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In this chapter we develop a unified view of methods that require a model
of the environment, such as dynamic programming and heuristic search, and
methods that can be used without a model, such as Monte Carlo and temporal-
difference methods. We think of the former as planning methods and of the latter
as learning methods. Although there are real differences between these two kinds
of methods, there are also great similarities. In particular, the heart of both kinds
of methods is the computation of value functions. Moreover, all the methods
are based on looking ahead to future events, computing a backed-up value, and
then using it to update an approximate value function. Earlier in this book we
presented Monte Carlo and temporal-difference methods as distinct alternatives,
then showed how they can be seamlessly integrated by using eligibility traces
such as in TD(A). Our goal in this chapter is a similar integration of planning
and learning methods. Having established these as distinct in earlier chapters,
we now explore the extent to which they can be intermixed.

1 Models and Planning

By a model of the environment we mean anything that an agent can use to predict
how the environment will respond to its actions. Given a state and an action, a
model produces a prediction of the resultant next state and next reward. If the
model is stochastic, then there are several possible next states and next rewards,
each with some probability of occurring. Some models produce a description of
all possibilities and their probabilities; these we call distribution models. Other
models produce just one of the possibilities, sampled according to the probabil-
ities; these we call sample models. For example, consider modeling the sum of
a dozen dice. A distribution model would produce all possible sums and their
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probabilities of occurring, whereas a sample model would produce an individual
sum drawn according to this probability distribution. The kind of model assumed
in dynamic programming—estimates of the state transition probabilities and ex-
pected rewards, P2, and R%,—is a distribution model. The kind of model used
in the blackjack example in Chapter 5 is a sample model. Distribution models
are stronger than sample models in that they can always be used to produce
samples. However, in surprisingly many applications it is much easier to obtain
sample models than distribution models.

Models can be used to mimic or simulate experience. Given a starting state
and action, a sample model produces a possible transition, and a distribution
model generates all possible transitions weighted by their probabilities of occur-
ring. Given a starting state and a policy, a sample model could produce an entire
episode, and a distribution model could generate all possible episodes and their
probabilities. In either case, we say the model is used to szmulate the environment
and produce simulated experience.

The word planning is used in several different ways in different fields. We use
the term to refer to any computational process that takes a model as input and
produces or improves a policy for interacting with the modeled environment:

model planning » policy

Within artificial intelligence, there are two distinct approaches to planning ac-
cording to our definition. In state-space planning, which includes the approach
we take in this book, planning is viewed primarily as a search through the state
space for an optimal policy or path to a goal. Actions cause transitions from

state to state, and value functions are computed over states. In what we call
plan-space planning, planning is instead viewed as a search through the space
of plans. Operators transform one plan into another, and value functions, if
any, are defined over the space of plans. Plan-space planning includes evolution-
ary methods and partial-order planning, a popular kind of planning in artificial
intelligence in which the ordering of steps is not completely determined at all
stages of planning. Plan-space methods are difficult to apply efficiently to the
stochastic optimal control problems that are the focus in reinforcement learning,
and we do not consider them further (but see Section 11.6 for one application of
reinforcement learning within plan-space planning).

The unified view we present in this chapter is that all state-space planning
methods share a common structure, a structure that is also present in the learning
methods presented in this book. It takes the rest of the chapter to develop
this view, but there are two basic ideas: (1) all state-space planning methods
involve computing value functions as a key intermediate step toward improving
the policy, and (2) they compute their value functions by backup operations
applied to simulated experience. This common structure can be diagrammed as



Do forever:
1. Select a state, s € S, and an action, a € A(s), at random
2. Send s, a to a sample model, and obtain
a sample next state, s’, and a sample next reward, »
3. Apply one-step tabular Q-learning to s, a,s’,r:
Q(s,a) + Q(s,a) + afr + ymax, Q(s',a') — Q(s, a)]

Figure 1: Random-sample one-step tabular Q-planning

follows:

smulated backups
moael ™ experience
Dynamic programming methods clearly fit this structure: they make sweeps

vaues —— » policy

through the space of states, generating for each state the distribution of pos-
sible transitions. Each distribution is then used to compute a backed-up value
and update the state’s estimated value. In this chapter we argue that various
other state-space planning methods also fit this structure, with individual meth-
ods differing only in the kinds of backups they do, the order in which they do
them, and in how long the backed-up information is retained.

Viewing planning methods in this way emphasizes their relationship to the
learning methods that we have described in this book. The heart of both learning
and planning methods is the estimation of value functions by backup operations.
The difference is that whereas planning uses simulated experience generated by
a model, learning methods use real experience generated by the environment. Of
course this difference leads to a number of other differences, for example, in how
performance is assessed and in how flexibly experience can be generated. But
the common structure means that many ideas and algorithms can be transferred
between planning and learning. In particular, in many cases a learning algorithm
can be substituted for the key backup step of a planning method. Learning
methods require only experience as input, and in many cases they can be applied
to simulated experience just as well as to real experience. Figure 1 shows a
simple example of a planning method based on one-step tabular Q-learning and
on random samples from a sample model. This method, which we call random-
sample one-step tabular @Q)-planning, converges to the optimal policy for the model
under the same conditions that one-step tabular Q-learning converges to the
optimal policy for the real environment (each state—action pair must be selected
an infinite number of times in Step 1, and o must decrease appropriately over
time).

In addition to the unified view of planning and learning methods, a second
theme in this chapter is the benefits of planning in small, incremental steps. This



enables planning to be interrupted or redirected at any time with little wasted
computation, which appears to be a key requirement for efficiently intermixing
planning with acting and with learning of the model. More surprisingly, later in
this chapter we present evidence that planning in very small steps may be the
most efficient approach even on pure planning problems if the problem is too
large to be solved exactly.

2 Integrating Planning, Acting, and Learning

When planning is done on-line, while interacting with the environment, a num-
ber of interesting issues arise. New information gained from the interaction may
change the model and thereby interact with planning. It may be desirable to cus-
tomize the planning process in some way to the states or decisions currently under
consideration, or expected in the near future. If decision-making and model-
learning are both computation-intensive processes, then the available computa-
tional resources may need to be divided between them. To begin exploring these
issues, in this section we present Dyna-Q, a simple architecture integrating the
major functions needed in an on-line planning agent. Each function appears in
Dyna-Q in a simple, almost trivial, form. In subsequent sections we elaborate
some of the alternate ways of achieving each function and the trade-offs between
them. For now, we seek merely to illustrate the ideas and stimulate your intuition.

Within a planning agent, there are at least two roles for real experience: it
can be used to improve the model (to make it more accurately match the real en-
vironment) and it can be used to directly improve the value function and policy
using the kinds of reinforcement learning methods we have discussed in previ-
ous chapters. The former we call model-learning, and the latter we call direct
reinforcement learning (direct RL). The possible relationships between experi-
ence, model, values, and policy are summarized in Figure 2. Each arrow shows
a relationship of influence and presumed improvement. Note how experience can
improve value and policy functions either directly or indirectly via the model. It
is the latter, which is sometimes called indirect reinforcement learning, that is
involved in planning.

Both direct and indirect methods have advantages and disadvantages. Indi-
rect methods often make fuller use of a limited amount of experience and thus
achieve a better policy with fewer environmental interactions. On the other hand,
direct methods are much simpler and are not affected by biases in the design of
the model. Some have argued that indirect methods are always superior to di-
rect ones, while others have argued that direct methods are responsible for most
human and animal learning. Related debates in psychology and AI concern the
relative importance of cognition as opposed to trial-and-error learning, and of
deliberative planning as opposed to reactive decision-making. Our view is that



value/policy

acting
planning direct
RL
model experience
model
learning

Figure 2: Relationships among learning, planning, and acting.

the contrast between the alternatives in all these debates has been exaggerated,
that more insight can be gained by recognizing the similarities between these two
sides than by opposing them. For example, in this book we have emphasized the
deep similarities between dynamic programming and temporal-difference meth-
ods, even though one was designed for planning and the other for modelfree
learning.

Dyna-Q includes all of the processes shown in Figure 2—planning, acting,
model-learning, and direct RL—all occurring continually. The planning method
is the random-sample one-step tabular Q-planning method given in Figure 1. The
direct RL method is one-step tabular Q-learning. The model -learning method
is also table-based and assumes the world is deterministic. After each transition
S, Q¢ ~> Sg11,Ter1, the model records in its table entry for s¢, a; the prediction that
St+1,T¢+1 will deterministically follow. Thus, if the model is queried with a state—
action pair that has been experienced before, it simply returns the last-observed
next state and next reward as its prediction. During planning, the Q-planning
algorithm randomly samples only from state—action pairs that have previously
been experienced (in Step 1), so the model is never queried with a pair about
which it has no information.

The overall architecture of Dyna agents, of which the Dyna-Q algorithm is one
example, is shown in Figure 3. The central column represents the basic interaction
between agent and environment, giving rise to a trajectory of real experience. The
arrow on the left of the figure represents direct reinforcement learning operating
on real experience to improve the value function and the policy. On the right
are model-based processes. The model is learned from real experience and gives
rise to simulated experience. We use the term search control to refer to the
process that selects the starting states and actions for the simulated experiences
generated by the model. Finally, planning is achieved by applying reinforcement
learning methods to the simulated experiences just as if they had really happened.
Typically, as in Dyna-Q, the same reinforcement learning method is used both for
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Figure 3: The general Dyna Architecture

learning from real experience and for planning from simulated experience. The
reinforcement learning method is thus the “final common path” for both learning
and planning. Learning and planning are deeply integrated in the sense that
they share almost all the same machinery, differing only in the source of their
experience.

Conceptually, planning, acting, model-learning, and direct RL occur simulta-

neously and in parallel in Dyna agents. For concreteness and implementation on
a serial computer, however, we fully specify the order in which they occur within
a time step. In Dyna-Q, the acting, model-learning, and direct RL processes
require little computation, and we assume they consume just a fraction of the
time. The remaining time in each step can be devoted to the planning process,
which is inherently computation-intensive. Let us assume that there is time in
each step, after acting, model-learning, and direct RL, to complete N iterations
(Steps 1-3) of the Q-planning algorithm. Figure 4 shows the complete algorithm
for Dyna-Q.
Ezample 1: Dyna Maze Consider the simple maze shown inset in Figure 5. In
each of the 47 states there are four actions, up, down, right, and left, which
take the agent deterministically to the corresponding neighboring states, except
when movement is blocked by an obstacle or the edge of the maze, in which case
the agent remains where it is. Reward is zero on all transitions, except those
into the goal state, on which it is +1. After reaching the goal state (G), the
agent returns to the start state (S) to begin a new episode. This is a discounted,
episodic task with v = 0.95.

The main part of Figure 5 shows average learning curves from an experiment
in which Dyna-(Q agents were applied to the maze task. The initial action values



Initialize Q(s, a) and Model(s,a) for all s € S and a € A(s)
Do forever:
(a) s < current (nonterminal) state
(b) a < e-greedy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward, r
(d) Q(s,a) < Q(s,a) + a[r + ymax, Q(s',a') — Q(s, a)]
(e) Model(s,a) < s',r (assuming deterministic environment)
(f) Repeat N times:
s + random previously observed state
a + random action previously taken in s
s',r < Model(s, a)
Q(s,a) < Q(s,a) + ofr + ymax, Q(s',a') — Q(s, a)]

Figure 4: Dyna-Q Algorithm. Model(s,a) denotes the contents of the model
(predicted next state and reward) for state—action pair s, a. Direct reinforcement
learning, model-learning, and planning are implemented by steps (d), (e), and
(f), respectively. If (e) and (f) were omitted, the remaining algorithm would be
one-step tabular Q-learning.
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Figure 5: A simple maze (inset) and the average learning curves for Dyna-Q
agents varying in their number of planning steps per real step. The task is to
travel from S to S as quickly as possible.
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Figure 6: Policies found by planning and nonplanning Dyna-Q agents halfway
through the second episode. The arrows indicate the greedy action in each state;
no arrow is shown for a state if all of its action values are equal. The black square
indicates the location of the agent.

were zero, the step-size parameter was a = 0.1, and the exploration parameter
was € = 0.1. When selecting greedily among actions, ties were broken randomly.
The agents varied in the number of planning steps, N, they performed per real
step. For each N, the curves show the number of steps taken by the agent in each
episode, averaged over 30 repetitions of the experiment. In each repetition, the
initial seed for the random number generator was held constant across algorithms.
Because of this, the first episode was exactly the same (about 1700 steps) for all
values of N, and its data are not shown in the figure. After the first episode,
performance improved for all values of N, but much more rapidly for larger
values. Recall that the N = 0 agent is a nonplanning agent, utilizing only direct
reinforcement learning (one-step tabular Q-learning). This was by far the slowest
agent on this problem, despite the fact that the parameter values (a and €) were
optimized for it. The nonplanning agent took about 25 episodes to reach (e-
Joptimal performance, whereas the N = 5 agent took about five episodes, and
the N = 50 agent took only three episodes.

Figure 6 shows why the planning agents found the solution so much faster
than the nonplanning agent. Shown are the policies found by the N = 0 and
N = 50 agents halfway through the second episode. Without planning (N = 0),
each episode adds only one additional step to the policy, and so only one step (the
last) has been learned so far. With planning, again only one step is learned during
the first episode, but here during the second episode an extensive policy has been
developed that by the episode’s end will reach almost back to the start state.
This policy is built by the planning process while the agent is still wandering
near the start state. By the end of the third episode a complete optimal policy
will have been found and perfect performance attained. .

In Dyna-Q), learning and planning are accomplished by exactly the same algo-
rithm, operating on real experience for learning and on simulated experience for
planning. Because planning proceeds incrementally, it is trivial to intermix plan-



ning and acting. Both proceed as fast as they can. The agent is always reactive
and always deliberative, responding instantly to the latest sensory information
and yet always planning in the background. Also ongoing in the background is
the model-learning process. As new information is gained, the model is updated
to better match reality. As the model changes, the ongoing planning process will
gradually compute a different way of behaving to match the new model.

Ezercise 1 The nonplanning method looks particularly poor in Figure 6 because
it is a one-step method; a method using eligibility traces would do better. Do you
think an eligibility trace method could do as well as the Dyna method? Explain
why or why not.

3 When the Model Is Wrong

In the maze example presented in the previous section, the changes in the model
were relatively modest. The model started out empty, and was then filled only
with exactly correct information. In general, we cannot expect to be so fortunate.
Models may be incorrect because the environment is stochastic and only a limited
number of samples have been observed, because the model was learned using
function approximation that has generalized imperfectly, or simply because the
environment has changed and its new behavior has not yet been observed. When
the model is incorrect, the planning process will compute a suboptimal policy.

In some cases, the suboptimal policy computed by planning quickly leads to
the discovery and correction of the modeling error. This tends to happen when
the model is optimistic in the sense of predicting greater reward or better state
transitions than are actually possible. The planned policy attempts to exploit
these opportunities and in doing so discovers that they do not exist.

Ezample 2: Blocking Maze A maze example illustrating this relatively minor
kind of modeling error and recovery from it is shown in Figure 7. Initially, there
is a short path from start to goal, to the right of the barrier, as shown in the
upper left of the figure. After 1000 time steps, the short path is “blocked,” and a
longer path is opened up along the left-hand side of the barrier, as shown in upper
right of the figure. The graph shows average cumulative reward for Dyna-Q and
two other Dyna agents. The first part of the graph shows that all three Dyna
agents found the short path within 1000 steps. When the environment changed,
the graphs become flat, indicating a period during which the agents obtained no
reward because they were wandering around behind the barrier. After a while,
however, they were able to find the new opening and the new optimal behavior.
o

Greater difficulties arise when the environment changes to become better than
it was before, and yet the formerly correct policy does not reveal the improvement.
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Figure 7: Average performance of Dyna agents on a blocking task. The left
environment was used for the first 1000 steps, the right environment for the rest.
Dyna-Q+ is Dyna-Q with an exploration bonus that encourages exploration.
Dyna-AC is a Dyna agent that uses an actor—critic learning method instead of
Q-learning.

In these cases the modeling error may not be detected for a long time, if ever, as
we see in the next example.

Ezample 3: Shortcut Maze The problem caused by this kind of environmental
change is illustrated by the maze example shown in Figure 8. Initially, the optimal
path is to go around the left side of the barrier (upper left). After 3000 steps,
however, a shorter path is opened up along the right side, without disturbing the
longer path (upper right). The graph shows that two of the three Dyna agents
never switched to the shortcut. In fact, they never realized that it existed. Their
models said that there was no shortcut, so the more they planned, the less likely
they were to step to the right and discover it. Even with an e-greedy policy, it is
very unlikely that an agent will take so many exploratory actions as to discover
the shortcut. o

The general problem here is another version of the conflict between exploration
and exploitation. In a planning context, exploration means trying actions that
improve the model, whereas exploitation means behaving in the optimal way
given the current model. We want the agent to explore to find changes in the
environment, but not so much that performance is greatly degraded. As in the
earlier exploration/exploitation conflict, there probably is no solution that is both
perfect and practical, but simple heuristics are often effective.

The Dyna-Q+ agent that did solve the shortcut maze uses one such heuristic.

10
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Figure 8: Average performance of Dyna agents on a shortcut task. The left
environment was used for the first 3000 steps, the right environment for the rest.

This agent keeps track for each state—action pair of how many time steps have
elapsed since the pair was last tried in a real interaction with the environment.
The more time that has elapsed, the greater (we might presume) the chance
that the dynamics of this pair has changed and that the model of it is incorrect.
To encourage behavior that tests long-untried actions, a special “bonus reward”
i1s given on simulated experiences involving these actions. In particular, if the
modeled reward for a transition is r, and the transition has not been tried in
n time steps, then planning backups are done as if that transition produced a
reward of » + k4/n, for some small k. This encourages the agent to keep testing
all accessible state transitions and even to plan long sequences of actions in order
to carry out such tests. Of course all this testing has its cost, but in many cases,
as in the shortcut maze, this kind of computational curiosity is well worth the
extra exploration.

Ezercise 2 Why did the Dyna agent with exploration bonus, Dyna-Q+, perform
better in the first phase as well as in the second phase of the blocking and shortcut
experiments?

Ezercise 8 Careful inspection of Figure 8 reveals that the difference between
Dyna-Q+ and Dyna-Q narrowed slightly over the first part of the experiment.
What is the reason for this?

FEzercise 4 (programming) The exploration bonus described above actually changes
the estimated values of states and actions. Is this necessary? Suppose the bonus
k4/n was used not in backups, but solely in action selection. That is, suppose
the action selected was always that for which Q(s,a) + £ /n,, was maximal.

11



Carry out a gridworld experiment that tests and illustrates the strengths and
weaknesses of this alternate approach.

4 Prioritized Sweeping

In the Dyna agents presented in the preceding sections, simulated transitions are
started in state—action pairs selected uniformly at random from all previously
experienced pairs. But a uniform selection is usually not the best; planning
can be much more efficient if simulated transitions and backups are focused on
particular state—action pairs. For example, consider what happens during the
second episode of the first maze task (Figure 6). At the beginning of the second
episode, only the state—action pair leading directly into the goal has a positive
value; the values of all other pairs are still zero. This means that it is pointless
to back up along almost all transitions, because they take the agent from one
zero-valued state to another, and thus the backups would have no effect. Only a
backup along a transition into the state just prior to the goal, or from it into the
goal, will change any values. If simulated transitions are generated uniformly,
then many wasteful backups will be made before stumbling onto one of the two
useful ones. As planning progresses, the region of useful backups grows, but
planning is still far less efficient than it would be if focused where it would do the
most good. In the much larger problems that are our real objective, the number
of states is so large that an unfocused search would be extremely inefficient.

This example suggests that search might be usefully focused by working back-
ward from goal states. Of course, we do not really want to use any methods
specific to the idea of “goal state.” We want methods that work for general
reward functions. Goal states are just a special case, convenient for stimulating
intuition. In general, we want to work back not just from goal states but from
any state whose value has changed. Assume that the values are initially correct
given the model, as they were in the maze example prior to discovering the goal.
Suppose now that the agent discovers a change in the environment and changes
its estimated value of one state. Typically, this will imply that the values of
many other states should also be changed, but the only useful one-step backups
are those of actions that lead directly into the one state whose value has already
been changed. If the values of these actions are updated, then the values of the
predecessor states may change in turn. If so, then actions leading into them need
to be backed up, and then their predecessor states may have changed. In this
way one can work backward from arbitrary states that have changed in value,
either performing useful backups or terminating the propagation.

As the frontier of useful backups propagates backward, it often grows rapidly,
producing many state—action pairs that could usefully be backed up. But not all
of these will be equally useful. The values of some states may have changed a

12



Initialize Q(s, a), Model(s,a), for all s,a, and PQueue to empty
Do forever:
(a) s < current (nonterminal) state
(b) a < policy(s, Q)
(c) Execute action a; observe resultant state, s’, and reward, »
(d) Model(s,a) <+ s',r
(e) p+ |r +ymax, Q(s',a') — Q(s,a)].
(f) if p > 0, then insert s, a into PQueue with priority p
(g) Repeat N times, while PQueue is not empty:
s,a + first(PQueue)
s',r < Model(s, a)
Q(s,a) < Q(s,a) + ofr + ymax, Q(s',a') — Q(s, a)]
Repeat, for all 5, a predicted to lead to s:
7 + predicted reward
p + |7+ ymax, Q(s, a) — Q(5,a)].
if p > 0 then insert 5, @ into PQueue with priority p

Figure 9: The prioritized sweeping algorithm for a deterministic environment.

lot, whereas others have changed little. The predecessor pairs of those that have
changed a lot are more likely to also change a lot. In a stochastic environment,
variations in estimated transition probabilities also contribute to variations in the
sizes of changes and in the urgency with which pairs need to be backed up. It
is natural to prioritize the backups according to a measure of their urgency, and
perform them in order of priority. This is the idea behind prioritized sweeping.
A queue is maintained of every state—action pair whose estimated value would
change nontrivially if backed up, prioritized by the size of the change. When the
top pair in the queue is backed up, the effect on each of its predecessor pairs
i1s computed. If the effect is greater than some small threshold, then the pair is
inserted in the queue with the new priority (if there is a previous entry of the pair
in the queue, then insertion results in only the higher priority entry’s remaining in
the queue). In this way the effects of changes are efficiently propagated backward
until quiescence. The full algorithm for the case of deterministic environments is
given in Figure 9.

Ezample 4: Prioritized Sweeping on Mazes Prioritized sweeping has been found
to dramatically increase the speed at which optimal solutions are found in maze
tasks, often by a factor of 5 to 10. A typical example is shown in Figure 10.
These data are for a sequence of maze tasks of exactly the same structure as
the one shown in Figure 5, except that they vary in the grid resolution. Priori-
tized sweeping maintained a decisive advantage over unprioritized Dyna-Q. Both
systems made at most N = 5 backups per environmental interaction. .

13
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Figure 11: A rod-maneuvering task and its solution by prioritized sweeping.

Reprinted from Moore and Atkeson (1993).



Ezample 5: Rod Maneuvering The objective in this task is to maneuver a
rod around some awkwardly placed obstacles to a goal position in the fewest
number of steps (Figure 11). The rod can be translated along its long axis or
perpendicular to that axis, or it can be rotated in either direction around its
center. The distance of each movement is approximately 1/20 of the work space,
and the rotation increment is 10 degrees. Translations are deterministic and
quantized to one of 20 x 20 positions. The figure shows the obstacles and the
shortest solution from start to goal, found by prioritized sweeping. This problem
is still deterministic, but has four actions and 14,400 potential states (some of
these are unreachable because of the obstacles). This problem is probably too
large to be solved with unprioritized methods. )

Prioritized sweeping is clearly a powerful idea, but the algorithms that have
been developed so far appear not to extend easily to more interesting cases.
The greatest problem is that the algorithms appear to rely on the assumption
of discrete states. When a change occurs at one state, these methods perform
a computation on all the predecessor states that may have been affected. If
function approximation is used to learn the model or the value function, then
a single backup could influence a great many other states. It is not apparent
how these states could be identified or processed efficiently. On the other hand,
the general idea of focusing search on the states believed to have changed in
value, and then on their predecessors, seems intuitively to be valid in general.
Additional research may produce more general versions of prioritized sweeping.

Extensions of prioritized sweeping to stochastic environments are relatively
straightforward. The model is maintained by keeping counts of the number of
times each state—action pair has been experienced and of what the next states
were. It is natural then to backup each pair not with a sample backup, as we
have been using so far, but with a full backup, taking into account all possible
next states and their probabilities of occurring.

5 Full vs. Sample Backups

The examples in the previous sections give some idea of the range of possibilities
for combining methods of learning and planning. In the rest of this chapter,
we analyze some of the component ideas involved, starting with the relative
advantages of full and sample backups.

Much of this book has been about different kinds of backups, and we have
considered a great many varieties. Focusing for the moment on one-step backups,
they vary primarily along three binary dimensions. The first two dimensions are
whether they back up state values or action values and whether they estimate the
value for the optimal policy or for an arbitrary given policy. These two dimensions
give rise to four classes of backups for approximating the four value functions,

15
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Figure 12: The one-step backups.
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Q*, V*, @™, and V™. The other binary dimension is whether the backups are full
backups, considering all possible events that might happen, or sample backups,
considering a single sample of what might happen. These three binary dimensions
give rise to eight cases, seven of which correspond to specific algorithms, as shown
in Figure 12. (The eighth case does not seem to correspond to any useful backup.)
Any of these one-step backups can be used in planning methods. The Dyna-Q
agents discussed earlier use Q* sample backups, but they could just as well use
Q* full backups, or either full or sample @™ backups. The Dyna-AC system
uses V™ sample backups together with a learning policy structure. For stochastic
problems, prioritized sweeping is always done using one of the full backups.

When we introduced one-step sample backups in Chapter 6, we presented
them as substitutes for full backups. In the absence of a distribution model,
full backups are not possible, but sample backups can be done using sample
transitions from the environment or a sample model. Implicit in that point of view
is that full backups, if possible, are preferable to sample backups. But are they?
Full backups certainly yield a better estimate because they are uncorrupted by
sampling error, but they also require more computation, and computation is often
the limiting resource in planning. To properly assess the relative merits of full and
sample backups for planning we must control for their different computational
requirements.

For concreteness, consider the full and sample backups for approximating Q*,
and the special case of discrete states and actions, a table-lookup representation
of the approximate value function, (), and a model in the form of estimated state-
transition probabilities, ]E";,, and expected rewards, Ra,. The full backup for a

8 sg'*

state—action pair, s, a, is:
Q(s,a) « Y Pa[Rey + ymax Q(s', ). (1)

The corresponding sample backup for s,a, given a sample next state, s', is the
Q-learning-like update:

Q(s,a) < Q(s,a) + a[RZG, + ’YH?XQ(Slaal) - Q(s,a)], (2)

where a is the usual positive step-size parameter and the model’s expected value
of the reward, st' is used in place of the sample reward that is used in applying
Q-learning without a model.

The difference between these full and sample backups is significant to the
extent that the environment is stochastic, specifically, to the extent that, given a
state and action, many possible next states may occur with various probabilities.
If only one next state is possible, then the full and sample backups given above
are identical (taking a = 1). If there are many possible next states, then there
may be significant differences. In favor of the full backup is that it is an exact
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computation, resulting in a new Q(s, a) whose correctness is limited only by the
correctness of the Q(s',a’) at successor states. The sample backup is in addition
affected by sampling error. On the other hand, the sample backup is cheaper
computationally because it considers only one next state, not all possible next
states. In practice, the computation required by backup operations is usually
dominated by the number of state—action pairs at which @) is evaluated. For a
particular starting pair, s, a, let b be the branching factor, the number of possible
Pa . (. Then a full backup of this pair requires roughly

next states, s’, for which P?

b times as much computation as a sample backup.
If there is enough time to complete a full backup, then the resulting estimate is
generally better than that of b sample backups because of the absence of sampling

ss!

error. But if there is insufficient time to complete a full backup, then sample
backups are always preferable because they at least make some improvement in
the value estimate with fewer than b backups. In a large problem with many
state—action pairs, we are often in the latter situation. With so many state—
action pairs, full backups of all of them would take a very long time. Before that
we may be much better off with a few sample backups at many state—action pairs
than with full backups at a few pairs. Given a unit of computational effort, is it
better devoted to a few full backups or to b-times as many sample backups?
Figure 13 shows the results of an analysis that suggests an answer to this
question. It shows the estimation error as a function of computation time for full
and sample backups for a variety of branching factors, b. The case considered is
that in which all b successor states are equally likely and in which the error in the
initial estimate is 1. The values at the next states are assumed correct, so the
full backup reduces the error to zero upon its completion. In this case, sample

backups reduce the error according to %I’_Tl where t is the number of sample

backups that have been performed (assuming sample averages, i.e., a = 1/t).
The key observation is that for moderately large b the error falls dramatically
with a tiny fraction of b backups. For these cases, many state—action pairs could
have their values improved dramatically, to within a few percent of the effect of
a full backup, in the same time that one state—action pair could be backed up
fully.

The advantage of sample backups shown in Figure 13 is probably an under-
estimate of the real effect. In a real problem, the values of the successor states
would themselves be estimates updated by backups. By causing estimates to be
more accurate sooner, sample backups will have a second advantage in that the
values backed up from the successor states will be more accurate. These results
suggest that sample backups are likely to be superior to full backups on problems
with large stochastic branching factors and too many states to be solved exactly.

Ezercise 5 The analysis above assumed that all of the b possible next states were
equally likely to occur. Suppose instead that the distribution was highly skewed,
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Figure 13: Comparison of efficiency of full and sample backups.

that some of the b states were much more likely to occur than most. Would this
strengthen or weaken the case for sample backups over full backups? Support
your answer.

6 Trajectory Sampling

In this section we compare two ways of distributing backups. The classical ap-
proach, from dynamic programming, is to perform sweeps through the entire
state (or state—action) space, backing up each state (or state—action pair) once
per sweep. This is problematic on large tasks because there may not be time
to complete even one sweep. In many tasks the vast majority of the states are
irrelevant because they are visited only under very poor policies or with very low
probability. Exhaustive sweeps implicitly devote equal time to all parts of the
state space rather than focusing where it is needed. As we discussed in Chapter
4, exhaustive sweeps and the equal treatment of all states that they imply are
not necessary properties of dynamic programming. In principle, backups can be
distributed any way one likes (to assure convergence, all states or state-action
pairs must be visited in the limit an infinite number of times), but in practice
exhaustive sweeps are often used.

The second approach is to sample from the state or state—action space accord-
ing to some distribution. One could sample uniformly, as in the Dyna-Q agent,
but this would suffer from some of the same problems as exhaustive sweeps. More
appealing is to distribute backups according to the on-policy distribution, that
1s, according to the distribution observed when following the current policy. One
advantage of this distribution is that it is easily generated; one simply interacts
with the model, following the current policy. In an episodic task, one starts in
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the start state (or according to the starting-state distribution) and simulates un-
til the terminal state. In a continuing task, one starts anywhere and just keeps
simulating. In either case, sample state transitions and rewards are given by
the model, and sample actions are given by the current policy. In other words,
one simulates explicit individual trajectories and performs backups at the state
or state—action pairs encountered along the way. We call this way of generating
experience and backups trajectory sampling.

It is hard to imagine any efficient way of distributing backups according to the
on-policy distribution other than by trajectory sampling. If one had an explicit
representation of the on-policy distribution, then one could sweep through all
states, weighting the backup of each according to the on-policy distribution,
but this leaves us again with all the computational costs of exhaustive sweeps.
Possibly one could sample and update individual state—action pairs from the
distribution, but even if this could be done efficiently, what benefit would this
provide over simulating trajectories? Even knowing the on-policy distribution
in an explicit form is unlikely. The distribution changes whenever the policy
changes, and computing the distribution requires computation comparable to
a complete policy evaluation. Consideration of such other possibilities makes
trajectory sampling seem both efficient and elegant.

Is the on-policy distribution of backups a good one? Intuitively it seems like
a good choice, at least better than the uniform distribution. For example, if you
are learning to play chess, you study positions that might arise in real games,
not random positions of chess pieces. The latter may be valid states, but to
be able to accurately value them is a different skill from evaluating positions in
real games. We also know from the Chapter 8 that the on-policy distribution
has significant advantages when function approximation is used. At the current
time this is the only distribution for which we can guarantee convergence with
general linear function approximation. Whether or not function approximation
is used, one might expect on-policy focusing to significantly improve the speed of
planning.

Focusing on the on-policy distribution could be beneficial because it causes
vast, uninteresting parts of the space to be ignored, or it could be detrimental
because it causes the same old parts of the space to be backed up over and
over. We conducted a small experiment to assess the effect empirically. To
isolate the effect of the backup distribution, we used entirely one-step full tabular
backups, as defined by (1). In the uniform case, we cycled through all state-
action pairs, backing up each in place, and in the on-policy case we simulated
episodes, backing up each state-action pair that occurred under the current e-
greedy policy (¢ = 0.1). The tasks were undiscounted episodic tasks, generated
randomly as follows. From each of the |S| states, two actions were possible,
each of which resulted in one of b next states, all equally likely, with a different
random selection of b states for each state—action pair. The branching factor,
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Figure 14: Relative efficiency of backups distributed uniformly across the state
space versus focused on simulated on-policy trajectories. Results are for randomly
generated tasks of two sizes and various branching factors, b.
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b, was the same for all state—action pairs. In addition, on all transitions there
was a 0.1 probability of transition to the terminal state, ending the episode. We
used episodic tasks to get a clear measure of the quality of the current policy.
At any point in the planning process one can stop and exhaustively compute
V%(s0), the true value of the start state under the greedy policy, %, given the
current action-value function, ), as an indication of how well the agent would do
on a new episode on which it acted greedily (all the while assuming the model is
correct).

The upper part of Figure 14 shows results averaged over 200 sample tasks
with 1000 states and branching factors of 1, 3, and 10. The quality of the policies
found is plotted as a function of the number of full backups completed. In all
cases, sampling according to the on-policy distribution resulted in faster planning
initially and retarded planning in the long run. The effect was stronger, and the
initial period of faster planning was longer, at smaller branching factors. In other
experiments, we found that these effects also became stronger as the number of
states increased. For example, the lower part of Figure 14 shows results for a
branching factor of 1 for tasks with 10,000 states. In this case the advantage of
on-policy focusing is large and long-lasting.

All of these results make sense. In the short term, sampling according to the
on-policy distribution helps by focusing on states that are near descendants of the
start state. If there are many states and a small branching factor, this effect will
be large and long-lasting. In the long run, focusing on the on-policy distribution
may hurt because the commonly occurring states all already have their correct
values. Sampling them is useless, whereas sampling other states may actually
perform some useful work. This presumably is why the exhaustive, unfocused
approach does better in the long run, at least for small problems. These results
are not conclusive because they are only for problems generated in a particular,
random way, but they do suggest that sampling according to the on-policy dis-
tribution can be a great advantage for large problems, in particulardirectly for
problems in which a small subset of the state—action space is visited under the
on-policy distribution.

Ezercise 6 Some of the graphs in Figure 14 seem to be scalloped in their early
portions, particularly the upper graph for b = 1 and the uniform distribution.
Why do you think this is? What aspects of the data shown support your hypoth-
esis?

FEzercise 7 (programming) If you have access to a moderately large computer, try
replicating the experiment whose results are shown in the lower part of Figure 14.
Then try the same experiment but with b = 3. Discuss the meaning of your
results.
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7 Heuristic Search

The predominant state-space planning methods in artificial intelligence are col-
lectively known as heuristic search. Although superficially different from the
planning methods we have discussed so far in this chapter, heuristic search and
some of its component ideas can be combined with these methods in useful ways.
Unlike these methods, heuristic search is not concerned with changing the ap-
proximate, or “heuristic,” value function, but only with making improved action
selections given the current value function. In other words, heuristic search is
planning as part of a policy computation.

In heuristic search, for each state encountered, a large tree of possible contin-
uations is considered. The approximate value function is applied to the leaf nodes
and then backed up toward the current state at the root. The backing up within
the search tree is just the same as in the max-backups (those for V* and Q*)
discussed throughout this book. The backing up stops at the state—action nodes
for the current state. Once the backed-up values of these nodes are computed,
the best of them is chosen as the current action, and then all backed-up values
are discarded.

In conventional heuristic search no effort is made to save the backed-up val-
ues by changing the approximate value function. In fact, the value function is
generally designed by people and never changed as a result of search. However,
it is natural to consider allowing the value function to be improved over time,
using either the backed-up values computed during heuristic search or any of
the other methods presented throughout this book. In a sense we have taken
this approach all along. Our greedy and e-greedy action-selection methods are
not unlike heuristic search, albeit on a smaller scale. For example, to compute
the greedy action given a model and a state-value function, we must look ahead
from each possible action to each possible next state, backup the rewards and
estimated values, and then pick the best action. Just as in conventional heuristic
search, this process computes backed-up values of the possible actions, but does
not attempt to save them. Thus, heuristic search can be viewed as an extension
of the idea of a greedy policy beyond a single step.

The point of searching deeper than one step is to obtain better action selec-
tions. If one has a perfect model and an imperfect action-value function, then
in fact deeper search will usually yield better policies.! Certainly, if the search
is all the way to the end of the episode, then the effect of the imperfect value
function is eliminated, and the action determined in this way must be optimal.
If the search is of sufficient depth k such that «* is very small, then the actions
will be correspondingly near optimal. On the other hand, the deeper the search,
the more computation is required, usually resulting in a slower response time.

!There are interesting exceptions to this. See, e.g., Pearl (1984).
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A good example is provided by Tesauro’s grandmaster-level backgammon player,
TD-Gammon (Section 11.1). This system used TD(A) to learn an afterstate value
function through many games of self-play, using a form of heuristic search to make
its moves. As a model, TD-Gammon used a priori knowledge of the probabilities
of dice rolls and the assumption that the opponent always selected the actions
that TD-Gammon rated as best for it. Tesauro found that the deeper the heuris-
tic search, the better the moves made by TD-Gammon, but the longer it took to
make each move. Backgammon has a large branching factor, yet moves must be
made within a few seconds. It was only feasible to search ahead selectively a few
steps, but even so the search resulted in significantly better action selections.

So far we have emphasized heuristic search as an action-selection technique,
but this may not be its most important aspect. Heuristic search also suggests
ways of selectively distributing backups that may lead to better and faster ap-
proximation of the optimal value function. A great deal of research on heuristic
search has been devoted to making the search as efficient as possible. The search
tree 1s grown selectively, deeper along some lines and shallower along others. For
example, the search tree is often deeper for the actions that seem most likely to
be best, and shallower for those that the agent will probably not want to take
anyway. Can we use a similar idea to improve the distribution of backups? Per-
haps it can be done by preferentially updating state—action pairs whose values
appear to be close to the maximum available from the state. To our knowledge,
this and other possibilities for distributing backups based on ideas borrowed from
heuristic search have not yet been explored.

We should not overlook the most obvious way in which heuristic search focuses
backups: on the current state. Much of the effectiveness of heuristic search is
due to its search tree being tightly focused on the states and actions that might
immediately follow the current state. You may spend more of your life playing
chess than checkers, but when you play checkers, it pays to think about checkers
and about your particular checkers position, your likely next moves, and successor
positions. However you select actions, it is these states and actions that are of
highest priority for backups and where you most urgently want your approximate
value function to be accurate. Not only should your computation be preferentially
devoted to imminent events, but so should your limited memory resources. In
chess, for example, there are far too many possible positions to store distinct
value estimates for each of them, but chess programs based on heuristic search can
easily store distinct estimates for the millions of positions they encounter looking
ahead from a single position. This great focusing of memory and computational
resources on the current decision is presumably the reason why heuristic search
can be so effective.

The distribution of backups can be altered in similar ways to focus on the
current state and its likely successors. As a limiting case we might use exactly
the methods of heuristic search to construct a search tree, and then perform the
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Figure 15: The deep backups of heuristic search can be implemented as a sequence
of one-step backups (shown here outlined). The ordering shown is for a selective
depth-first search.

individual, one-step backups from bottom up, as suggested by Figure 15. If the
backups are ordered in this way and a table-lookup representation is used, then
exactly the same backup would be achieved as in heuristic search. Any state-
space search can be viewed in this way as the piecing together of a large number of
individual one-step backups. Thus, the performance improvement observed with
deeper searches is not due to the use of multistep backups as such. Instead, it is
due to the focus and concentration of backups on states and actions immediately
downstream from the current state. By devoting a large amount of computation
specifically relevant to the candidate actions, a much better decision can be made
than by relying on unfocused backups.

8 Summary

We have presented a perspective emphasizing the surprisingly close relationships
between planning optimal behavior and learning optimal behavior. Both involve
estimating the same value functions, and in both cases it is natural to update
the estimates incrementally, in a long series of small backup operations. This
makes it straightforward to integrate learning and planning processes simply by
allowing both to update the same estimated value function. In addition, any of
the learning methods can be converted into planning methods simply by applying
them to simulated (model-generated) experience rather than to real experience.
In this case learning and planning become even more similar; they are possibly
identical algorithms operating on two different sources of experience.

It is straightforward to integrate incremental planning methods with acting
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and model-learning. Planning, acting, and model-learning interact in a circular
fashion (Figure 2), each producing what the other needs to improve; no other
interaction among them is either required or prohibited. The most natural ap-
proach is for all processes to proceed asynchronously and in parallel. If the
processes must share computational resources, then the division can be handled
almost arbitrarily—by whatever organization is most convenient and efficient for
the task at hand.

In this chapter we have touched upon a number of dimensions of variation
among state-space planning methods. One of the most important of these is the
distribution of backups, that is, of the focus of search. Prioritized sweeping fo-
cuses on the predecessors of states whose values have recently changed. Heuristic
search applied to reinforcement learning focuses, inter alia, on the successors of
the current state. Trajectory sampling is a convenient way of focusing on the
on-policy distribution. All of these approaches can significantly speed planning
and are current topics of research.

Another interesting dimension of variation is the size of backups. The smaller
the backups, the more incremental the planning methods can be. Among the
smallest backups are one-step sample backups. We presented one study sug-
gesting that one-step sample backups may be preferable on very large problems.
A related issue is the depth of backups. In many cases deep backups can be
implemented as sequences of shallow backups.

9 Bibliographical and Historical Remarks

1 The overall view of planning and learning presented here has developed
gradually over a number of years, in part by the authors (Sutton, 1990,
1991a, 1991b; Barto, Bradtke, and Singh, 1991, 1995; Sutton and Pinette,
1985; Sutton and Barto, 1981b); it has been strongly influenced by Agre
and Chapman (1990; Agre 1988), Bertsekas and Tsitsiklis (1989), Singh
(1993), and others. The authors were also strongly influenced by psy-
chological studies of latent learning (Tolman, 1932) and by psychological
views of the nature of thought (e.g., Galanter and Gerstenhaber, 1956;
Craik, 1943; Campbell, 1960; Dennett, 1978).

2—-3 The terms direct and indirect, which we use to describe different kinds
of reinforcement learning, are from the adaptive control literature (e.g.,
Goodwin and Sin, 1984), where they are used to make the same kind of
distinction. The term system identification is used in adaptive control
for what we call model-learning (e.g., Goodwin and Sin, 1984; Ljung and
Séderstrom, 1983; Young, 1984). The Dyna architecture is due to Sutton
(1990), and the results in these sections are based on results reported
there.
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4 Prioritized sweeping was developed simultaneously and independently by
Moore and Atkeson (1993) and Peng and Williams (1993). The results in
Figure 10 are due to Peng and Williams (1993). The results in Figure 11
are due to Moore and Atkeson.

5 This section was strongly influenced by the experiments of Singh (1993).

7 For further reading on heuristic search, the reader is encouraged to consult
texts and surveys such as those by Russell and Norvig (1995) and Korf
(1988). Peng and Williams (1993) explored a forward focusing of backups

much as i1s suggested in this section.
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