Between MDPs and Semi-MDPs:
A Framework for Temporal Abstraction in
Reinforcement Learning

Richard S. Sutton *, Doina Precup”, and Satinder Singh ?

& ATET Labs — Research, 180 Park Avenue, Florham Park, NJ 07932
b Computer Science Dept., University of Massachusetts, Amherst, MA 01003

Learning, planning, and representing knowledge at multiple levels
of temporal abstraction are key, longstanding challenges for Al.
In this paper we consider how these challenges can be addressed
within the mathematical framework of reinforcement learning and
Markov decision processes (MDPs). We extend the usual notion of
action in this framework to include options—closed-loop policies for
taking action over a period of time. Examples of options include
picking up an object, going to lunch, and traveling to a distant
city, as well as primitive actions such as muscle twitches and joint
torques. Overall, we show that options enable temporally abstract
knowledge and action to be included in the reinforcement learning
framework in a natural and general way. In particular, we show
that options may be used interchangeably with primitive actions
in planning methods such as dynamic programming and in learn-
ing methods such as Q-learning. Formally, a set of options defined
over an MDP constitutes a semi-Markov decision process (SMDP),
and the theory of SMDPs provides the foundation for the theory of
options. However, the most interesting issues concern the interplay
between the underlying MDP and the SMDP and are thus beyond
SMDP theory. We present results for three such cases: 1) we show
that the results of planning with options can be used during exe-
cution to interrupt options and thereby perform even better than
planned, 2) we introduce new intra-option methods that are able
to learn about an option from fragments of its execution, and 3)
we propose a notion of subgoal that can be used to improve the
options themselves. All of these results have precursors in the ex-
isting literature; the contribution of this paper is to establish them
in a simpler and more general setting with fewer changes to the
existing reinforcement learning framework. In particular, we show
that these results can be obtained without committing to (or rul-
ing out) any particular approach to state abstraction, hierarchy,
function approximation, or the macro-utility problem.

Preprint submitted to Elsevier Preprint 16 July 1999

Human decision making routinely involves choice among temporally extended
courses of action over a broad range of time scales. Consider a traveler deciding
to undertake a journey to a distant city. To decide whether or not to go, the
benefits of the trip must be weighed against the expense. Having decided to
go, choices must be made at each leg, e.g., whether to fly or to drive, whether
to take a taxi or to arrange a ride. Fach of these steps involves foresight and
decision, all the way down to the smallest of actions. For example, just to call
a taxi may involve finding a telephone, dialing each digit, and the individual
muscle contractions to lift the receiver to the ear. How can we understand and
automate this ability to work flexibly with multiple overlapping time scales?

Temporal abstraction has been explored in Al at least since the early 1970’s,
primarily within the context of STRIPS-style planning [1-11]. Temporal ab-
straction has also been a focus and an appealing aspect of qualitative modeling
approaches to Al [12-16] and has been explored in robotics and control en-
gineering [17-22]. In this paper we consider temporal abstraction within the
framework of reinforcement learning and Markov decision processes (MDPs).
This framework has become popular in Al because of its ability to deal nat-
urally with stochastic environments and with the integration of learning and
planning [23-27]. Reinforcement learning methods have also proven effective
in a number of significant applications [28-32].

MDPs as they are conventionally conceived do not involve temporal abstrac-
tion or temporally extended action. They are based on a discrete time step: the
unitary action taken at time ¢ affects the state and reward at time ¢t +1. There
is no notion of a course of action persisting over a variable period of time. As a
consequence, conventional MDP methods are unable to take advantage of the
simplicities and efficiencies sometimes available at higher levels of temporal
abstraction. On the other hand, temporal abstraction can be introduced into
reinforcement learning in a variety of ways [33-61]. In the present paper we
generalize and simplify many of these previous and co-temporaneous works to
form a compact, unified framework for temporal abstraction in reinforcement
learning and MDPs. We answer the question “What is the minimal extension
of the reinforcement learning framework that allows a general treatment of
temporally abstract knowledge and action?” In the second part of the pa-
per we use the new framework to develop new results and generalizations of
previous results.

One of the keys to treating temporal abstraction as a minimal extension of
the reinforcement learning framework is to build on the theory of semi-Markov
decision processes (SMDPs), as pioneered by Bradtke and Duff [62], Mahade-
van et al. [63], and Parr [64]. SMDPs are a special kind of MDP appropriate
for modeling continuous-time discrete-event systems. The actions in SMDPs
take variable amounts of time and are intended to model temporally-extended
courses of action. The existing theory of SMDPs specifies how to model the

results of these actions and how to plan with them. However, existing SMDP
work is limited because the temporally extended actions are treated as indivis-
ible and unknown units. There is no attempt in SMDP theory to look inside
the temporally extended actions, to examine or modify their structure in terms
of lower-level actions. As we have tried to suggest above, this is the essence
of analyzing temporally abstract actions in Al applications: goal directed be-
havior involves multiple overlapping scales at which decisions are made and

modified.

In this paper we explore the interplay between MDPs and SMDPs. The base
problem we consider is that of a conventional discrete-time MDP,! but we
also consider courses of action within the MDP whose results are state transi-
tions of extended and variable duration. We use the term options? for these
courses of action, which include primitive actions as a special case. Any fixed
set of options defines a discrete-time SMDP embedded within the original
MDP, as suggested by Figure 1. The top panel shows the state trajectory over
discrete time of an MDP, the middle panel shows the larger state changes over
continuous time of an SMDP, and the last panel shows how these two levels
of analysis can be superimposed through the use of options. In this case the
underlying base system is an MDP, with regular, single-step transitions, while
the options define potentially larger transitions, like those of an SMDP, that
may last for a number of discrete steps. All the usual SMDP theory applies to
the superimposed SMDP defined by the options but, in addition, we have an
explicit interpretation of them in terms of the underlying MDP. The SMDP
actions (the options) are no longer black boxes, but policies in the base MDP
which can be examined, changed, learned, and planned in their own right.

The first part of this paper (Sections 1-3) develops these ideas formally and
more fully. The first two sections review the reinforcement learning frame-
work and present its generalization to temporally extended action. Section
3 focuses on the link to SMDP theory and illustrates the speedups in plan-
ning and learning that are possible through the use of temporal abstraction.
The rest of the paper concerns ways of going beyond an SMDP analysis of
options to change or learn their internal structure in terms of the MDP. Sec-

! In fact, the base system could itself be an SMDP with only technical changes in
our framework, but this would be a larger step away from the standard framework.
2 This term may deserve some explanation. In previous work we have used other

terms including “macro-actions,” “behaviors,” *

abstract actions,” and “subcon-
trollers” for structures closely related to options. We introduce a new term to avoid
confusion with previous formulations and with informal terms. The term “options”
is meant as a generalization of “actions,” which we use formally only for primitive
choices. It might at first seem inappropriate that “option” does not connote a course
of action that is non-primitive, but this is exactly our intention. We wish to treat

primitive and temporally extended actions similarly, and thus we prefer one name

for both.

Time ——

MDP //\\/‘\// IState
SMDP %

Options —v/\ /\1/
over MDP)

Fig. 1. The state trajectory of an MDP is made up of small, discrete-time transitions,
whereas that of an SMDP comprises larger, continuous-time transitions. Options
enable an MDP trajectory to be analyzed in either way.

tion 4 considers the problem of effectively combining a given set of options
into a single overall policy. For example, a robot may have pre-designed con-
trollers for servoing joints to positions, picking up objects, and visual search,
but still face a difficult problem of how to coordinate and switch between
these behaviors [17,22,38,48,50,65-67]. Sections 5 and 6 concern intra-option
learning—Tlooking inside options to learn simultaneously about all options con-
sistent with each fragment of experience. Finally, in Section 7 we illustrate a
notion of subgoal that can be used to improve existing options and learn new
ones.

1 The Reinforcement Learning (MDP) Framework

In this section we briefly review the standard reinforcement learning frame-
work of discrete-time, finite Markov decision processes, or MDPs, which forms
the basis for our extension to temporally extended courses of action. In this
framework, a learning agent interacts with an environment at some discrete,
lowest-level time scale, t = 0,1,2,... On each time step, ¢, the agent perceives
the state of the environment, s; € S, and on that basis chooses a primitive
action, a; € Aj,. In response to each action, a4, the environment produces one
step later a numerical reward, r;41, and a next state, s;41. It is convenient to
suppress the differences in available actions across states whenever possible;
we let A = J,cs As denote the union of the action sets. If S and A, are fi-
nite, then the environment’s transition dynamics can be modeled by one-step
state-transition probabilities,

Pogr = Prisia = s' | st = s,ay = a},

and one-step expected rewards,

ry = E{ria | se = s,a0 = a},

for all s,s" € S and a € A,. These two sets of quantities together constitute
the one-step model of the environment.

The agent’s objective is to learn a Markov policy, a mapping from states to
probabilities of taking each available primitive action, 7 : § x A — [0, 1], that
maximizes the expected discounted future reward from each state s:

Vi(s)=F {Tt+1 + yreps + Y s 4o ‘ Sy = 8, 7T} (1)
= E{rtH + YV (St41) ‘ Sy = S,?T}

=D m(s,a) lri +7§:p§5,\/”(3’)1 , (2)

a€A;

where 7(s,a) is the probability with which the policy 7 chooses action a € A,
in state s, and vy € [0,1] is a discount-rate parameter. This quantity, V"(s),
is called the value of state s under policy 7, and V7 is called the state-value
function for m. The optimal state-value function gives the value of each state
under an optimal policy:

V*(s)=max V7" (s) (3)

ks

:lfé%fE{rt"'l + YV (8141) ‘ Sy = 8, a3 = a}

= max [TZ T2 pZS/V*(S’)] : (4)

S

Any policy that achieves the maximum in (3) is by definition an optimal pol-
icy. Thus, given V*, an optimal policy is easily formed by choosing in each
state s any action that achieves the maximum in (4). Planning in reinforce-
ment learning refers to the use of models of the environment to compute value
functions and thereby to optimize or improve policies. Particularly useful in
this regard are Bellman equations, such as (2) and (4), which recursively re-
late value functions to themselves. If we treat the values, V7 (s) or V*(s), as
unknowns, then a set of Bellman equations, for all s € S, forms a system
of equations whose unique solution is in fact V™ or V* as given by (1) or
(3). This fact is key to the way in which all temporal-difference and dynamic
programming methods estimate value functions.

There are similar value functions and Bellman equations for state—action pairs,
rather than for states, which are particularly important for learning methods.

The value of taking action @ in state s under policy m, denoted Q7(s,a), is
the expected discounted future reward starting in s, taking a, and henceforth
following m:

Q7 (s,a)= E{Tt+1 + Yreg2 + Y s+ ‘ St = 8,41 = GﬂT}
=i+ P V7(s)

= T? —I_ ~ Zpis’ Z 71-(5/’ a/)QW(Slv a/)‘

QI

This is known as the action-value function for policy m. The optimal action-
value function is

Q" (s,a)=max Q" (s, a)
=rl+y) pl max Q" (s, a’).

S

Finally, many tasks are episodic in nature, involving repeated trials, or episodes,
each ending with a reset to a standard state or state distribution. Episodic
tasks include a special terminal state; arriving in this state terminates the
current episode. The set of regular states plus the terminal state (if there is
one) is denoted S*. Thus, the s’ in p%, in general ranges over the set St
rather than just § as stated earlier. In an episodic task, values are defined
by the expected cumulative reward up until termination rather than over the
infinite future (or, equivalently, we can consider the terminal state to tran-
sition to itself forever with a reward of zero). There are also undiscounted
average-reward formulations, but for simplicity we do not consider them here.
For more details and background on reinforcement learning see [68].

2 Options

As mentioned earlier, we use the term options for our generalization of primi-
tive actions to include temporally extended courses of action. Options consist
of three components: a policy 7 : § x A — [0,1], a termination condition
B : 8T —[0,1], and an initiation set Z C §. An option (Z,n, 3) is available
in state s; if and only if s; € Z. If the option is taken, then actions are se-
lected according to 7 until the option terminates stochastically according to
B. In particular, a Markov option executes as follows. First, the next action
a; is selected according to probability distribution 7 (s¢,-). The environment
then makes a transition to state s;y1, where the option either terminates, with
probability 3(s.y1), or else continues, determining a;4; according to m(s441,),

possibly terminating in s;;4 according to 3(s:42), and so on.®> When the option
terminates, the agent has the opportunity to select another option. For exam-
ple, an option named open-the-door might consist of a policy for reaching,
grasping and turning the door knob, a termination condition for recognizing
that the door has been opened, and an initiation set restricting consideration
of open-the-door to states in which a door is present. In episodic tasks, ter-
mination of an episode also terminates the current option (i.e., # maps the
terminal state to 1 in all options).

The initiation set and termination condition of an option together restrict
its range of application in a potentially useful way. In particular, they limit
the range over which the option’s policy needs to be defined. For example,
a handcrafted policy 7 for a mobile robot to dock with its battery charger
might be defined only for states Z in which the battery charger is within
sight. The termination condition 3 could be defined to be 1 outside of Z
and when the robot is successfully docked. A subpolicy for servoing a robot
arm to a particular joint configuration could similarly have a set of allowed
starting states, a controller to be applied to them, and a termination condition
indicating that either the target configuration has been reached within some
tolerance or that some unexpected event has taken the subpolicy outside its
domain of application. For Markov options it is natural to assume that all
states where an option might continue are also states where the option might
be taken (i.e., that {s: 8(s) < 1} C 7). In this case, m need only be defined
over 7 rather than over all of S.

Sometimes it is useful for options to “timeout,” to terminate after some period
of time has elapsed even if they have failed to reach any particular state. This
is not possible with Markov options because their termination decisions are
made solely on the basis of the current state, not on how long the option
has been executing. To handle this and other cases of interest we allow sems-
Markov options, in which policies and termination conditions may make their
choices dependent on all prior events since the option was initiated. In general,
an option is initiated at some time, say ¢, determines the actions selected for
some number of steps, say k, and then terminates in s;;15. At each intermediate
time 7, t < 7 < t+ k, the decisions of a Markov option may depend only on
s-, whereas the decisions of a semi-Markov option may depend on the entire
preceding sequence Sg, Gy, T4 41, St41, Att1, - - -, 77y S-, but not on events prior to
st (or after s;). We call this sequence the history from ¢ to 7 and denote it
by h:r. We denote the set of all histories by €. In semi-Markov options, the
policy and termination condition are functions of possible histories, that is,
they are 7 : @ x A — [0,1] and 3 : © — [0, 1]. Semi-Markov options also
arise if options use a more detailed state representation than is available to

3 The termination condition $ plays a role similar to the 8 in 3-models [46], but
with an opposite sense. That is, 3(s) in this paper corresponds to 1 — 3(s) in [46].

the policy that selects the options, as in hierarchical abstract machines [58,64]
and MAXQ [51]. Finally, note that hierarchical structures, such as options
that select other options, can also give rise to higher-level options that are
semi-Markov (even if all the lower-level options are Markov). Semi-Markov
options include a very general range of possibilities.

Given a set of options, their initiation sets implicitly define a set of available
options O, for each state s € S. These O, are much like the sets of available
actions, A,. We can unify these two kinds of sets by noting that actions can be
considered a special case of options. Each action a corresponds to an option
that is available whenever a is available (Z = {s : a € A,}), that always
lasts exactly one step (8(s) = 1, Vs € §), and that selects a everywhere
(m(s,a) =1, Vs € I). Thus, we can consider the agent’s choice at each time
to be entirely among options, some of which persist for a single time step,
others of which are temporally extended. The former we refer to as single-step
or primilive options and the latter as multi-step options. Just as in the case of
actions, it is convenient to suppress the differences in available options across
states. We let O = {J,es O, denote the set of all available options.

Our definition of options is crafted to make them as much like actions as pos-
sible while adding the possibility that they are temporally extended. Because
options terminate in a well defined way, we can consider sequences of them in
much the same way as we consider sequences of actions. We can also consider
policies that select options instead of actions, and we can model the conse-
quences of selecting an option much as we model the results of an action. Let
us consider each of these in turn.

Given any two options a and b, we can consider taking them in sequence,
that is, we can consider first taking a until it terminates, and then b until
it terminates (or omitting b altogether if a terminates in a state outside of
b’s initiation set). We say that the two options are composed to yield a new
option, denoted ab, corresponding to this way of behaving. The composition
of two Markov options will in general be semi-Markov, not Markov, because
actions are chosen differently before and after the first option terminates.
The composition of two semi-Markov options is always another semi-Markov
option. Because actions are special cases of options, we can also compose them
to produce a deterministic action sequence, in other words, a classical macro-
operator.

More interesting for our purposes are policies over options. When initiated
in a state s;, the Markov policy over options p : § x O — [0,1] selects an
option o € O, according to probability distribution p(s;,-). The option o
is then taken in s;, determining actions until it terminates in s;x, at which
time a new option is selected, according to p(si4x,-), and so on. In this way
a policy over options, p, determines a conventional policy over actions, or

flat policy, 1 = flat(p). Henceforth we use the unqualified term policy for
policies over options, which include flat policies as a special case. Note that
even if a policy is Markov and all of the options it selects are Markov, the
corresponding flat policy is unlikely to be Markov if any of the options are
multi-step (temporally extended). The action selected by the flat policy in
state s, depends not just on s, but on the option being followed at that
time, and this depends stochastically on the entire history h;, since the policy
was initiated at time ¢.* By analogy to semi-Markov options, we call policies
that depend on histories in this way semi-Markov policies. Note that semi-
Markov policies are more specialized than nonstationary policies. Whereas
nonstationary policies may depend arbitrarily on all preceding events, semi-
Markov policies may depend only on events back to some particular time.
Their decisions must be determined solely by the event subsequence from that
time to the present, independent of the events preceding that time.

These ideas lead to natural generalizations of the conventional value functions
for a given policy. We define the value of a state s € § under a semi-Markov
flat policy 7 as the expected return given that 7 is initiated in s:

V7T(s) =) {Tt+1 + 2 + Y rgs + o ‘ E(m, Svt)}a

where &(m,s,t) denotes the event of m being initiated in s at time ¢. The
value of a state under a general policy p can then be defined as the value
of the state under the corresponding flat policy: V#(s) e VHatn)(s), for all
s € 8. Action-value functions generalize to option-value functions. We define
Q"(s,0), the value of taking option o in state s € Z under policy u, as

Q#(‘% 0) déf E {TH—l + YTre+2 + ’)/27”75+3 + - ‘ 5(0/“‘7 37t)}7 (5)

where ou, the composition of o and u, denotes the semi-Markov policy that
first follows o until it terminates and then starts choosing according to p in
the resultant state. For semi-Markov options, it is useful to define £(o,h, 1),
the event of o continuing from h at time ¢, where h is a history ending with
s¢. In continuing, actions are selected as if the history had preceded s;. That
is, a; is selected according to o(h,-), and o terminates at ¢t + 1 with probabil-
ity B(hayris1Se41); if o doesn’t terminate, then .4 is selected according to
o(ha;rit18141,), and so on. With this definition, (5) also holds where s is a
history rather than a state.

This completes our generalization to temporal abstraction of the concept of

4 For example, the options for picking up an object and putting down an object
may specify different actions in the same intermediate state; which action is taken
depends on which option is being followed.

value functions for a given policy. In the next section we similarly generalize
the concept of optimal value functions.

3 SMDP (Option-to-Option) Methods

Options are closely related to the actions in a special kind of decision problem
known as a semi-Markov decision process, or SMDP (e.g., see [69]). In fact,
any MDP with a fixed set of options is an SMDP, as we state formally be-
low. Although this fact follows more or less immediately from definitions, we
present it as a theorem to highlight it and state explicitly its conditions and
consequences:

Theorem 1 (MDP + Options = SMDP) For any MDP, and any set of
options defined on that MDP, the decision process that selects only among
those options, executing each to termination, is an SMDP.

Proof: (Sketch) An SMDP consists of 1) a set of states, 2) a set of actions, 3)
for each pair of state and action, an expected cumulative discounted reward,
and 4) a well-defined joint distribution of the next state and transit time. In
our case, the set of states is S, and the set of actions is the set of options.
The expected reward and the next-state and transit-time distributions are
defined for each state and option by the MDP and by the option’s policy and
termination condition, 7 and (3. These expectations and distributions are well
defined because MDPs are Markov and the options are semi-Markov; thus the
next state, reward, and time are dependent only on the option and the state
in which it was initiated. The transit times of options are always discrete,
but this is simply a special case of the arbitrary real intervals permitted in

SMDPs. o

This relationship among MDPs, options, and SMDPs provides a basis for the
theory of planning and learning methods with options. In later sections we dis-
cuss the limitations of this theory due to its treatment of options as indivisible
units without internal structure, but in this section we focus on establishing
the benefits and assurances that it provides. We establish theoretical founda-
tions and then survey SMDP methods for planning and learning with options.
Although our formalism is slightly different, these results are in essence taken
or adapted from prior work (including classical SMDP work and [39,46,55—
58,62,64,70-76]). A result very similar to Theorem 1 was proved in detail by
Parr [64]. In Sections 4-7 we present new methods that improve over SMDP
methods.

Planning with options requires a model of their consequences. Fortunately, the
appropriate form of model for options, analogous to the r? and pl, defined

10

earlier for actions, is known from existing SMDP theory. For each state in
which an option may be started, this kind of model predicts the state in which
the option will terminate and the total reward received along the way. These
quantities are discounted in a particular way. For any option o, let £(o, s,1)
denote the event of o being initiated in state s at time ¢. Then the reward part
of the model of o for any state s € § is

ro=~F {Tt—}-l + Vg2 + 0+ ’Yk_lrt+k ‘ &(o, Svt)}7 (6)

where t + k is the random time at which o terminates. The state-prediction
part of the model of o for state s is

ply = p(s, k)4, (7)
k=1

for all s" € S, where p(s', k) is the probability that the option terminates in s’
after k£ steps. Thus, p2, is a combination of the likelihood that s’ is the state
in which o terminates together with a measure of how delayed that outcome
is relative to v. We call this kind of model a multi-time model [73,74] because
it describes the outcome of an option not at a single time but at potentially
many different times, appropriately combined. ®

Using multi-time models we can write Bellman equations for general policies
and options. For any Markov policy p, the state-value function can be written

Vi(s)=F {Tt+1 o A T YV (s14k) | E(p, s,t)},

(where k is the duration of the first option selected by)

S WIEIERS wREHls ®

0€0y,

which is a Bellman equation analogous to (2). The corresponding Bellman
equation for the value of an option o in state s € 7 is

Q"(s,0)=E {Tt+1 o T g ’kaﬂ(st-kk) ‘ &(o, Svt)}

=F {Tt+1 o g Z (1(Se4k, 0) Q" (St4k, 0) ‘ &(o, SJ)}
Oleos

5 Note that this definition of state predictions for options differs slightly from that
given earlier for actions. Under the new definition, the model of transition from
state s to s’ for an action a is not simply the corresponding transition probability,
but the transition probability times . Henceforth we use the new definition given

by (7).

11

:TZ —I_ ZPZS’ Z M(Slvol)Q#(Slvol)‘

s! o'e0y,

Note that all these equations specialize to those given earlier in the special
case in which p is a conventional policy and o is a conventional action. Also

note that Q*(s,0) = V(s).

Finally, there are generalizations of optimal value functions and optimal Bell-
man equations to options and to policies over options. Of course the conven-
tional optimal value functions V* and Q* are not affected by the introduction
of options; one can ultimately do just as well with primitive actions as one can
with options. Nevertheless, it is interesting to know how well one can do with
a restricted set of options that does not include all the actions. For example,
in planning one might first consider only high-level options in order to find
an approximate plan quickly. Let us denote the restricted set of options by O
and the set of all policies selecting only from options in O by II(O). Then the
optimal value function given that we can select only from O is

Va(s) 4 max VE(s)

Ete)!

= E%%XE {Tt+1 o Y T e YV (504k) ‘ &(o, 3775)}7

(where k is the duration of o when taken in s)

= max [r? + Zpgs, VS(S')] (10)
—ge {r 9160 2000})

where £(o0, s) denotes option o being initiated in state s. Conditional on this
event are the usual random variables: s’ is the state in which o terminates, r is
the cumulative discounted reward along the way, and & is the number of time
steps elapsing between s and s’. The value functions and Bellman equations
for optimal option values are

x def g
QO(Sa 0) #rer%ﬁg) Q (57 0)

=k {TH_I +ot 7k_1Tt+k + fkaO*(SH-k) ‘ 5(07 Sat)}a

(where k is the duration of o from s)
=L {rt-l-l + Vk_lrl‘-}-k + f)/k /g(ll)aX Qz)(sf%—k? 0/) ‘ 5(07 S, t)}a
o siq

k

__ .0 0 * [N
=i+ %:pss' o Qols o) (12)

12

= E{T—I-’yk O/gg:ik Q5(s',0) ‘ 5(0,8)},

where r, k, and s" are again the reward, number of steps, and next state due
to taking o € O;.

Given a set of options, O, a corresponding optimal policy, denoted pf, is any
policy that achieves V{3, i.e., for which V#o(s) = V3(s) in all states s € S. If
V5 and models of the options are known, then optimal policies can be formed
by choosing in any proportion among the maximizing options in (10) or (11).
Or, if Q% is known, then optimal policies can be found without a model by
choosing in each state s in any proportion among the options o for which
Qo (s,0) = maxy Q5(s,0'). In this way, computing approximations to V{3 or
Q% become key goals of planning and learning methods with options.

3.1 SMDP Planning

With these definitions, an MDP together with the set of options O formally
comprises an SMDP, and standard SMDP methods and results apply. Each of
the Bellman equations for options, (8), (9), (10), and (12), defines a system
of equations whose unique solution is the corresponding value function. These
Bellman equations can be used as update rules in dynamic-programming-like
planning methods for finding the value functions. Typically, solution meth-
ods for this problem maintain an approximation of Vj(s) or Q%(s,0) for all
states s € § and all options 0 € O;. For example, synchronous value iteration
(SVI) with options starts with an arbitrary approximation V4 to V3 and then
computes a sequence of new approximations {V;} by

Vils) = max |12+ Y0 pluViea () (13)

for all s € §. The option-value form of SVI starts with an arbitrary approxi-
mation Qp to Q% and then computes a sequence of new approximations {Qy}

by

Qk(37 0) = T? + Z st/ max Qk—l(sla 0/)
0 EOS/

s'eSt

forall s € S and o € O;. Note that these algorithms reduce to the conventional
value iteration algorithms in the special case that O = A. Standard results
from SMDP theory guarantee that these processes converge for general semi-
Markov options: limg_e Vi = V3 and limg_o Qr = QF, for any O.

13

4 stochastic
HALLWAYS — primitive actions
up
; Fail 33%
left right of the time
o G, down
AN
/I G, 8 multi-step options
/ o, (to each room's 2 hallways)
——T

Fig. 2. The rooms example is a gridworld environment with stochastic cell-to-cell
actions and room-to-room hallway options. Two of the hallway options are suggested
by the arrows labeled 0; and o03. The labels (G; and (G5 indicate two locations used
as goals in experiments described in the text.

The plans (policies) found using temporally abstract options are approximate
in the sense that they achieve only V5, which may be less than the maximum
possible, V*. On the other hand, if the models used to find them are correct,
then they are guaranteed to achieve V5. We call this the value achievement
property of planning with options. This contrasts with planning methods that
abstract over state space, which generally cannot be guaranteed to achieve
their planned values even if their models are correct.

As a simple illustration of planning with options, consider the rooms example,
a gridworld environment of four rooms as shown in Figure 2. The cells of the
grid correspond to the states of the environment. From any state the agent can
perform one of four actions, up, down, left or right, which have a stochastic
effect. With probability 2/3, the actions cause the agent to move one cell in the
corresponding direction, and with probability 1/3, the agent moves instead in
one of the other three directions, each with probability 1/9. In either case, if
the movement would take the agent into a wall then the agent remains in the
same cell. For now we consider a case in which rewards are zero on all state
transitions.

In each of the four rooms we provide two built-in hallway options designed
to take the agent from anywhere within the room to one of the two hallway
cells leading out of the room. A hallway option’s policy 7 follows a shortest
path within the room to its target hallway while minimizing the chance of
stumbling into the other hallway. For example, the policy for one hallway
option is shown in Figure 3. The termination condition 3(s) for each hallway
option is zero for states s within the room and 1 for states outside the room,
including the hallway states. The initiation set Z comprises the states within

14

Target
Hallway

Fig. 3. The policy underlying one of the eight hallway options.

the room plus the non-target hallway state leading into the room. Note that
these options are deterministic and Markov, and that an option’s policy is
not defined outside of its initiation set. We denote the set of eight hallway
options by H. For each option o € H, we also provide a priori its accurate
model, r? and p2,,, for all s € Z and s’ € S (assuming there is no goal state,
see below). Note that although the transition models p?, are nominally large
(order |Z| x |S]), in fact they are sparse, and relatively little memory (order
|Z| x 2) is actually needed to hold the nonzero transitions from each state to
the two adjacent hallway states.©

Now consider a sequence of planning tasks for navigating within the grid to a
designated goal state, in particular, to the hallway state labeled 1 in Figure 2.
Formally, the goal state is a state from which all actions lead to the terminal
state with a reward of +1. Throughout this paper we discount with v = 0.9
in the rooms example.

As a planning method, we used SVI as given by (13), with various sets of
options O. The initial value function Vj was 0 everywhere except the goal
state, which was initialized to its correct value, V5(G1) = 1, as shown in the
leftmost panels of Figure 4. This figure contrasts planning with the original
actions (O = A) and planning with the hallway options and not the original
actions (O = H). The upper part of the figure shows the value function
after the first two iterations of SVI using just primitive actions. The region
of accurately valued states moved out by one cell on each iteration, but after
two iterations most states still had their initial arbitrary value of zero. In the
lower part of the figure are shown the corresponding value functions for SVI
with the hallway options. In the first iteration all states in the rooms adjacent
to the goal state became accurately valued, and in the second iteration all the
states became accurately valued. Although the values continued to change by
small amounts over subsequent iterations, a complete and optimal policy was
known by this time. Rather than planning step-by-step, the hallway options

6 The off-target hallway states are exceptions in that they have three possible out-
comes: the target hallway, themselves, and the neighboring state in the off-target
room.

15

Primitive
options

O=A

Hallway
options
O=H

Initial Values Iteration #1 Iteration #2

Fig. 4. Value functions formed over iterations of planning by synchronous value
iteration with primitive options (above) and with multi-step hallway options (be-
low). The hallway options enabled planning to proceed room-by-room rather than
cell-by-cell. The area of the disk in each cell is proportional to the estimated value
of the state, where a disk that just fills a cell represents a value of 1.0.

enabled the planning to proceed at a higher level, room-by-room, and thus be
much faster.

This example is a particularly favorable case for the use of multi-step options
because the goal state is a hallway, the target state of some of the options.
Next we consider a case in which there is no such coincidence, in which the goal
lies in the middle of a room, in the state labeled G5 in Figure 2. The hallway
options and their models were just as in the previous experiment. In this case,
planning with (models of) the hallway options alone could never completely
solve the task, because these take the agent only to hallways and thus never to
the goal state. Figure 5 shows the value functions found over five iterations of
SVI using both the hallway options and the primitive options corresponding to
the actions (i.e., using O = AUH). In the first two iterations, accurate values
were propagated from (G5 by one cell per iteration by the models corresponding
to the primitive options. After two iterations, however, the first hallway state
was reached, and subsequently room-to-room planning using the multi-step
hallway options dominated. Note how the state in the lower right corner was
given a nonzero value during iteration three. This value corresponds to the plan
of first going to the hallway state above and then down to the goal; it was
overwritten by a larger value corresponding to a more direct route to the goal
in the next iteration. Because of the multi-step options, a close approximation
to the correct value function was found everywhere by the fourth iteration;

16

Primitive
and
hallway
options
O=AUH

lteration #3 Iteration #4 lteration #5

Fig. 5. An example in which the goal is different from the subgoal of the hallway
options. Planning here was by SVI with options O = AU H. Initial progress was
due to the models of the primitive options (the actions), but by the third iteration
room-to-room planning dominated and greatly accelerated planning.

without them only the states within three steps of the goal would have been
given non-zero values by this time.

We have used SVI in this example because it is a particularly simple planning
method which makes the potential advantage of multi-step options clear. In
large problems, SVI is impractical because the number of states is too large to
complete many iterations, often not even one. In practice it is often necessary
to be very selective about the states updated, the options considered, and
even the next states considered. These issues are not resolved by multi-step
options, but neither are they greatly aggravated. Options provide a tool for
dealing with them more flexibly.

Planning with options is not necessarily more complex than planning with
actions. For example, in the first experiment described above there were four
primitive options and eight hallway options, but in each state only two hall-
way options needed to be considered. In addition, the models of the primitive
options generated four possible successors with non-zero probability whereas
the multi-step options generated only two. Thus planning with the multi-step
options was actually computationally cheaper than conventional SVI in this
case. In the second experiment this was not the case, but the use of multi-step
options did not greatly increase the computational costs. In general, of course,
there is no guarantee that multi-step options will reduce the overall expense of
planning. For example, Hauskrecht et al. [60] have shown that adding multi-
step options may actually slow SVI if the initial value function is optimistic.

17

Research with deterministic macro-operators has identified a related “utility
problem” when too many macros are used (e.g., see [8,9,77-79]). Temporal
abstraction provides the flexibility to greatly reduce computational complex-
ity, but can also have the opposite effect if used indiscriminately. Nevertheless,
these issues are beyond the scope of this paper and we do not consider them
further.

3.2 SMDP Value Learning

The problem of finding an optimal policy over a set of options O can also be
addressed by learning methods. Because the MDP augmented by the options
is an SMDP, we can apply SMDP learning methods [57,58,62-64]. Much as in
the planning methods discussed above, each option is viewed as an indivisible,
opaque unit. When the execution of option o is started in state s, we next jump
to the state s’ in which o terminates. Based on this experience, an approximate
option-value function Q(s,0) is updated. For example, the SMDP version of
one-step Q-learning [62], which we call SMDP Q-learning, updates after each
option termination by

Q(S,O) — Q(S,O) +ta|r+ 7k Or,rel%i(/ Q(Slvol) - Q(S,O) s

where k denotes the number of time steps elapsing between s and s, r denotes
the cumulative discounted reward over this time, and it is implicit that the
step-size parameter a may depend arbitrarily on the states, option, and time
steps. The estimate Q(s,0) converges to Q% (s,0) for all s € S and 0 € O
under conditions similar to those for conventional Q-learning [64], from which
it is easy to determine an optimal policy as described earlier.

As an illustration, we applied SMDP Q-learning to the rooms example with
the goal at 1 and at Gy (Figure 2). As in the case of planning, we used three
different sets of options, A, H, and AU H. In all cases, options were selected
from the set according to an e-greedy method. That is, options were usually
selected at random from among those with maximal option value (i.e., 0; was
such that Q(s:,01) = max,co,, Q(s1,0)), but with probability ¢ the option
was instead selected randomly from all available options. The probability of
random action, €, was 0.1 in all our experiments. The initial state of each
episode was in the upper-left corner. Figure 6 shows learning curves for both
goals and all sets of options. In all cases, multi-step options enabled the goal
to be reached much more quickly, even on the very first episode. With the goal
at (1, these methods maintained an advantage over conventional Q-learning
throughout the experiment, presumably because they did less exploration. The
results were similar with the goal at (G5, except that the H method performed

18

1000 ¢ 1000

Steps
per 100k
episode

100 |

10

n 1 " J 10 " n n J
1 10 100 1000 10,000 1 10 100 1000 10,000

Episodes Episodes

Fig. 6. Performance of SMDP Q-learning in the rooms example with various goals
and sets of options. After 100 episodes, the data points are averages over groups of
10 episodes to make the trends clearer. The step size parameter was optimized to

the nearest power of 2 for each goal and set of options. The results shown used a = %

in all cases except that with @ = # and G; (a = 15), and that with O = AUH

and G (a = 1).

worse than the others in the long term. This is because the best solution
requires several steps of primitive options (the hallway options alone find the
best solution running between hallways that sometimes stumbles upon 3).
For the same reason, the advantages of the AU H method over the A method
were also reduced.

4 Interrupting Options

SMDP methods apply to options, but only when they are treated as opaque
indivisible units. More interesting and potentially more powerful methods are
possible by looking inside options or by altering their internal structure, as
we do in the rest of this paper. In this section we take a first step in altering
options to make them more useful. This is the area where working simultane-
ously in terms of MDPs and SMDPs is most relevant. We can analyze options
in terms of the SMDP and then use their MDP interpretation to change them
and produce a new SMDP.

In particular, in this section we consider interrupting options before they
would terminate naturally according to their termination conditions. Note
that treating options as indivisible units, as SMDP methods do, is limiting
in an unnecessary way. Once an option has been selected, such methods re-
quire that its policy be followed until the option terminates. Suppose we have
determined the option-value function Q*(s, o) for some policy u and for all
state—option pairs s, 0 that could be encountered while following p. This func-
tion tells us how well we do while following p, committing irrevocably to each

19

option, but it can also be used to re-evaluate our commitment on each step.
Suppose at time ¢ we are in the midst of executing option o. If 0 is Markov in
st, then we can compare the value of continuing with o, which is Q*(s;,0), to
the value of interrupting o and selecting a new option according to u, which is
VE(s) = 3, (s, q)Q"(s, q). If the latter is more highly valued, then why not
interrupt o and allow the switch? If these were simple actions, the classical
policy improvement theorem [80] would assure us that the new way of behav-
ing is indeed better. Here we prove the generalization to semi-Markov options.
The first empirical demonstration of this effect—improved performance by in-
terrupting a temporally extended substep based on a value function found by
planning at a higher level-—may have been by Kaelbling [43]. Here we formally
prove the improvement in a more general setting.

In the following theorem we characterize the new way of behaving as following
a policy ' that is the same as the original policy, u, but over a new set of
options: p'(s,0") = p(s,0), for all s € S. Each new option o' is the same as
the corresponding old option o except that it terminates whenever switching
seems better than continuing according to Q*. In other words, the termination
condition 3’ of o' is the same as that of o except that 5'(s) = 1 if Q*(s,0) <
V#(s). We call such a p' an interrupted policy of p. The theorem is slightly
more general in that it does not require interruption at each state in which
it could be done. This weakens the requirement that Q*(s,0) be completely
known. A more important generalization is that the theorem applies to semi-
Markov options rather than just Markov options. This generalization may
make the result less intuitively accessible on first reading. Fortunately, the
result can be read as restricted to the Markov case simply by replacing every
occurrence of “history” with “state” and set of histories, 2, with set of states,

S.

Theorem 2 (Interruption) For any MDP, any set of options O, and any
Markov policy p : SxO — [0,1], define a new set of options, O', with a one-to-
one mapping between the two option sets as follows: for everyo = (Z,m,3) € O
we define a corresponding o' = (I, m,3") € O, where 3' = 3 except that for any
history h that ends in state s and in which Q"(h,0) < V*(s), we may choose
to set 3'(h) = 1. Any histories whose termination conditions are changed in
this way are called interrupted histories. Let the interrupted policy p' be such
that for all s € S, and for all o' € O', 1/(s,0") = p(s,0), where o is the option
in O corresponding to o'. Then

(i) V¥ (s) > Vi(s) forall s € S.
(ii) If from state s € S there is a non-zero probability of encountering an
interrupted history upon initiating p' in s, then V“/(s) > VH(s).

Proof: Shortly we show that, for an arbitrary start state s, executing the
option given by the interrupted policy p’ and then following policy p thereafter

20

is no worse than always following policy p. In other words, we show that the
following inequality holds:

S (5,0l + VA 2 VAs) = ol o)t + L VAL (14)

If this is true, then we can use it to expand the left-hand side, repeatedly re-
placing every occurrence of V#(z) on the left by the corresponding 3=, i/ (x, o')[r% +
S P VE(2)]. In the limit, the left-hand side becomes V*', proving that
Ve >y,

To prove the inequality in (14), we note that for all s, 1/(s,0") = u(s,0), and
show that

r Sl V) >+ Y pl VIS (15)

as follows. Let ' denote the set of all interrupted histories: I' = {h € Q :
B(h) # B'(h)}. Then,

3Pl V) = E{r +48VA(s)

E(d,s),h ¢ F}

+ E{r + A VE(S) [E(0,s), b € F},

where s', r, and k are the next state, cumulative reward, and number of
elapsed steps following option o from s, and where h is the history from s
to §'. Trajectories that end because of encountering a history not in I' never
encounter a history in I', and therefore also occur with the same probability
and expected reward upon executing option o in state s. Therefore, if we
continue the trajectories that end because of encountering a history in I" with
option o until termination and thereafter follow policy u, we get

E{r + VRS | E(0,s),h & F}
+ E{B(s)r+ 7" VA + (1= B + 7 Q" (h0)] | (0, 5),h € T}
= +ZPZS'V“(S'),

because option o is semi-Markov. This proves (14) because for all A € T,
Q"(h,0) < V#(s"). Note that strict inequality holds in (15) if Q#(h, 0) < V*(s')
for at least one history i € I' that ends a trajectory generated by o' with non-
zero probability. ©

As one application of this result, consider the case in which p is an optimal
policy for some given set of Markov options O. We have already discussed

21

how we can, by planning or learning, determine the optimal value functions
V& and Q% and from them the optimal policy ug that achieves them. This is
indeed the best that can be done without changing O, that is, in the SMDP
defined by O, but less than the best possible achievable in the MDP, which
is V* = V. But of course we typically do not wish to work directly with the
(primitive) actions A because of the computational expense. The interruption
theorem gives us a way of improving over uy, with little additional computation
by stepping outside O. That is, at each step we interrupt the current option
and switch to any new option that is valued more highly according to Q%.
Checking for such options can typically be done at vastly less expense per
time step than is involved in the combinatorial process of computing Q7. In
this sense, interruption gives us a nearly free improvement over any SMDP
planning or learning method that computes Q% as an intermediate step.

In the extreme case, we might interrupt on every step and switch to the greedy
option—the option in that state that is most highly valued according to Q% (as
in polling execution [51]). In this case, options are never followed for more than
one step, and they might seem superfluous. However, the options still play a
role in determining %, the basis on which the greedy switches are made, and
recall that multi-step options may enable %, to be found much more quickly
than @* could (Section 3). Thus, even if multi-step options are never actually
followed for more than one step they can still provide substantial advantages
in computation and in our theoretical understanding.

Figure 7 shows a simple example. Here the task is to navigate from a start
location to a goal location within a continuous two-dimensional state space.
The actions are movements of 0.01 in any direction from the current state.
Rather than work with these low-level actions, infinite in number, we introduce
seven landmark locations in the space. For each landmark we define a controller
that takes us to the landmark in a direct path (cf. [81]). Each controller is only
applicable within a limited range of states, in this case within a certain distance
of the corresponding landmark. Each controller then defines an option: the
circular region around the controller’s landmark is the option’s initiation set,
the controller itself is the policy, and arrival at the target landmark is the
termination condition. We denote the set of seven landmark options by O.
Any action within 0.01 of the goal location transitions to the terminal state,
the discount rate 7 is 1, and the reward is —1 on all transitions, which makes
this a minimum-time task.

One of the landmarks coincides with the goal, so it is possible to reach the goal
while picking only from O. The optimal policy within O runs from landmark
to landmark, as shown by the thin line in the upper panel of Figure 7. This is
the optimal solution to the SMDP defined by O and is indeed the best that one
can do while picking only from these options. But of course one can do better
if the options are not followed all the way to each landmark. The trajectory

22

-100

-200

-300

-400

-500

-600

/_\

range (initiation set) of each
run-to-landmark controller

G
Landmarks \

Problem
[
Interrupted Solution

(474 Steps) —TT—

p“— landmarks
SMDP Solution
(600 Steps)
S
V- SMDP Value Function V"~ Values with Interruption

=

W
\
0\

T

=
=
=
=
=

=

=
ol
o

!
3
0t

s
1)

Fig. 7. Using interruption to improve navigation with landmark-directed controllers.
The task (top) is to navigate from S to G in minimum time using options based on
controllers that run each to one of seven landmarks (the black dots). The circles show
the region around each landmark within which the controllers operate. The thin line
shows the SMDP solution, the optimal behavior that uses only these controllers
without interrupting them, and the thick line shows the corresponding solution
with interruption, which cuts the corners. The lower two panels show the state-value
functions for the SMDP and interrupted solutions.

shown by the thick line in Figure 7 cuts the corners and is shorter. This is the
interrupted policy with respect to the SMDP-optimal policy. The interrupted
policy takes 474 steps from start to goal which, while not as good as the
optimal policy in primitive actions (425 steps), is much better, for nominal
additional cost, than the SMDP-optimal policy, which takes 600 steps. The
state-value functions, V* = V5 and V*' for the two policies are shown in the

23

Interrupted
Solution
121 Steps

0.06

0.04
Velocity
0.02

SMDP Solution
210 Steps

T T T T T
0 0.5 1 1.5 2

Position

Fig. 8. Phase-space plot of the SMDP and interrupted policies in a simple dy-
namical task. The system is a mass moving in one dimension: ;41 = ¢ + T441,
Typ1 = &1+ ay — 0.1752, where 24 is the position, z; the velocity, 0.175 a coefficient
of friction, and the action a; an applied force. Two controllers are provided as op-
tions, one that drives the position to zero velocity at z* = 1 and the other to z* = 2.
Whichever option is being followed at time ¢, its target position z* determines the
action taken, according to a; = 0.01(z* — z¢).

lower part of Figure 7. Note how the values for the interrupted policy are
everywhere greater than the values of the original policy. A related but larger
application of the interruption idea to mission planning for uninhabited air
vehicles is given in [75].

Figure 8 shows results for an example using controllers/options with dynamics.
The task here is to move a mass along one dimension from rest at position 0
to rest at position 2, again in minimum time. There is no option that takes
the system all the way from 0 to 2, but we do have an option that takes it
from 0 to 1 and another option that takes it from any position greater than
0.5 to 2. Both options control the system precisely to its target position and
to zero velocity, terminating only when both of these are correct to within
e = 0.0001. Using just these options, the best that can be done is to first move
precisely to rest at 1, using the first option, then re-accelerate and move to 2
using the second option. This SMDP-optimal solution is much slower than the
corresponding interrupted solution, as shown in Figure 8. Because of the need
to slow down to near-zero velocity at 1, it takes over 200 time steps, whereas
the interrupted solution takes only 121 steps.

24

5 Intra-Option Model Learning

In this section we introduce a new method for learning the model, r? and
P2, of an option o, given experience and knowledge of o (i.e., of its Z, ,
and). Our method requires that = be deterministic and that the option be
Markov. For a semi-Markov option, the only general approach is to execute
the option to termination many times in each state s, recording in each case
the resultant next state s’, cumulative discounted reward r, and elapsed time
k. These outcomes are then averaged to approximate the expected values for
r? and p?,, given by (6) and (7). For example, an incremental learning rule for
this could update its model after each execution of o by

re =70+ alr — 7Y, (16)

S

and

ﬁZz = ﬁg$ —I_ a[7k55/1‘ - pZa:L (17)

for all z € ST, where §,, = 1 if s' = z and is 0 else, and where the step-size
parameter, a,, may be constant or may depend on the state, option, and time.
For example, if a is 1 divided by the number of times that o has been experi-
enced in s, then these updates maintain the estimates as sample averages of
the experienced outcomes. However the averaging is done, we call these SMDP
model-learning methods because, like SMDP value-learning methods, they are
based on jumping from initiation to termination of each option, ignoring what
happens along the way. In the special case in which o is a primitive option,
SMDP model-learning methods reduce to those used to learn conventional
one-step models of actions.

One disadvantage of SMDP model-learning methods is that they improve the
model of an option only when the option terminates. Because of this, they
cannot be used for nonterminating options and can only be applied to one
option at a time—the one option that is executing at that time. For Markov
options, special temporal-difference methods can be used to learn usefully
about the model of an option before the option terminates. We call these
intra-option methods because they learn about an option from a fragment of
experience “within” the option. Intra-option methods can even be used to learn
about an option without ever executing it, as long as some selections are made
that are consistent with the option. Intra-option methods are examples of off-
policy learning methods [68] because they learn about the consequences of one
policy while actually behaving according to another. Intra-option methods can
be used to simultaneously learn models of many different options from the
same experience. Intra-option methods were introduced in [46], but only for

25

a prediction problem with a single unchanging policy, not for the full control
case we consider here and in [76].

Just as there are Bellman equations for value functions, there are also Bellman
equations for models of options. Consider the intra-option learning of the
model of a Markov option 0o = (Z,w, 3). The correct model of o is related to
itself by

o= w(s,a)B{r +5(1 - p(s")rs}

aE-As

where r and s" are the reward and next state given that action a is taken in
state s,

= 7(s,a) [+ gpz;/(l — ﬁ(s’))rz/] ,

GEAS

and

Moo= 3 (s,)y B{(1 = AP + A0}

QEAS

= Z 7T(57 Cl) Z:ptsls’ [(1 - ﬁ(S/))pg,I + 6(8/)55,95] >

aE-As

for all s,z € §. How can we turn these Bellman-like equations into update
rules for learning the model? First consider that action a; is taken in s;, and
that the way it was selected is consistent with o = (Z,w, 3), that is, that a,
was selected with the distribution 7(s;,-). Then the Bellman equations above
suggest the temporal-difference update rules

Py T, o {Tt+1 + (L = B(se1))Fs,,, — fgt] (18)

and

ﬁgtl‘ <_ ﬁgtl‘ —I_ o |:/7(1 - /8(8t+1))ﬁzt+1l‘ —I_ 7/8(8t+1)55t+117 - ﬁgtl‘i| bl (19)

for all z € S*, where p2, and 72 are the estimates of p2,, and r?, respectively,
and « is a positive step-size parameter. The method we call one-step intra-
option model learning applies these updates to every option consistent with
every action taken, a;. Of course, this is just the simplest intra-option model-
learning method. Others may be possible using eligibility traces and standard
tricks for off-policy learning (as in [46]).

As an illustration, consider model learning in the rooms example using SMDP
and intra-option methods. As before, we assume that the eight hallway options

26

.. Max Error

Reward State

0
0

Fig. 9. Model learning by SMDP and intra-option methods. Shown are the average
and maximum over Z of the absolute errors between the learned and true models,

averaged over the eight hallway options and 30 repetitions of the whole experiment.
The lines labeled ‘SMDP 1/t are for the SMDP method using sample averages; all
the others used o = 1/4.

are given, but now we assume that their models are not given and must be
learned. In this experiment, the rewards were selected according to a normal
probability distribution with a standard deviation of 0.1 and a mean that was
different for each state—action pair. The means were selected randomly at the
beginning of each run uniformly from the [—1, 0] interval. Experience was gen-
erated by selecting randomly in each state among the two possible options and
four possible actions, with no goal state. In the SMDP model-learning method,
equations (16) and (17) were applied whenever an option terminated, whereas,
in the intra-option model-learning method, equations (18) and (19) were ap-
plied on every step to all options that were consistent with the action taken on
that step. In this example, all options are deterministic, so consistency with
the action selected means simply that the option would have selected that
action.

For each method, we tried a range of values for the step-size parameter, o =
%, i, é, and %. Results are shown in Figure 9 for the value that seemed to
be best for each method, which happened to be a = i in all cases. For the
SMDP method, we also show results with the step-size parameter set such
that the model estimates were sample averages, which should give the best
possible performance of this method (these lines are labeled 1/t). The figure
shows the average and maximum errors over the state—option space for each
method, averaged over the eight options and 30 repetitions of the experiment.

As expected, the intra-option method was able to learn significantly faster

than the SMDP methods.

27

Prediction 07¢ Prediction
\
Error 061\ Error
v “--..SMDP
05} Y
~Intra X e N
e ~.SMDP 1/t i 0.4}
.\ Avg. Error-..
03f e e 7. _SMDP
oal Teee-SMDP 1/t Max
T TR — Avg.
L L . L B 0 Intra ""'—}—'—? 7777777777777 T STMPTTE;T?.’:’:??:: Erl’OI’
20,000 40,000 60,000 80,000 100,000 0 20,000 40,000 60,000 80,000 100,000
Options Executed Options Executed

6 Intra-Option Value Learning

We turn now to the intra-option learning of option values and thus of optimal
policies over options. If the options are semi-Markov, then again the SMDP
methods described in Section 3.2 may be the only feasible methods; a semi-
Markov option must be completed before it can be evaluated. But if the options
are Markov and we are willing to look inside them, then we can consider intra-
option methods. Just as in the case of model learning, intra-option methods
for value learning are potentially more efficient than SMDP methods because
they extract more training examples from the same experience.

For example, suppose we are learning to approximate Q%(s,0) and that o is
Markov. Based on an execution of o from ¢ to ¢ + k, SMDP methods extract a
single training example for Q% (s, 0). But because o is Markov, it is, in a sense,
also initiated at each of the steps between ¢ and ¢ + k. The jumps from each
intermediate s; to s;y; are also valid experiences with o, experiences that can
be used to improve estimates of Q%(s;,0). Or consider an option that is very
similar to o and which would have selected the same actions, but which would
have terminated one step later, at t+k-+1 rather than at t+4%. Formally this is a
different option, and formally it was not executed, yet all this experience could
be used for learning relevant to it. In fact, an option can often learn something
from experience that is only slightly related (occasionally selecting the same
actions) to what would be generated by executing the option. This is the idea
of off-policy training—to make full use of whatever experience occurs to learn
as much as possible about all options irrespective of their role in generating
the experience. To make the best use of experience we would like off-policy
and intra-option versions of value-learning methods such as Q-learning.

It is convenient to introduce new notation for the value of a state-option pair
given that the option is Markov and executing upon arrival in the state:

Us(5,0) = (1= B(3))Qo(5, 0) + 3(5) max Qa(s, o).

Then we can write Bellman-like equations that relate Q%(s,0) to expected
values of Uj(s',0), where s’ is the immediate successor to s after initiating
Markov option o = (Z, 7, 3) in s:

Qb(s,0)= > W(S,G)E{T + U5 (s, 0) ‘ s,a}

GE-AS

= > 7(s,a) lri +ZPZS/UB(S’,0)] , (20)

a€A; s

where r is the immediate reward upon arrival in s’. Now consider learning

28

methods based on this Bellman equation. Suppose action a; is taken in state
s¢ to produce next state s;y; and reward ry;1, and that a; was selected in a
way consistent with the Markov policy 7 of an option o = (Z, 7, 3). That is,
suppose that a; was selected according to the distribution 7 (s,). Then the
Bellman equation above suggests applying the off-policy one-step temporal-
difference update:

Q(s1,0) « Q(s1,0) + a[(rigs +7U(s141,0)) = Q(s1,0)], (21)

where

U(s,0) = (1 —B3(s))Q(s,0) + 3(s) max Q(s,0).

The method we call one-step intra-option Q-learning applies this update rule
to every option o consistent with every action taken, a,. Note that the al-
gorithm is potentially dependent on the order in which options are updated
because, in each update, U(s, 0) depends on the current values of Q(s,0) for
other options o'. If the options’ policies are deterministic, then the concept
of consistency above is clear, and for this case we can prove convergence.
Extensions to stochastic options are a topic of current research.

Theorem 3 (Convergence of intra-option Q-learning) For any set of Markov
options, O, with deterministic policies, one-step intra-option Q-learning con-
verges w.p.1 to the optimal QQ-values, Q}, for every oplion regardless of what
options are executed during learning, provided thatl every action gets executed

in every state infinitely often.

Proof: (Sketch) On experiencing the transition, (s, a,r’,s’), for every option
o that picks action a in state s, intra-option Q-learning performs the following
update:

Q(s,0) + Q(s,0) + a(s,o)[r' + vU(s",0) — Q(s,0)].

Our result follows directly from Theorem 1 of [82] and the observation that
the expected value of the update operator r' + yU(s', 0) yields a contraction,
proved below:

[E{r" +9U(s", 0)} — Q5 (s, 0)| = r + D_pl,U(s', 0) — Q5 (s, 0)]

= [ri+ 2P Uls' 0) =1 = 3 paaUs(s', 0)

< 12w [(1=BENNQS 0) = Qb(s',0))

29

| .. Value of Optimal Policy ___
Learned value
Upper
AL hallway
True value option
Average Option
value of 2r values
greedy policy
3
Left
r True value hallway
option
n n n _4 i i i i i J
1 10 100 1000 6000 O 1000 2000 3000 4000 5000 6000
Episodes Episodes

Fig. 10. The learning of option values by intra-option methods without ever selecting
the options. Experience was generated by selecting randomly among actions, with
the goal at Gy. Shown on the left is the value of the greedy policy, averaged over
all states and 30 repetitions of the experiment, as compared with the value of
the optimal policy. The right panel shows the learned option values for state G5
approaching their correct values.

+ B(s")(max Q(s',0') — max Q5 (s, 0’)} |

o'€0 o'€0
< Xt max|Q(s", ") - Qols".)
s! ’
< ymax|Q(s", ") — Qp(s",0")| .

As an illustration, we applied this intra-option method to the rooms example,
this time with the goal in the rightmost hallway, cell Gy in Figure 2. Actions
were selected randomly with equal probability from the four primitives. The
update (21) was applied first to the primitive options, then to any of the
hallway options that were consistent with the action. The hallway options
were updated in clockwise order, starting from any hallways that faced up
from the current state. The rewards were the same as in the experiment in the
previous section. Figure 10 shows learning curves demonstrating the effective
learning of option values without ever selecting the corresponding options.

Intra-option versions of other reinforcement learning methods such as Sarsa,
TD(X), and eligibility-trace versions of Sarsa and Q-learning should be straight-
forward, although there has been no experience with them. The intra-option
Bellman equation (20) could also be used for intra-option sample-based plan-
ning.

30

7 Subgoals for Learning Options

Perhaps the most important aspect of working between MDPs and SMDPs is
that the options making up the SMDP actions may be changed. We have seen
one way in which this can be done by changing their termination conditions.
Perhaps more fundamental than that is changing their policies, which we
consider briefly in this section. It is natural to think of options as achieving
subgoals of some kind, and to adapt each option’s policy to better achieve its
subgoal. For example, if the option is open-the-door, then it is natural to
adapt its policy over time to make it more effective and efficient at opening
the door, which may make it more generally useful. It is possible to have many
such subgoals and learn about them each independently using an off-policy
learning method such as Q-learning, as in [40,43,47,67,71]. In this section we
develop this idea within the options framework and illustrate it by learning
the hallway options in the rooms example. We assume the subgoals are given
and do not address the larger question of the source of the subgoals.

A simple way to formulate a subgoal for an option is to assign a terminal
subgoal value, g(s), to each state s in a subset of states G C S. These values
indicate how desirable it is for the option to terminate in each state in G.
For example, to learn a hallway option in the rooms task, the target hallway
might be assigned a subgoal value of +1 while the other hallway and all states
outside the room might be assigned a subgoal value of 0. Let O, denote the
set of options that terminate only and always in G (i.e., for which 3(s) = 0
for s € G and B(s) =1 for s € G). Given a subgoal-value function g : G — R,
one can define a new state-value function, denoted V;°(s), for options o € O,,
as the expected value of the cumulative reward if option o is initiated in state
s, plus the subgoal value g(s') of the state s’ in which it terminates, both
discounted appropriately. Similarly, we can define a new action-value function
Qo(s,a) = V;°(s) for actions a € A, and options o € O,.

Finally, we can define optimal value functions for any subgoal g: V*(s) =
max,eo, V' (s) and Q} (s, a) = max,eo0, Q(s, a). Finding an option that achieves
these maximums (an optimal option for the subgoal) is then a well defined sub-
task. For Markov options, this subtask has Bellman equations and methods for

learning and planning just as in the original task. For example, the one-step
tabular Q-learning method for updating an estimate Q, (s, a;) of Q3 (s;,a;) is

Qq(st,a) < Qgls1,00) + o [regn + 7y max Qo(St415 arp1) — Qylse, ar)|

if s;41 € G, and

Qq(5t,a1) < Qg(s1,as) + a[repr +79(5641) — Q515 a)]

31

upper
04K RMS Error in 06 b R Qﬁt')ggé
os] N\ subgoal values o5 Ty T g0 'r?gﬁsvray
W [Qys.0) - Qgls.]> o subgod!

0.2 \ 0.31 learned

values Two subgoal

0.2r
Vo(G2) state values

0.1}
017

0o 20,000 40,000 60,000 80,000 100,000 % 20,000 40,000 60,000 80,000 100,000
Time steps Time Steps

Fig. 11. Learning subgoal-achieving hallway options under random behavior. Shown
on the left is the error between Q,(s,a) and @ (s, a) averaged over s € Z, a € A,
and 30 repetitions. The right panel shows the learned state values (maximum over
action values) for two options at state GGy approaching their correct values.

if St41 € g

As a simple example, we applied this method to learn the policies of the
eight hallway options in the rooms example. Each option was assigned subgoal
values of +1 for the target hallway and 0 for all states outside the option’s
room, including the off-target hallway. The initial state was that in the upper
left corner, actions were selected randomly with equal probability, and there
was no goal state. The parameters were v = 0.9 and a = 0.1. All rewards were
zero. Figure 11 shows the learned values for the hallway subgoals reliably
approaching their ideal values.

8 Conclusion

Representing knowledge flexibly at multiple levels of temporal abstraction
has the potential to greatly speed planning and learning on large problems.
We have introduced a framework for doing this within the context of rein-
forcement learning and MDPs. This context enables us to handle stochastic
environments, closed-loop policies, and goals in a more general way than has
been possible in classical Al approaches to temporal abstraction. Our frame-
work is also clear enough to be learned, used, and interpreted mechanically,
as we have shown by exhibiting simple procedures for learning and planning
with options, for learning models of options, and for creating new options from
subgoals.

The foundation of the theory of options is provided by the existing theory
of SMDPs and associated learning methods. The fact that each set of op-
tions defines an SMDP provides a rich set of planning and learning methods,

32

convergence theory, and an immediate, natural, and general way of analyzing
mixtures of actions at different time scales. This theory offers a lot, but still
the most interesting cases are beyond it because they involve interrupting,
constructing, or otherwise decomposing options into their constituent parts.
It is the intermediate ground between MDPs and SMDPs that seems richest
in possibilities for new algorithms and results. In this paper we have broken
this ground and touched on many of the issues, but there is far more left
to be done. Key issues such as transfer between subtasks, the source of sub-
goals, and integration with state abstraction remain incompletely understood.
The connection between options and SMDPs provides only a foundation for
addressing these and other issues.

Finally, although this paper has emphasized temporally extended action, it
is interesting to note that there may be implications for temporally extended
perception as well. It is now common to recognize that action and perception
are intimately linked. To see the objects in a room is not so much to label
or locate them as it is to know what opportunities they afford for action: a
door to open, a chair to sit on, a book to read, a person to talk to. If the
temporally extended actions are modeled as options, then perhaps the models
of the options correspond well to these perceptions. Consider a robot learning
to recognize its battery charger. The most useful concept for it is the set of
states from which it can successfully dock with the charger, and this is exactly
what would be produced by the model of a docking option. These kinds of
action-oriented concepts are appealing because they can be tested and learned
by the robot without external supervision, as we have shown in this paper.

Acknowledgements

The authors gratefully acknowledge the substantial help they have received
from many colleagues who have shared their related results and ideas with
us over the long period during which this paper was in preparation, espe-
cially Amy McGovern, Ron Parr, Tom Dietterich, Andrew Fagg, B. Ravin-
dran, Manfred Huber, and Andy Barto. We also thank Leo Zelevinsky, Csaba
Szepesvari, Paul Cohen, Robbie Moll, Mance Harmon, Sascha Engelbrecht,
and Ted Perkins. This work was supported by NSF grant ECS-9511805 and
grant AFOSR-F49620-96-1-0254, both to Andrew Barto and Richard Sut-
ton. Doina Precup also acknowledges the support of the Fulbright foundation.
Satinder Singh was supported by NSF grant [1S-9711753. An earlier version
of this paper appeared as University of Massachusetts Technical Report UM-
(CS-1998-074.

33

References

[1] Fikes, R.E., Hart, P.E., Nilsson, N.J. (1972). Learning and executing generalized
robot plans. Artificial Intelligence 3:251-288.

[2] Newell, A., Simon, H.A. (1972). Human Problem Solving. Prentice-Hall,
Englewood Cliffs, NJ.

[3] Sacerdoti, E.D. (1974). Planning in a hierarchy of abstraction spaces. Artificial
Intelligence 5:115-135.

[4] Korf, R.E. (1985). Learning to Solve Problems by Searching for Macro-
Operators. Boston: Pitman Publishers.

[5] Laird, J.E., Rosenbloom, P.S., Newell, A. (1986). Chunking in SOAR: The

anatomy of a general learning mechanism. Machine Learning 1:11-46.

[6] Minton, S. (1988). Learning Search Control Knowledge: An Explanation-based
Approach. Kluwer Academic.

[7] Iba, G.A. (1989). A heuristic approach to the discovery of macro-operators.
Machine Learning 3:285-317.

[8] Etzioni, O. (1990). Why PRODIGY/EBL works. Proceeding of the Eighth
National Conference on Artificial Intelligence, pp. 916-922. Boston, MIT Press.

[9] Tambe, M., Newell A., and Rosenbloom, P. (1990). The problem of expensive
chunks and its solution by restricting expressiveness. Machine Learning
5(3):299-348.

[10] Drescher, G.L. (1991). Made Up Minds: A Constructivist Approach to Artificial
Intelligence. MIT Press.

[11] Nilsson, N. (1994). Teleo-reactive programs for agent control. Journal of
Artificial Intelligence Research, 1:139-158.

[12] Kuipers, B.J. (1979). Commonsense knowledge of space: Learning from
experience. Proceedings of the Sixth International Joint Conference on Artificial
Intelligence, pp. 499-501.

[13] de Kleer, J., Brown, J.S. (1984). A qualitative physics based on confluences.
Artificial Intelligence 24(1-3):7-83.

[14] Dejong, G.F. (1994). Learning to plan in continuous domains. Artificial
Intelligence 65:71-141.

[15] Say, A.C.C., Selahattin, K. (1996). Qualitative system identification: Deriving
structure from behavior. Artificial Intelligence 83(1):75-141.

[16] Brafman, R.I., Tennenholtz, M. (1997). Modeling agents as qualitative decision
makers. Artificial Intelligence 94(1):217-268.

34

[17] Maes, P., Brooks, R. (1990). Learning to coordinate behaviors. Proceedings of
the Eighth National Conference on Artificial Intelligence, pp. 796-802.

[18] Brockett, R.W. (1993). Hybrid models for motion control systems. In Essays
in Control: Perspectives in the Theory and and its Applications, pp. 29-53.
Birkh&user, Boston.

[19] Grossman, R.L., Nerode, A., Ravn, A.P., Rischel, H. (1993). Hybrid Systems.
Springer-Verlag, New York.

[20] Araujo, E.G., Grupen, R.A. (1996). Learning control composition in a complex
environment. Proceedings of the Fourth International Conference on Simulation
of Adaptive Behavior, pp. 333-342.

[21] Colombetti, M., Dorigo, M., Borghi, G. (1996). Behavior analysis and training:
A methodology for behavior engineering. IEEE Transactions on Systems, Man,
and Cybernetics-Part B 26(3):365-380

[22] Sastry, S. (1997). Algorithms for design of hybrid systems. Proceedings of the
International Conference of Information Sciences.

[23] Barto, A.G., Bradtke, S.J., Singh, S.P. (1995). Learning to act using real-time
dynamic programming. Artificial Intelligence 72:81-138.

[24] Dean, T., Kaelbling, L.P., Kirman, J., Nicholson, A. (1995). Planning under
time constraints in stochastic domains. Artificial Intelligence 76(1-2): 35-74.

[25] Boutilier, C., Brafman, R.I., Geib, C. (1997). Prioritized goal Decomposition
of Markov decision processes: Toward a synthesis of classical and decision
theoretic planning. Proceedings of the Fifteenth International Joint Conference
on Artificial Intelligence, pp. 1165-1162.

[26] Simmons, R., Koenig, S. (1995). Probabilistic robot navigation in partially
observable environments. Proceedings of the Fourteenth International Joint
Conference on Artificial Intelligence, pp. 1080-1087. Morgan Kaufmann.

[27] Geffner, H., Bonet, B. (1998). High-level planning and control with incomplete
information using POMDPs. Proceedings AIPS-98 Workshop on Integrating
Planning, Scheduling and Execution in Dynamic and Uncertain Environments.

[28] Marbach, P., Mihatsch, O., Schulte, M., Tsitsiklis, J.N. (1998). Reinforcement
learning for call admission control in routing in integrated service networks.
Advances in Neural Information Processing Systems 10, pp. 922-928. San
Mateo: Morgan Kaufmann.

[29] Nie, J., and Haykin, S. (to appear). A Q-learning based dynamic channel
assignment technique for mobile communication systems. IEEE Transactions
on Vehicular Technology.

[30] Singh, S.P., Bertsekas, D. (1997). Reinforcement learning for dynamic channel
allocation in cellular telephone systems. Advances in Neural Information
Processing Systems 9:974-980. MIT Press.

35

[31] Crites, R.H., Barto, A.G. (1996). Improving elevator performance using
reinforcement learning. Advances in Neural Information Processing Systems
8:1017-1023. MIT Press, Cambridge, MA.

[32] Tesauro, G.J. (1995). Temporal difference learning and TD-Gammon.
Communications of the ACM 38:58-68.

[33] Sutton, R.S., Pinette, B. (1985). The learning of world models by connectionist
networks. Proceedings of the Seventh Annual Conference of the Cognitive
Science Society, pp. 54-64.

[34] Watkins, C.J.C.H. (1989). Learning with Delayed Rewards. PhD thesis,
Cambridge University.

[35] Ring, M. (1991). Incremental development of complex behaviors through
automatic construction of sensory-motor hierarchies. Proceedings of the
Eighth International Conference on Machine Learning, pp. 343-347, Morgan
Kaufmann.

[36] Wixson, L.E. (1991). Scaling reinforcement learning techniques via modularity,
Proc. Fighth Int. Conf. on Machine Learning, pp. 368-372, Morgan Kaufmann.

[37] Schmidhuber, J. (1991). Neural Sequence Chunkers. Technische Universitat
Munchen TR FKI-148-91.

[38] Mahadevan, S., Connell, J. (1992). Automatic programming of behavior-based
robots using reinforcement learning. Artificial Intelligence 55(2-3):311-365.

[39] Singh, S.P. (1992). Transfer of learning by composing solutions of elemental
sequential tasks. Machine Learning 8(3/4):323-340.

[40] Lin, L.-J. (1993). Reinforcement Learning for Robots Using Neural Networks.
PhD thesis, Carnegie Mellon University. Technical Report CMU-CS-93-103.

[41] Dayan, P. (1993). Improving generalization for temporal difference learning:
The successor representation. Neural Computation 5:613-624.

42] Dayan, P., Hinton, G.E. (1993). Feudal reinforcement learning. Advances in
g
Neural Information Processing Systems 5:271-278. San Mateo, CA: Morgan
Kaufmann.

[43] Kaelbling, L.P. (1993). Hierarchical learning in stochastic domains: Preliminary
results. Proc. of the Tenth Int. Conf. on Machine Learning, pp. 167-173, Morgan
Kaufmann.

[44] Singh S.P., Barto A.G., Grupen R.A., Connolly C.I. (1994). Robust
reinforcement learning in motion planning. Advances in Neural Information
Processing Systems 6:655-662, Morgan Kaufmann.

[45] Chrisman, L. (1994). Reasoning about probabilistic actions at multiple levels of
granularity, AAAI Spring Symposium: Decision-Theoretic Planning, Stanford
University.

36

[46] Sutton, R.S. (1995). TD models: Modeling the world at a mixture of time scales.
Proceedings of the Twelfth International Conference on Machine Learning,
pp- 531-539, Morgan Kaufmann.

[47] Thrun, T., Schwartz, A. (1995). Finding structure in reinforcement learning.
Advances in Neural Information Processing Systems 7, pp. 385-392. San Mateo:
Morgan Kaufmann.

[48] Uchibe, M., Asada, M., Hosada, K. (1996). Behavior coordination for a
mobile robot using modular reinforcement learning. Proceedings of IEEE/RS.J
International Conference on Intelligent Robots and Systems, pp. 1329-1336.

[49] Asada, M., Noda, S., Tawaratsumida, S., Hosada, K. (1996). Purposive behavior
acquisition for a real robot by vision-based reinforcement learning. Machine
Learning 23:279-303.

[50] Kalmar, Zs., Szepesvari, Cs., Lorincz, A. (1998). Module based reinforcement
learning: Experiments with a real robot. Machine Learning 31:55-85 and
Autonomous Robots 5:273-295 (special joint issue).

[51] Dietterich, T.G. (1998). The MAXQ method for hierarchical reinforcement
learning. In Machine Learning: Proceedings of the Fifteenth International
Conference, pp. 118-126. Morgan Kaufman.

[52] Dean, T., Lin, S.-H. (1995). Decomposition techniques for planning in stochastic
domains. Proceedings of the Fourteenth International Joint Conference on
Artificial Intelligence, pp. 1121-1127. Morgan Kaufmann. See also Technical
Report CS-95-10, Brown University, Department of Computer Science, 1995.

[53] Huber, M., Grupen, R.A. (1997). A feedback control structure for on-line
learning tasks. Robotics and Autonomous Systems 22(3-4):303-315.

[54] Wiering, M., Schmidhuber, J. (1997). HQ-learning. Adaptive Behavior
6(2):219-246.

[55] Precup, D., Sutton, R.S., Singh, S.P. (1997). Planning with closed-loop macro
actions. Working notes of the 1997 AAAI Fall Symposium on Model-directed
Autonomous Systems, pp. 70-76.

[56] Precup, D., Sutton, R.S.; Singh, S.P. (1998). Theoretical results on
reinforcement learning with temporally abstract options. Proceedings of the
Tenth European Conference on Machine Learning. Springer-Verlag.

[57] McGovern, A., Sutton, R.S., (1998). Macro-actions in reinforcement learning:
An empirical analysis. Technical Report 98-70, University of Massachusetts,
Department of Computer Science.

[58] Parr, R., Russell, S. (1998). Reinforcement learning with hierarchies of
machines. Advances in Neural Information Processing Systems 10, pp. 1043—
1049. MIT Press, Cambridge, MA.

[59] Drummond, C. (1998). Composing functions to speed up reinforcement learning
in a changing world. Proceedings of the Tenth European Conference on Machine
Learning. Springer-Verlag.

37

[60] Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L..P., Dean, T. (1998).
Hierarchical solution of Markov decision processes using macro-actions. In:
Uncertainty in Arificial Intelligence: Proceedings of the Fourteenth Conference,
pp. 220-229.

[61] Meuleau, N., Hauskrecht, M., Kim, K.-E., Peshkin, L., Kaelbling, L.P.; Dean,
T., Boutilier, C. (1998). Solving very large weakly coupled Markov decision
processes. Proceedings of the Fifteenth National Conference on Artificial
Intelligence, pp. 165-172 .

[62] Bradtke, S.J., and Duff, M.O. (1995). Reinforcement learning methods for
continuous-time Markov decision problems. Advances in Neural Information
Processing Systems 7:393-400. MIT Press, Cambridge, MA.

[63] Mahadevan, S., Marchalleck, N., Das, T., Gosavi, A. (1997). Self-improving
factory simulation using continuous-time average-reward reinforcement
learning. Proceedings of the 14th International Conference on Machine
Learning, pp. 202-210.

[64] Parr, R. (1998). Hierarchical control and learning for Markov decision processes.
PhD Thesis, University of California at Berkeley.

[65] Mataric, M.J. (1997). Behavior-based control: Examples from navigation,
learning, and group behavior. Journal of Experimental and Theoretical Artificial
Intelligence 9(2-3):323-336.

[66] Koza, J.R., Rice, J.P. (1992). Automatic programming of robots using genetic
programming. Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 194-201.

[67] Dorigo, M., Colombetti, M. (1994). Robot shaping: Developing autonomous
agents through learning. Artificial Intelligence 71:321-370.

[68] Sutton, R.S., Barto, A.G. (1998). Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA.

[69] Puterman, M. L. (1994). Markov Decision Problems. Wiley, New York.

[70] Singh, S.P. (1992). Reinforcement learning with a hierarchy of abstract models.
Proceedings of the Tenth National Conference on Artificial Intelligence, pp. 202—
207. MIT/AAAI Press.

[71] Singh, S.P. (1992). Scaling reinforcement learning by learning variable temporal
resolution models. Proceedings of the Ninth International Conference on
Machine Learning, pp. 406-415, Morgan Kaufmann.

[72] Singh, S.P. (1992). The efficient learning of multiple task sequences. In Advances
in Neural Information Processing Systems 4:251-258, Morgan Kaufmann.

[73] Precup, D., Sutton, R.S. (1997). Multi-time models for reinforcement learning.
Proceedings of the ICML’97 Workshop on Modeling in Reinforcement Learning.

38

[74] Precup, D., Sutton, R.S. (1998). Multi-time models for temporally abstract
planning. Advances in Neural Information Processing Systems 10, pp. 1050—
1056. MIT Press, Cambridge, MA.

[75] Sutton, R.S., Singh, S., Precup, D., Ravindran, B. (1999). Improved switching
among temporally abstract actions. Advances in Neural Information Processing
Systems 11, pp. 1066-1072. MIT Press.

[76] Sutton, R.S., Precup, D., Singh, S. (1998). Intra-option learning about
temporally abstract actions. Proceedings of the 15th International Conference
on Machine Learning, pp. 556-564. Morgan Kaufmann.

[77] Minton, S. (1990). Quantitative results concerning the utilty of explanation-
based learning. Artificial Intelligence 42(2-3):363-391.

[78] Greiner, R., Jurisica, 1. (1992). A statistical approach to solving the EBL
utility problem, Proceedings of the Tenth National Conference on Artificial
Intelligence, pp. 241-248.

[79] Gratch, J., DeJong, G. (1996). A statistical approach to adaptive problem
solving. Artificial Intelligence 88(1-2):101-161.

[80] Howard, R. (1960). Dynamic Programming and Markov Processes. MIT Press,
Cambridge, MA.

[81] Moore, A.W. (1994). The parti-game algorithm for variable resolution
reinforcement learning in multidimensional spaces, Advances in Neural
Information Processing Systems 6:711-718, MIT Press, Cambridge, MA.

[82] Jaakkola, T., Jordan, M.l., and Singh, S. (1994). On the convergence of
stochastic iterative dynamic programming algorithms. Neural Computation
6(6):1185-1201.

39

