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In this chapter we develop a uni�ed view of methods that require a model
of the environment� such as dynamic programming and heuristic search� and
methods that can be used without a model� such as Monte Carlo and temporal�
di�erence methods� We think of the former as planning methods and of the latter
as learning methods� Although there are real di�erences between these two kinds
of methods� there are also great similarities� In particular� the heart of both kinds
of methods is the computation of value functions� Moreover� all the methods
are based on looking ahead to future events� computing a backed�up value� and
then using it to update an approximate value function� Earlier in this book we
presented Monte Carlo and temporal�di�erence methods as distinct alternatives�
then showed how they can be seamlessly integrated by using eligibility traces
such as in TD���� Our goal in this chapter is a similar integration of planning
and learning methods� Having established these as distinct in earlier chapters�
we now explore the extent to which they can be intermixed�

� Models and Planning

By a model of the environment we mean anything that an agent can use to predict
how the environment will respond to its actions� Given a state and an action� a
model produces a prediction of the resultant next state and next reward� If the
model is stochastic� then there are several possible next states and next rewards�
each with some probability of occurring� Some models produce a description of
all possibilities and their probabilities� these we call distribution models� Other
models produce just one of the possibilities� sampled according to the probabil�
ities� these we call sample models� For example� consider modeling the sum of
a dozen dice� A distribution model would produce all possible sums and their

�These course notes are chapters from a textbook� Reinforcement Learning� An Introduction�
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probabilities of occurring� whereas a sample model would produce an individual
sum drawn according to this probability distribution� The kind of model assumed
in dynamic programming	estimates of the state transition probabilities and ex�
pected rewards� P a

ss� and Ra

ss�	is a distribution model� The kind of model used
in the blackjack example in Chapter 
 is a sample model� Distribution models
are stronger than sample models in that they can always be used to produce
samples� However� in surprisingly many applications it is much easier to obtain
sample models than distribution models�

Models can be used to mimic or simulate experience� Given a starting state
and action� a sample model produces a possible transition� and a distribution
model generates all possible transitions weighted by their probabilities of occur�
ring� Given a starting state and a policy� a sample model could produce an entire
episode� and a distribution model could generate all possible episodes and their
probabilities� In either case� we say the model is used to simulate the environment
and produce simulated experience�

The word planning is used in several di�erent ways in di�erent �elds� We use
the term to refer to any computational process that takes a model as input and
produces or improves a policy for interacting with the modeled environment�

planning
model policy

Within arti�cial intelligence� there are two distinct approaches to planning ac�
cording to our de�nition� In state�space planning� which includes the approach
we take in this book� planning is viewed primarily as a search through the state
space for an optimal policy or path to a goal� Actions cause transitions from
state to state� and value functions are computed over states� In what we call
plan�space planning� planning is instead viewed as a search through the space
of plans� Operators transform one plan into another� and value functions� if
any� are de�ned over the space of plans� Plan�space planning includes evolution�
ary methods and partial�order planning� a popular kind of planning in arti�cial
intelligence in which the ordering of steps is not completely determined at all
stages of planning� Plan�space methods are di�cult to apply e�ciently to the
stochastic optimal control problems that are the focus in reinforcement learning�
and we do not consider them further �but see Section ��� for one application of
reinforcement learning within plan�space planning��

The uni�ed view we present in this chapter is that all state�space planning
methods share a common structure� a structure that is also present in the learning
methods presented in this book� It takes the rest of the chapter to develop
this view� but there are two basic ideas� ��� all state�space planning methods
involve computing value functions as a key intermediate step toward improving
the policy� and ��� they compute their value functions by backup operations
applied to simulated experience� This common structure can be diagrammed as
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Do forever�
�� Select a state� s � S� and an action� a � A�s�� at random
�� Send s� a to a sample model� and obtain

a sample next state� s�� and a sample next reward� r
�� Apply one�step tabular Q�learning to s� a� s�� r�

Q�s� a�� Q�s� a� � ��r � �maxa� Q�s�� a���Q�s� a��

Figure �� Random�sample one�step tabular Q�planning

follows�

valuesbackupsmodel simulated
experience policy

Dynamic programming methods clearly �t this structure� they make sweeps
through the space of states� generating for each state the distribution of pos�
sible transitions� Each distribution is then used to compute a backed�up value
and update the state�s estimated value� In this chapter we argue that various
other state�space planning methods also �t this structure� with individual meth�
ods di�ering only in the kinds of backups they do� the order in which they do
them� and in how long the backed�up information is retained�

Viewing planning methods in this way emphasizes their relationship to the
learning methods that we have described in this book� The heart of both learning
and planning methods is the estimation of value functions by backup operations�
The di�erence is that whereas planning uses simulated experience generated by
a model� learning methods use real experience generated by the environment� Of
course this di�erence leads to a number of other di�erences� for example� in how
performance is assessed and in how �exibly experience can be generated� But
the common structure means that many ideas and algorithms can be transferred
between planning and learning� In particular� in many cases a learning algorithm
can be substituted for the key backup step of a planning method� Learning
methods require only experience as input� and in many cases they can be applied
to simulated experience just as well as to real experience� Figure � shows a
simple example of a planning method based on one�step tabular Q�learning and
on random samples from a sample model� This method� which we call random�
sample one�step tabular Q�planning� converges to the optimal policy for the model
under the same conditions that one�step tabular Q�learning converges to the
optimal policy for the real environment �each state�action pair must be selected
an in�nite number of times in Step �� and � must decrease appropriately over
time��

In addition to the uni�ed view of planning and learning methods� a second
theme in this chapter is the bene�ts of planning in small� incremental steps� This
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enables planning to be interrupted or redirected at any time with little wasted
computation� which appears to be a key requirement for e�ciently intermixing
planning with acting and with learning of the model� More surprisingly� later in
this chapter we present evidence that planning in very small steps may be the
most e�cient approach even on pure planning problems if the problem is too
large to be solved exactly�

� Integrating Planning� Acting� and Learning

When planning is done on�line� while interacting with the environment� a num�
ber of interesting issues arise� New information gained from the interaction may
change the model and thereby interact with planning� It may be desirable to cus�
tomize the planning process in some way to the states or decisions currently under
consideration� or expected in the near future� If decision�making and model�
learning are both computation�intensive processes� then the available computa�
tional resources may need to be divided between them� To begin exploring these
issues� in this section we present Dyna�Q� a simple architecture integrating the
major functions needed in an on�line planning agent� Each function appears in
Dyna�Q in a simple� almost trivial� form� In subsequent sections we elaborate
some of the alternate ways of achieving each function and the trade�o�s between
them� For now� we seek merely to illustrate the ideas and stimulate your intuition�

Within a planning agent� there are at least two roles for real experience� it
can be used to improve the model �to make it more accurately match the real en�
vironment� and it can be used to directly improve the value function and policy
using the kinds of reinforcement learning methods we have discussed in previ�
ous chapters� The former we call model�learning� and the latter we call direct
reinforcement learning �direct RL�� The possible relationships between experi�
ence� model� values� and policy are summarized in Figure �� Each arrow shows
a relationship of in�uence and presumed improvement� Note how experience can
improve value and policy functions either directly or indirectly via the model� It
is the latter� which is sometimes called indirect reinforcement learning� that is
involved in planning�

Both direct and indirect methods have advantages and disadvantages� Indi�
rect methods often make fuller use of a limited amount of experience and thus
achieve a better policy with fewer environmental interactions� On the other hand�
direct methods are much simpler and are not a�ected by biases in the design of
the model� Some have argued that indirect methods are always superior to di�
rect ones� while others have argued that direct methods are responsible for most
human and animal learning� Related debates in psychology and AI concern the
relative importance of cognition as opposed to trial�and�error learning� and of
deliberative planning as opposed to reactive decision�making� Our view is that

�



planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Figure �� Relationships among learning� planning� and acting�

the contrast between the alternatives in all these debates has been exaggerated�
that more insight can be gained by recognizing the similarities between these two
sides than by opposing them� For example� in this book we have emphasized the
deep similarities between dynamic programming and temporal�di�erence meth�
ods� even though one was designed for planning and the other for modelfree
learning�

Dyna�Q includes all of the processes shown in Figure �	planning� acting�
model�learning� and direct RL	all occurring continually� The planning method
is the random�sample one�step tabular Q�planning method given in Figure �� The
direct RL method is one�step tabular Q�learning� The model �learning method
is also table�based and assumes the world is deterministic� After each transition
st� at� st��� rt��� the model records in its table entry for st� at the prediction that
st��� rt�� will deterministically follow� Thus� if the model is queried with a state�
action pair that has been experienced before� it simply returns the last�observed
next state and next reward as its prediction� During planning� the Q�planning
algorithm randomly samples only from state�action pairs that have previously
been experienced �in Step ��� so the model is never queried with a pair about
which it has no information�

The overall architecture of Dyna agents� of which the Dyna�Q algorithm is one
example� is shown in Figure �� The central column represents the basic interaction
between agent and environment� giving rise to a trajectory of real experience� The
arrow on the left of the �gure represents direct reinforcement learning operating
on real experience to improve the value function and the policy� On the right
are model�based processes� The model is learned from real experience and gives
rise to simulated experience� We use the term search control to refer to the
process that selects the starting states and actions for the simulated experiences
generated by the model� Finally� planning is achieved by applying reinforcement
learning methods to the simulated experiences just as if they had really happened�
Typically� as in Dyna�Q� the same reinforcement learning method is used both for
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Figure �� The general Dyna Architecture

learning from real experience and for planning from simulated experience� The
reinforcement learning method is thus the ��nal common path� for both learning
and planning� Learning and planning are deeply integrated in the sense that
they share almost all the same machinery� di�ering only in the source of their
experience�

Conceptually� planning� acting� model�learning� and direct RL occur simulta�
neously and in parallel in Dyna agents� For concreteness and implementation on
a serial computer� however� we fully specify the order in which they occur within
a time step� In Dyna�Q� the acting� model�learning� and direct RL processes
require little computation� and we assume they consume just a fraction of the
time� The remaining time in each step can be devoted to the planning process�
which is inherently computation�intensive� Let us assume that there is time in
each step� after acting� model�learning� and direct RL� to complete N iterations
�Steps ���� of the Q�planning algorithm� Figure � shows the complete algorithm
for Dyna�Q�

Example �� Dyna Maze Consider the simple maze shown inset in Figure 
� In
each of the �� states there are four actions� up� down� right� and left� which
take the agent deterministically to the corresponding neighboring states� except
when movement is blocked by an obstacle or the edge of the maze� in which case
the agent remains where it is� Reward is zero on all transitions� except those
into the goal state� on which it is ��� After reaching the goal state �G�� the
agent returns to the start state �S� to begin a new episode� This is a discounted�
episodic task with � � ���
�

The main part of Figure 
 shows average learning curves from an experiment
in which Dyna�Q agents were applied to the maze task� The initial action values





Initialize Q�s� a� and Model�s� a� for all s � S and a � A�s�
Do forever�

�a� s� current �nonterminal� state
�b� a� ��greedy�s� Q�
�c� Execute action a� observe resultant state� s�� and reward� r
�d� Q�s� a�� Q�s� a� � ��r � �max

a
� Q�s�� a���Q�s� a��

�e� Model�s� a�� s�� r �assuming deterministic environment�
�f� Repeat N times�

s� random previously observed state
a� random action previously taken in s

s�� r�Model�s� a�
Q�s� a�� Q�s� a� � ��r � �max

a
� Q�s�� a���Q�s� a��

Figure �� Dyna�Q Algorithm� Model�s� a� denotes the contents of the model
�predicted next state and reward� for state�action pair s� a� Direct reinforcement
learning� model�learning� and planning are implemented by steps �d�� �e�� and
�f�� respectively� If �e� and �f� were omitted� the remaining algorithm would be
one�step tabular Q�learning�
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Figure 
� A simple maze �inset� and the average learning curves for Dyna�Q
agents varying in their number of planning steps per real step� The task is to
travel from S to S as quickly as possible�
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Figure � Policies found by planning and nonplanning Dyna�Q agents halfway
through the second episode� The arrows indicate the greedy action in each state�
no arrow is shown for a state if all of its action values are equal� The black square
indicates the location of the agent�

were zero� the step�size parameter was � � ���� and the exploration parameter
was � � ���� When selecting greedily among actions� ties were broken randomly�
The agents varied in the number of planning steps� N � they performed per real
step� For each N � the curves show the number of steps taken by the agent in each
episode� averaged over �� repetitions of the experiment� In each repetition� the
initial seed for the random number generator was held constant across algorithms�
Because of this� the �rst episode was exactly the same �about ���� steps� for all
values of N � and its data are not shown in the �gure� After the �rst episode�
performance improved for all values of N � but much more rapidly for larger
values� Recall that the N � � agent is a nonplanning agent� utilizing only direct
reinforcement learning �one�step tabular Q�learning�� This was by far the slowest
agent on this problem� despite the fact that the parameter values �� and �� were
optimized for it� The nonplanning agent took about �
 episodes to reach ���
�optimal performance� whereas the N � 
 agent took about �ve episodes� and
the N � 
� agent took only three episodes�

Figure  shows why the planning agents found the solution so much faster
than the nonplanning agent� Shown are the policies found by the N � � and
N � 
� agents halfway through the second episode� Without planning �N � ���
each episode adds only one additional step to the policy� and so only one step �the
last� has been learned so far� With planning� again only one step is learned during
the �rst episode� but here during the second episode an extensive policy has been
developed that by the episode�s end will reach almost back to the start state�
This policy is built by the planning process while the agent is still wandering
near the start state� By the end of the third episode a complete optimal policy
will have been found and perfect performance attained� �

In Dyna�Q� learning and planning are accomplished by exactly the same algo�
rithm� operating on real experience for learning and on simulated experience for
planning� Because planning proceeds incrementally� it is trivial to intermix plan�
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ning and acting� Both proceed as fast as they can� The agent is always reactive
and always deliberative� responding instantly to the latest sensory information
and yet always planning in the background� Also ongoing in the background is
the model�learning process� As new information is gained� the model is updated
to better match reality� As the model changes� the ongoing planning process will
gradually compute a di�erent way of behaving to match the new model�

Exercise � The nonplanning method looks particularly poor in Figure  because
it is a one�step method� a method using eligibility traces would do better� Do you
think an eligibility trace method could do as well as the Dyna method� Explain
why or why not�

� When the Model Is Wrong

In the maze example presented in the previous section� the changes in the model
were relatively modest� The model started out empty� and was then �lled only
with exactly correct information� In general� we cannot expect to be so fortunate�
Models may be incorrect because the environment is stochastic and only a limited
number of samples have been observed� because the model was learned using
function approximation that has generalized imperfectly� or simply because the
environment has changed and its new behavior has not yet been observed� When
the model is incorrect� the planning process will compute a suboptimal policy�

In some cases� the suboptimal policy computed by planning quickly leads to
the discovery and correction of the modeling error� This tends to happen when
the model is optimistic in the sense of predicting greater reward or better state
transitions than are actually possible� The planned policy attempts to exploit
these opportunities and in doing so discovers that they do not exist�

Example �� Blocking Maze A maze example illustrating this relatively minor
kind of modeling error and recovery from it is shown in Figure �� Initially� there
is a short path from start to goal� to the right of the barrier� as shown in the
upper left of the �gure� After ���� time steps� the short path is �blocked�� and a
longer path is opened up along the left�hand side of the barrier� as shown in upper
right of the �gure� The graph shows average cumulative reward for Dyna�Q and
two other Dyna agents� The �rst part of the graph shows that all three Dyna
agents found the short path within ���� steps� When the environment changed�
the graphs become �at� indicating a period during which the agents obtained no
reward because they were wandering around behind the barrier� After a while�
however� they were able to �nd the new opening and the new optimal behavior�
�

Greater di�culties arise when the environment changes to become better than
it was before� and yet the formerly correct policy does not reveal the improvement�
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Figure �� Average performance of Dyna agents on a blocking task� The left
environment was used for the �rst ���� steps� the right environment for the rest�
Dyna�Q� is Dyna�Q with an exploration bonus that encourages exploration�
Dyna�AC is a Dyna agent that uses an actor�critic learning method instead of
Q�learning�

In these cases the modeling error may not be detected for a long time� if ever� as
we see in the next example�

Example �� Shortcut Maze The problem caused by this kind of environmental
change is illustrated by the maze example shown in Figure �� Initially� the optimal
path is to go around the left side of the barrier �upper left�� After ���� steps�
however� a shorter path is opened up along the right side� without disturbing the
longer path �upper right�� The graph shows that two of the three Dyna agents
never switched to the shortcut� In fact� they never realized that it existed� Their
models said that there was no shortcut� so the more they planned� the less likely
they were to step to the right and discover it� Even with an ��greedy policy� it is
very unlikely that an agent will take so many exploratory actions as to discover
the shortcut� �

The general problem here is another version of the con�ict between exploration
and exploitation� In a planning context� exploration means trying actions that
improve the model� whereas exploitation means behaving in the optimal way
given the current model� We want the agent to explore to �nd changes in the
environment� but not so much that performance is greatly degraded� As in the
earlier exploration�exploitation con�ict� there probably is no solution that is both
perfect and practical� but simple heuristics are often e�ective�

The Dyna�Q� agent that did solve the shortcut maze uses one such heuristic�
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Figure �� Average performance of Dyna agents on a shortcut task� The left
environment was used for the �rst ���� steps� the right environment for the rest�

This agent keeps track for each state�action pair of how many time steps have
elapsed since the pair was last tried in a real interaction with the environment�
The more time that has elapsed� the greater �we might presume� the chance
that the dynamics of this pair has changed and that the model of it is incorrect�
To encourage behavior that tests long�untried actions� a special �bonus reward�
is given on simulated experiences involving these actions� In particular� if the
modeled reward for a transition is r� and the transition has not been tried in
n time steps� then planning backups are done as if that transition produced a
reward of r � �

p
n� for some small �� This encourages the agent to keep testing

all accessible state transitions and even to plan long sequences of actions in order
to carry out such tests� Of course all this testing has its cost� but in many cases�
as in the shortcut maze� this kind of computational curiosity is well worth the
extra exploration�

Exercise � Why did the Dyna agent with exploration bonus� Dyna�Q�� perform
better in the �rst phase as well as in the second phase of the blocking and shortcut
experiments�

Exercise � Careful inspection of Figure � reveals that the di�erence between
Dyna�Q� and Dyna�Q narrowed slightly over the �rst part of the experiment�
What is the reason for this�

Exercise � �programming� The exploration bonus described above actually changes
the estimated values of states and actions� Is this necessary� Suppose the bonus
�
p
n was used not in backups� but solely in action selection� That is� suppose

the action selected was always that for which Q�s� a� � �
p
nsa was maximal�
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Carry out a gridworld experiment that tests and illustrates the strengths and
weaknesses of this alternate approach�

� Prioritized Sweeping

In the Dyna agents presented in the preceding sections� simulated transitions are
started in state�action pairs selected uniformly at random from all previously
experienced pairs� But a uniform selection is usually not the best� planning
can be much more e�cient if simulated transitions and backups are focused on
particular state�action pairs� For example� consider what happens during the
second episode of the �rst maze task �Figure �� At the beginning of the second
episode� only the state�action pair leading directly into the goal has a positive
value� the values of all other pairs are still zero� This means that it is pointless
to back up along almost all transitions� because they take the agent from one
zero�valued state to another� and thus the backups would have no e�ect� Only a
backup along a transition into the state just prior to the goal� or from it into the
goal� will change any values� If simulated transitions are generated uniformly�
then many wasteful backups will be made before stumbling onto one of the two
useful ones� As planning progresses� the region of useful backups grows� but
planning is still far less e�cient than it would be if focused where it would do the
most good� In the much larger problems that are our real objective� the number
of states is so large that an unfocused search would be extremely ine�cient�

This example suggests that search might be usefully focused by working back�
ward from goal states� Of course� we do not really want to use any methods
speci�c to the idea of �goal state�� We want methods that work for general
reward functions� Goal states are just a special case� convenient for stimulating
intuition� In general� we want to work back not just from goal states but from
any state whose value has changed� Assume that the values are initially correct
given the model� as they were in the maze example prior to discovering the goal�
Suppose now that the agent discovers a change in the environment and changes
its estimated value of one state� Typically� this will imply that the values of
many other states should also be changed� but the only useful one�step backups
are those of actions that lead directly into the one state whose value has already
been changed� If the values of these actions are updated� then the values of the
predecessor states may change in turn� If so� then actions leading into them need
to be backed up� and then their predecessor states may have changed� In this
way one can work backward from arbitrary states that have changed in value�
either performing useful backups or terminating the propagation�

As the frontier of useful backups propagates backward� it often grows rapidly�
producing many state�action pairs that could usefully be backed up� But not all
of these will be equally useful� The values of some states may have changed a
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Initialize Q�s� a�� Model�s� a�� for all s� a� and PQueue to empty
Do forever�

�a� s� current �nonterminal� state
�b� a� policy�s� Q�
�c� Execute action a� observe resultant state� s�� and reward� r
�d� Model�s� a�� s�� r

�e� p� jr � �max
a
� Q�s�� a��� Q�s� a�j	

�f� if p � �� then insert s� a into PQueue with priority p

�g� Repeat N times� while PQueue is not empty�
s� a� first�PQueue�
s�� r�Model�s� a�
Q�s� a�� Q�s� a� � ��r � �max

a
� Q�s�� a���Q�s� a��

Repeat� for all 
s� 
a predicted to lead to s�

r � predicted reward
p� j
r� �max

a
Q�s� a��Q�
s� 
a�j	

if p � � then insert 
s� 
a into PQueue with priority p

Figure �� The prioritized sweeping algorithm for a deterministic environment�

lot� whereas others have changed little� The predecessor pairs of those that have
changed a lot are more likely to also change a lot� In a stochastic environment�
variations in estimated transition probabilities also contribute to variations in the
sizes of changes and in the urgency with which pairs need to be backed up� It
is natural to prioritize the backups according to a measure of their urgency� and
perform them in order of priority� This is the idea behind prioritized sweeping�
A queue is maintained of every state�action pair whose estimated value would
change nontrivially if backed up� prioritized by the size of the change� When the
top pair in the queue is backed up� the e�ect on each of its predecessor pairs
is computed� If the e�ect is greater than some small threshold� then the pair is
inserted in the queue with the new priority �if there is a previous entry of the pair
in the queue� then insertion results in only the higher priority entry�s remaining in
the queue�� In this way the e�ects of changes are e�ciently propagated backward
until quiescence� The full algorithm for the case of deterministic environments is
given in Figure ��

Example �� Prioritized Sweeping on Mazes Prioritized sweeping has been found
to dramatically increase the speed at which optimal solutions are found in maze
tasks� often by a factor of 
 to ��� A typical example is shown in Figure ���
These data are for a sequence of maze tasks of exactly the same structure as
the one shown in Figure 
� except that they vary in the grid resolution� Priori�
tized sweeping maintained a decisive advantage over unprioritized Dyna�Q� Both
systems made at most N � 
 backups per environmental interaction� �
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Figure ��� Prioritized sweeping signi�cantly shortens learning time on the Dyna
maze task for a wide range of grid resolutions� Reprinted from Peng and Williams
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Figure ��� A rod�maneuvering task and its solution by prioritized sweeping�
Reprinted from Moore and Atkeson �������
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Example �� Rod Maneuvering The objective in this task is to maneuver a
rod around some awkwardly placed obstacles to a goal position in the fewest
number of steps �Figure ���� The rod can be translated along its long axis or
perpendicular to that axis� or it can be rotated in either direction around its
center� The distance of each movement is approximately ���� of the work space�
and the rotation increment is �� degrees� Translations are deterministic and
quantized to one of �� � �� positions� The �gure shows the obstacles and the
shortest solution from start to goal� found by prioritized sweeping� This problem
is still deterministic� but has four actions and ������ potential states �some of
these are unreachable because of the obstacles�� This problem is probably too
large to be solved with unprioritized methods� �

Prioritized sweeping is clearly a powerful idea� but the algorithms that have
been developed so far appear not to extend easily to more interesting cases�
The greatest problem is that the algorithms appear to rely on the assumption
of discrete states� When a change occurs at one state� these methods perform
a computation on all the predecessor states that may have been a�ected� If
function approximation is used to learn the model or the value function� then
a single backup could in�uence a great many other states� It is not apparent
how these states could be identi�ed or processed e�ciently� On the other hand�
the general idea of focusing search on the states believed to have changed in
value� and then on their predecessors� seems intuitively to be valid in general�
Additional research may produce more general versions of prioritized sweeping�

Extensions of prioritized sweeping to stochastic environments are relatively
straightforward� The model is maintained by keeping counts of the number of
times each state�action pair has been experienced and of what the next states
were� It is natural then to backup each pair not with a sample backup� as we
have been using so far� but with a full backup� taking into account all possible
next states and their probabilities of occurring�

� Full vs� Sample Backups

The examples in the previous sections give some idea of the range of possibilities
for combining methods of learning and planning� In the rest of this chapter�
we analyze some of the component ideas involved� starting with the relative
advantages of full and sample backups�

Much of this book has been about di�erent kinds of backups� and we have
considered a great many varieties� Focusing for the moment on one�step backups�
they vary primarily along three binary dimensions� The �rst two dimensions are
whether they back up state values or action values and whether they estimate the
value for the optimal policy or for an arbitrary given policy� These two dimensions
give rise to four classes of backups for approximating the four value functions�
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Q�� V �� Q�� and V �� The other binary dimension is whether the backups are full
backups� considering all possible events that might happen� or sample backups�
considering a single sample of what might happen� These three binary dimensions
give rise to eight cases� seven of which correspond to speci�c algorithms� as shown
in Figure ��� �The eighth case does not seem to correspond to any useful backup��
Any of these one�step backups can be used in planning methods� The Dyna�Q
agents discussed earlier use Q� sample backups� but they could just as well use
Q� full backups� or either full or sample Q� backups� The Dyna�AC system
uses V � sample backups together with a learning policy structure� For stochastic
problems� prioritized sweeping is always done using one of the full backups�

When we introduced one�step sample backups in Chapter � we presented
them as substitutes for full backups� In the absence of a distribution model�
full backups are not possible� but sample backups can be done using sample
transitions from the environment or a sample model� Implicit in that point of view
is that full backups� if possible� are preferable to sample backups� But are they�
Full backups certainly yield a better estimate because they are uncorrupted by
sampling error� but they also require more computation� and computation is often
the limiting resource in planning� To properly assess the relative merits of full and
sample backups for planning we must control for their di�erent computational
requirements�

For concreteness� consider the full and sample backups for approximating Q��
and the special case of discrete states and actions� a table�lookup representation
of the approximate value function� Q� and a model in the form of estimated state�
transition probabilities�  P a

ss� � and expected rewards�  Ra

ss� � The full backup for a
state�action pair� s� a� is�

Q�s� a��X

s�

 P a

ss�

h
 Ra

ss� � �max
a�

Q�s�� a��
i
� ���

The corresponding sample backup for s� a� given a sample next state� s�� is the
Q�learning�like update�

Q�s� a�� Q�s� a� � �
h
 Ra

ss� � �max
a�

Q�s�� a���Q�s� a�
i
� ���

where � is the usual positive step�size parameter and the model�s expected value
of the reward�  Ra

ss� is used in place of the sample reward that is used in applying
Q�learning without a model�

The di�erence between these full and sample backups is signi�cant to the
extent that the environment is stochastic� speci�cally� to the extent that� given a
state and action� many possible next states may occur with various probabilities�
If only one next state is possible� then the full and sample backups given above
are identical �taking � � ��� If there are many possible next states� then there
may be signi�cant di�erences� In favor of the full backup is that it is an exact
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computation� resulting in a new Q�s� a� whose correctness is limited only by the
correctness of the Q�s�� a�� at successor states� The sample backup is in addition
a�ected by sampling error� On the other hand� the sample backup is cheaper
computationally because it considers only one next state� not all possible next
states� In practice� the computation required by backup operations is usually
dominated by the number of state�action pairs at which Q is evaluated� For a
particular starting pair� s� a� let b be the branching factor� the number of possible
next states� s�� for which  P a

ss� � �� Then a full backup of this pair requires roughly
b times as much computation as a sample backup�

If there is enough time to complete a full backup� then the resulting estimate is
generally better than that of b sample backups because of the absence of sampling
error� But if there is insu�cient time to complete a full backup� then sample
backups are always preferable because they at least make some improvement in
the value estimate with fewer than b backups� In a large problem with many
state�action pairs� we are often in the latter situation� With so many state�
action pairs� full backups of all of them would take a very long time� Before that
we may be much better o� with a few sample backups at many state�action pairs
than with full backups at a few pairs� Given a unit of computational e�ort� is it
better devoted to a few full backups or to b�times as many sample backups�

Figure �� shows the results of an analysis that suggests an answer to this
question� It shows the estimation error as a function of computation time for full
and sample backups for a variety of branching factors� b� The case considered is
that in which all b successor states are equally likely and in which the error in the
initial estimate is �� The values at the next states are assumed correct� so the
full backup reduces the error to zero upon its completion� In this case� sample
backups reduce the error according to �p

t

b��
b

where t is the number of sample

backups that have been performed �assuming sample averages� i�e�� � � ��t��
The key observation is that for moderately large b the error falls dramatically
with a tiny fraction of b backups� For these cases� many state�action pairs could
have their values improved dramatically� to within a few percent of the e�ect of
a full backup� in the same time that one state�action pair could be backed up
fully�

The advantage of sample backups shown in Figure �� is probably an under�
estimate of the real e�ect� In a real problem� the values of the successor states
would themselves be estimates updated by backups� By causing estimates to be
more accurate sooner� sample backups will have a second advantage in that the
values backed up from the successor states will be more accurate� These results
suggest that sample backups are likely to be superior to full backups on problems
with large stochastic branching factors and too many states to be solved exactly�

Exercise � The analysis above assumed that all of the b possible next states were
equally likely to occur� Suppose instead that the distribution was highly skewed�
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Figure ��� Comparison of e�ciency of full and sample backups�

that some of the b states were much more likely to occur than most� Would this
strengthen or weaken the case for sample backups over full backups� Support
your answer�

� Trajectory Sampling

In this section we compare two ways of distributing backups� The classical ap�
proach� from dynamic programming� is to perform sweeps through the entire
state �or state�action� space� backing up each state �or state�action pair� once
per sweep� This is problematic on large tasks because there may not be time
to complete even one sweep� In many tasks the vast majority of the states are
irrelevant because they are visited only under very poor policies or with very low
probability� Exhaustive sweeps implicitly devote equal time to all parts of the
state space rather than focusing where it is needed� As we discussed in Chapter
�� exhaustive sweeps and the equal treatment of all states that they imply are
not necessary properties of dynamic programming� In principle� backups can be
distributed any way one likes �to assure convergence� all states or state�action
pairs must be visited in the limit an in�nite number of times�� but in practice
exhaustive sweeps are often used�

The second approach is to sample from the state or state�action space accord�
ing to some distribution� One could sample uniformly� as in the Dyna�Q agent�
but this would su�er from some of the same problems as exhaustive sweeps� More
appealing is to distribute backups according to the on�policy distribution� that
is� according to the distribution observed when following the current policy� One
advantage of this distribution is that it is easily generated� one simply interacts
with the model� following the current policy� In an episodic task� one starts in
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the start state �or according to the starting�state distribution� and simulates un�
til the terminal state� In a continuing task� one starts anywhere and just keeps
simulating� In either case� sample state transitions and rewards are given by
the model� and sample actions are given by the current policy� In other words�
one simulates explicit individual trajectories and performs backups at the state
or state�action pairs encountered along the way� We call this way of generating
experience and backups trajectory sampling�

It is hard to imagine any e�cient way of distributing backups according to the
on�policy distribution other than by trajectory sampling� If one had an explicit
representation of the on�policy distribution� then one could sweep through all
states� weighting the backup of each according to the on�policy distribution�
but this leaves us again with all the computational costs of exhaustive sweeps�
Possibly one could sample and update individual state�action pairs from the
distribution� but even if this could be done e�ciently� what bene�t would this
provide over simulating trajectories� Even knowing the on�policy distribution
in an explicit form is unlikely� The distribution changes whenever the policy
changes� and computing the distribution requires computation comparable to
a complete policy evaluation� Consideration of such other possibilities makes
trajectory sampling seem both e�cient and elegant�

Is the on�policy distribution of backups a good one� Intuitively it seems like
a good choice� at least better than the uniform distribution� For example� if you
are learning to play chess� you study positions that might arise in real games�
not random positions of chess pieces� The latter may be valid states� but to
be able to accurately value them is a di�erent skill from evaluating positions in
real games� We also know from the Chapter � that the on�policy distribution
has signi�cant advantages when function approximation is used� At the current
time this is the only distribution for which we can guarantee convergence with
general linear function approximation� Whether or not function approximation
is used� one might expect on�policy focusing to signi�cantly improve the speed of
planning�

Focusing on the on�policy distribution could be bene�cial because it causes
vast� uninteresting parts of the space to be ignored� or it could be detrimental
because it causes the same old parts of the space to be backed up over and
over� We conducted a small experiment to assess the e�ect empirically� To
isolate the e�ect of the backup distribution� we used entirely one�step full tabular
backups� as de�ned by ���� In the uniform case� we cycled through all state�
action pairs� backing up each in place� and in the on�policy case we simulated
episodes� backing up each state�action pair that occurred under the current ��
greedy policy �� � ����� The tasks were undiscounted episodic tasks� generated
randomly as follows� From each of the jSj states� two actions were possible�
each of which resulted in one of b next states� all equally likely� with a di�erent
random selection of b states for each state�action pair� The branching factor�
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generated tasks of two sizes and various branching factors� b�
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b� was the same for all state�action pairs� In addition� on all transitions there
was a ��� probability of transition to the terminal state� ending the episode� We
used episodic tasks to get a clear measure of the quality of the current policy�
At any point in the planning process one can stop and exhaustively compute
V ���s��� the true value of the start state under the greedy policy� !	� given the
current action�value function� Q� as an indication of how well the agent would do
on a new episode on which it acted greedily �all the while assuming the model is
correct��

The upper part of Figure �� shows results averaged over ��� sample tasks
with ���� states and branching factors of �� �� and ��� The quality of the policies
found is plotted as a function of the number of full backups completed� In all
cases� sampling according to the on�policy distribution resulted in faster planning
initially and retarded planning in the long run� The e�ect was stronger� and the
initial period of faster planning was longer� at smaller branching factors� In other
experiments� we found that these e�ects also became stronger as the number of
states increased� For example� the lower part of Figure �� shows results for a
branching factor of � for tasks with ������ states� In this case the advantage of
on�policy focusing is large and long�lasting�

All of these results make sense� In the short term� sampling according to the
on�policy distribution helps by focusing on states that are near descendants of the
start state� If there are many states and a small branching factor� this e�ect will
be large and long�lasting� In the long run� focusing on the on�policy distribution
may hurt because the commonly occurring states all already have their correct
values� Sampling them is useless� whereas sampling other states may actually
perform some useful work� This presumably is why the exhaustive� unfocused
approach does better in the long run� at least for small problems� These results
are not conclusive because they are only for problems generated in a particular�
random way� but they do suggest that sampling according to the on�policy dis�
tribution can be a great advantage for large problems� in particulardirectly for
problems in which a small subset of the state�action space is visited under the
on�policy distribution�

Exercise 	 Some of the graphs in Figure �� seem to be scalloped in their early
portions� particularly the upper graph for b � � and the uniform distribution�
Why do you think this is� What aspects of the data shown support your hypoth�
esis�

Exercise 
 �programming� If you have access to a moderately large computer� try
replicating the experiment whose results are shown in the lower part of Figure ���
Then try the same experiment but with b � �� Discuss the meaning of your
results�
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� Heuristic Search

The predominant state�space planning methods in arti�cial intelligence are col�
lectively known as heuristic search� Although super�cially di�erent from the
planning methods we have discussed so far in this chapter� heuristic search and
some of its component ideas can be combined with these methods in useful ways�
Unlike these methods� heuristic search is not concerned with changing the ap�
proximate� or �heuristic�� value function� but only with making improved action
selections given the current value function� In other words� heuristic search is
planning as part of a policy computation�

In heuristic search� for each state encountered� a large tree of possible contin�
uations is considered� The approximate value function is applied to the leaf nodes
and then backed up toward the current state at the root� The backing up within
the search tree is just the same as in the max�backups �those for V � and Q��
discussed throughout this book� The backing up stops at the state�action nodes
for the current state� Once the backed�up values of these nodes are computed�
the best of them is chosen as the current action� and then all backed�up values
are discarded�

In conventional heuristic search no e�ort is made to save the backed�up val�
ues by changing the approximate value function� In fact� the value function is
generally designed by people and never changed as a result of search� However�
it is natural to consider allowing the value function to be improved over time�
using either the backed�up values computed during heuristic search or any of
the other methods presented throughout this book� In a sense we have taken
this approach all along� Our greedy and ��greedy action�selection methods are
not unlike heuristic search� albeit on a smaller scale� For example� to compute
the greedy action given a model and a state�value function� we must look ahead
from each possible action to each possible next state� backup the rewards and
estimated values� and then pick the best action� Just as in conventional heuristic
search� this process computes backed�up values of the possible actions� but does
not attempt to save them� Thus� heuristic search can be viewed as an extension
of the idea of a greedy policy beyond a single step�

The point of searching deeper than one step is to obtain better action selec�
tions� If one has a perfect model and an imperfect action�value function� then
in fact deeper search will usually yield better policies�� Certainly� if the search
is all the way to the end of the episode� then the e�ect of the imperfect value
function is eliminated� and the action determined in this way must be optimal�
If the search is of su�cient depth k such that �k is very small� then the actions
will be correspondingly near optimal� On the other hand� the deeper the search�
the more computation is required� usually resulting in a slower response time�

�There are interesting exceptions to this� See� e�g�� Pearl �������
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A good example is provided by Tesauro�s grandmaster�level backgammon player�
TD�Gammon �Section ������ This system used TD��� to learn an afterstate value
function through many games of self�play� using a form of heuristic search to make
its moves� As a model� TD�Gammon used a priori knowledge of the probabilities
of dice rolls and the assumption that the opponent always selected the actions
that TD�Gammon rated as best for it� Tesauro found that the deeper the heuris�
tic search� the better the moves made by TD�Gammon� but the longer it took to
make each move� Backgammon has a large branching factor� yet moves must be
made within a few seconds� It was only feasible to search ahead selectively a few
steps� but even so the search resulted in signi�cantly better action selections�

So far we have emphasized heuristic search as an action�selection technique�
but this may not be its most important aspect� Heuristic search also suggests
ways of selectively distributing backups that may lead to better and faster ap�
proximation of the optimal value function� A great deal of research on heuristic
search has been devoted to making the search as e�cient as possible� The search
tree is grown selectively� deeper along some lines and shallower along others� For
example� the search tree is often deeper for the actions that seem most likely to
be best� and shallower for those that the agent will probably not want to take
anyway� Can we use a similar idea to improve the distribution of backups� Per�
haps it can be done by preferentially updating state�action pairs whose values
appear to be close to the maximum available from the state� To our knowledge�
this and other possibilities for distributing backups based on ideas borrowed from
heuristic search have not yet been explored�

We should not overlook the most obvious way in which heuristic search focuses
backups� on the current state� Much of the e�ectiveness of heuristic search is
due to its search tree being tightly focused on the states and actions that might
immediately follow the current state� You may spend more of your life playing
chess than checkers� but when you play checkers� it pays to think about checkers
and about your particular checkers position� your likely next moves� and successor
positions� However you select actions� it is these states and actions that are of
highest priority for backups and where you most urgently want your approximate
value function to be accurate� Not only should your computation be preferentially
devoted to imminent events� but so should your limited memory resources� In
chess� for example� there are far too many possible positions to store distinct
value estimates for each of them� but chess programs based on heuristic search can
easily store distinct estimates for the millions of positions they encounter looking
ahead from a single position� This great focusing of memory and computational
resources on the current decision is presumably the reason why heuristic search
can be so e�ective�

The distribution of backups can be altered in similar ways to focus on the
current state and its likely successors� As a limiting case we might use exactly
the methods of heuristic search to construct a search tree� and then perform the
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Figure �
� The deep backups of heuristic search can be implemented as a sequence
of one�step backups �shown here outlined�� The ordering shown is for a selective
depth��rst search�

individual� one�step backups from bottom up� as suggested by Figure �
� If the
backups are ordered in this way and a table�lookup representation is used� then
exactly the same backup would be achieved as in heuristic search� Any state�
space search can be viewed in this way as the piecing together of a large number of
individual one�step backups� Thus� the performance improvement observed with
deeper searches is not due to the use of multistep backups as such� Instead� it is
due to the focus and concentration of backups on states and actions immediately
downstream from the current state� By devoting a large amount of computation
speci�cally relevant to the candidate actions� a much better decision can be made
than by relying on unfocused backups�

	 Summary

We have presented a perspective emphasizing the surprisingly close relationships
between planning optimal behavior and learning optimal behavior� Both involve
estimating the same value functions� and in both cases it is natural to update
the estimates incrementally� in a long series of small backup operations� This
makes it straightforward to integrate learning and planning processes simply by
allowing both to update the same estimated value function� In addition� any of
the learning methods can be converted into planning methods simply by applying
them to simulated �model�generated� experience rather than to real experience�
In this case learning and planning become even more similar� they are possibly
identical algorithms operating on two di�erent sources of experience�

It is straightforward to integrate incremental planning methods with acting
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and model�learning� Planning� acting� and model�learning interact in a circular
fashion �Figure ��� each producing what the other needs to improve� no other
interaction among them is either required or prohibited� The most natural ap�
proach is for all processes to proceed asynchronously and in parallel� If the
processes must share computational resources� then the division can be handled
almost arbitrarily	by whatever organization is most convenient and e�cient for
the task at hand�

In this chapter we have touched upon a number of dimensions of variation
among state�space planning methods� One of the most important of these is the
distribution of backups� that is� of the focus of search� Prioritized sweeping fo�
cuses on the predecessors of states whose values have recently changed� Heuristic
search applied to reinforcement learning focuses� inter alia� on the successors of
the current state� Trajectory sampling is a convenient way of focusing on the
on�policy distribution� All of these approaches can signi�cantly speed planning
and are current topics of research�

Another interesting dimension of variation is the size of backups� The smaller
the backups� the more incremental the planning methods can be� Among the
smallest backups are one�step sample backups� We presented one study sug�
gesting that one�step sample backups may be preferable on very large problems�
A related issue is the depth of backups� In many cases deep backups can be
implemented as sequences of shallow backups�


 Bibliographical and Historical Remarks

� The overall view of planning and learning presented here has developed
gradually over a number of years� in part by the authors �Sutton� �����
����a� ����b� Barto� Bradtke� and Singh� ����� ���
� Sutton and Pinette�
���
� Sutton and Barto� ����b�� it has been strongly in�uenced by Agre
and Chapman ������ Agre ������ Bertsekas and Tsitsiklis ������� Singh
������� and others� The authors were also strongly in�uenced by psy�
chological studies of latent learning �Tolman� ����� and by psychological
views of the nature of thought �e�g�� Galanter and Gerstenhaber� ��
�
Craik� ����� Campbell� ���� Dennett� ������

��� The terms direct and indirect � which we use to describe di�erent kinds
of reinforcement learning� are from the adaptive control literature �e�g��
Goodwin and Sin� ������ where they are used to make the same kind of
distinction� The term system identi�cation is used in adaptive control
for what we call model�learning �e�g�� Goodwin and Sin� ����� Ljung and
S"oderstrom� ����� Young� ������ The Dyna architecture is due to Sutton
������� and the results in these sections are based on results reported
there�
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� Prioritized sweeping was developed simultaneously and independently by
Moore and Atkeson ������ and Peng and Williams ������� The results in
Figure �� are due to Peng and Williams ������� The results in Figure ��
are due to Moore and Atkeson�

� This section was strongly in�uenced by the experiments of Singh �������

� For further reading on heuristic search� the reader is encouraged to consult
texts and surveys such as those by Russell and Norvig ����
� and Korf
������� Peng and Williams ������ explored a forward focusing of backups
much as is suggested in this section�
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