. You may use it, and give it away freely to others, as long as
you, and those you give it to, agree to acknowledge the UNH Robotics Laboratory in any project
reports, manuscripts, software manuals, etc., which result from projects which utilize this code.

The code is generic C, but has been tested most thoroughly at UNH using C compilers for
Microsoft Windows and Microsoft Windows-NT. The algorithms assume that the int data type
refers to signed integers with 16 or more bits, and that the long int data type refers to signed
integers with 32 or more bits. There is no coupling between these restrictions (int and long int
can both be 32 bits, for example). The code makes extensive use of long int math, so it runs
most efficiently on computer-compiler combinations with direct hardware support for (long
int)+(long int), (long int)*(long int) and (long int)/(long int).

You should check the following functions for compatibility with your compiler:

malloc() - allocate data region of size specified in bytes.
free()   - deallocate data region.
rand()   - return random integer in range 0 - 32767.
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Global Parameters

The code contains several global parameters which must be set at compile time since they
determine the size of static storage elements. Most often, the default values shown below are
reasonable and need not be changed.

/* Set this to the maximum number of independent CMACs you will need */
#define NUM_CMACS 8

/* Set this to the maximum number of input dimensions you will need in any CMAC */
#define MAX_STATE_SIZE 64

/* Set this to the maximum number of output dimensions you will need */
#define MAX_RESPONSE_SIZE 8

/* Set this to the maximum number of layers of receptive fields you will need */
#define MAX_GEN_SIZE 256

/* Set this to the size of the receptive field function look-up table you will use */
#define RF_TABLE_SIZE 128

Primary CMAC Procedures

int allocate_cmac(int num_state,int *qnt_state,int num_resp,
       int num_cell,int memory,int field_shape, int collide_flag)

This procedure is used to allocate a new CMAC with the specifications given in the
parameters. The first parameter is the number of dimensions N to the CMAC input vectors. The
second parameter is a pointer to a vector of dimension N which defines the quantization

parameters (!j in equations 2 and 11). The third parameter is the dimension of the CMAC

output vectors. The fourth parameter is the generalization parameter C (the number of
overlapping layers of receptive fields). In the version 2.1 code, this value must be equal to an
integer power of 2 (1, 2, 4, 8, 16, ...). If not, the code will operate incorrectly. The fifth
parameter is the total size M of the CMAC vector memory (the total number of weights is
memory*num_resp). The sixth parameter sets the design of the CMAC receptive fields, using
predefined constants. ALBUS creates a conventional Albus CMAC: on-off receptive fields in a
hyperdiagonal arrangement. RECTANGULAR creates on-off receptive fields in a uniform
arrangement. LINEAR creates linearly-tapered receptive field sensitivity functions in a uniform
arrangement. SPLINE creates gaussian-like (cubic-spline approximation) tapered receptive field
sensitivity functions in a uniform arrangement. CUSTOM  creates a CMAC with user defined
receptive field sensitivity function and arrangement (set using subsequent calls to
set_cmac_rf_magnitude() and set_cmac_rf_displacement()). The last parameter is set TRUE or
FALSE (not 0 or 0) to indicate whether or not to allow hashing collisions (TRUE allows
collisions).

The procedure returns an integer value which is greater than 0 if successful. This value is
called the CMAC handle and is used to identify the specific CMAC in subsequent calls to other
procedures. If the returned handle is 0, an error occurred during allocation.

int deallocate_cmac(int cmac_id)

This procedure frees all storage associated with the specified CMAC, and makes the handle
invalid. The procedure returns TRUE if successful and FALSE if not.
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int train_cmac(int cmac_id,int *state,int *respns,int beta1,int beta2)

This procedure is used to train a previously allocated CMAC. The first parameter is the
CMAC handle. The second parameter is a pointer to the vector containing the CMAC training
input. The third parameter is a pointer to a vector containing the target (desired) response. The
last two parameters set the two training gains of equation 19. However, the training gain

parameters in the procedure call are right shift factors (beta1 = 1 means %
1
 = 0.5, beta1 = 2

means %
1
 = 0.25, etc.). The procedure returns TRUE if successful and FALSE if not.

int adjust_cmac(int cmac_id,int *state,int *drespns,int beta1)

This procedure is similar to train_cmac() except that the third parameter is a pointer to a
vector containing the training error signal, rather than the desired response. In other words,
train_cmac() is used to train the CMAC by supplying a particular desired response, while
adjust_cmac() is used to train the CMAC by supplying how you would like the current response
to change. The procedure returns TRUE if successful and FALSE if not.

int cmac_response(int cmac_id,int *state,int *respns)

This procedure returns the CMAC vector response to the input vector specified. The first
parameter is the CMAC handle. The second parameter is a pointer to the vector containing the
CMAC input. The third parameter is a pointer to a vector to receive the CMAC response. The
procedure returns TRUE if successful and FALSE if not.

int clear_cmac_weights(int cmac_id)

This procedure sets the weights of the specified CMAC to 0. All subsequent CMAC
responses will be 0 until further training occurs. The procedure returns TRUE if successful and
FALSE if not.

int cmac_memory_usage(int cmac_id)

This procedure returns the number of CMAC weight vectors which have been modified by
training since the last call to clear_cmac_weights().

CMAC Support Procedures

int save_cmac(int cmac_id,char *filename)

This procedure stores all information about the state of a CMAC in a file. It is most useful for
storing previously trained information. The first parameter is the CMAC handle. The second
parameter is a pointer to a file name string. The procedure returns TRUE if successful and
FALSE if not.

int restore_cmac(char *filename)

This procedure restores a CMAC from a file created by a prior call to save_cmac(). It is
most useful for restoring previously trained information. The single parameter is a pointer to a
file name string. The procedure returns the handle to a newly allocated CMAC if successful,
otherwise it returns 0.

int get_cmac(int cmac_id,int index,int *buffer,int count)
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This procedure returns raw CMAC weight vectors from the physical memory. It is useful for
saving trained information or gathering statistics about weight magnitudes, for example. Each
weight vector is of size num_resp + 1 and includes one integer weight for each component of
the output vector, plus one extra integer value used in address hashing. The first parameter is
the CMAC handle. The second parameter is an index (0 to M-1) into the physical weight vector
memory (an A’ address). The third parameter is a pointer to a vector of size count*(num_resp +
1) which receives the CMAC weights. The fourth parameter is the count of contiguous weight
vectors to transfer. The procedure returns the number of weight vectors actually transferred.

int put_cmac(int cmac_id,int index,int *buffer,int count)

This procedure stores raw CMAC weight vectors in the physical memory. It is useful for
restoring previously trained information or directly modifying/corrupting weights, for example.
Each weight vector is of size num_resp + 1 and includes one integer weight for each
component of the output vector, plus one extra integer value used in address hashing. The
trailing hashing value should never be modified by application code (the correct way to
overwrite a weight vector is to use get_cmac() to get the weights and hashing value, then
change the weights, and finally use put_cmac() to write the new weights with the original
hashing value). The first parameter is the CMAC handle. The second parameter is an index (0
to M-1) into the physical weight vector memory (an A’ address). The third parameter is a pointer
to a vector of size count*(num_resp + 1) which contains the CMAC weights. The fourth
parameter is the count of contiguous weight vectors to transfer. The procedure returns the
number of weight vectors actually transferred.

int set_cmac_rf_displacement(int cmac_id,int *buffer)

This procedure sets the receptive field mapping displacement vector (D in equation 7) for
use by a CUSTOM CMAC. The first parameter is the CMAC handle. The second parameter is a
pointer to a vector of size N which contains the displacement vector. The procedure returns
TRUE if successful and FALSE if not.

int set_cmac_rf_magnitude(int cmac_id,int *buffer)

This procedure sets the receptive field sensitivity function look-up table for use by a
CUSTOM CMAC. The first parameter is the CMAC handle. The second parameter is a pointer
to a vector of size RF_TABLE_SIZE which contains the table. The procedure returns TRUE if
successful and FALSE if not.

int map_cmac_input(int cmac_id,int *state,int *weights[], int *rfmags)

This procedure returns internal CMAC mapping information. The first parameter is the
CMAC handle. The second parameter is a pointer to the vector containing the CMAC input. The
third parameter is a pointer to a vector of size C which in turn receives pointers to the weight
vectors mapped to by the input vector (the A’i in the equations of the previous sections). The
fourth parameter is also a pointer to a vector of size C which receives the magnitudes of the

receptive field sensitivity functions for the mapped receptive fields (the f('i) in equations 13 and

14). The procedure returns TRUE if successful and FALSE if not.

AN OUTLINE OF APPLICATIONS AND THEORY LITERATURE

Over the years there have been a large number of attempts to use CMAC for real
applications, in simulated applications, and in demonstration projects.  Below is a listing of as
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many of those applications as we have found.  There are others that we know of but have been
unable to obtain, and there have undoubtedly been some oversights (our apologies!).  These
are organized by application with a listing of the numbers from the papers in the Bibliography at
the end of the chapter.   Headings for theory papers and hardware papers are also included.

Control (including robotics)

Kinematics [10, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40]

Dynamics [30, 33, 34, 36, 41, 42, 43, 44, 45]

Unstable plant [34]

Time delay in plant  [46]

Adaptive critic [47, 48, 49, 50]

Walking (biped and quadruped) [35, 36, 38, 43, 44, 51]

Dynamic programming [52]

Chemical systems [9, 53, 54, 55, 56, 57]

Optimal [52, 58, 59]

Mobile [60]

Manipulator/robot [5, 10, 30, 31, 32, 33, 45, 61, 62, 63, 64, 65, 66]

Fuzzy [27, 28, 67, 68, 69]

Manufacturing/CIM/tool fault [39, 70, 71, 72]

Pattern recognition

Nearest neighbor methods [73]

Character recognition [23, 74]

Handwriting recognition [74]

Signal processing [23, 75, 76, 77]

Biomedical [2, 68, 77, 78, 79, 80, 81]

Others

Physics detectors [82]

Geophysical [83, 84, 85]

Ultrasonics [86]

Color correction [87]

Theory [12, 14, 15, 16, 25, 27, 28, 29, 57, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100]

Hardware implementation [87, 101, 102, 103]
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