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Abstract

This paper introduces a new perspective on curiosity and in-
trinsic motivation, viewed as the problem of generating be-
havior data for parallel off-policy learning. We provide 1) the
first measure of surprise based on off-policy general value
function learning progress, 2) the first investigation of reac-
tive behavior control with parallel gradient temporal differ-
ence learning and function approximation, and 3) the first
demonstration of using curiosity driven control to react to a
non-stationary learning task—all on a mobile robot. Our ap-
proach improves scalability over previous off-policy, robot
learning systems, essential for making progress on the ul-
timate big-data decision making problem—life-long robot
learning.

Off-policy, life-long, robot learning is an immense big-data
decision making problem. In life-long learning the agent’s
task is to learn from an effectively infinite stream of inter-
action. For example, a robot updating at 100 times a sec-
ond, running 8 hours a day, with a few dozen sensors can
produce gigabytes of raw observation data every year of its
life. Beyond the temporal scale of the problem, off-policy
life-long learning enables additional scaling in the number
of things that can be learned in parallel, as demonstrated by
recent predictive, learning systems (see Modayil et al 2012,
White et al 2013). A special challenge in off-policy, life-long
learning is to select actions in way that provides effective
training data for potentially thousands or millions of predic-
tion learners with diverse needs, which is the subject of this
study.

Surprise and curiosity play an important role in any learn-
ing system. These ideas have been explored in the con-
text of option learning (Singh et al 2005, Simsek and Barto
2006, Schembri et al 2007), developmental robot exploration
(Schmidhuber 1991, Oudeyer et al, 2007), and exploration
and exploitation in reinforcement learning (see Baldassarre
and Mirolli 2013 for an overview). Informally, surprise is
an unexpected prediction error. For example, a robot might
be surprised about its current draw as it drives across sand
for the first time. An agent might be surprised if its reward
function suddenly changed sign, producing large unexpected
negative rewards. An agent should, however, be unsurprised
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if its prediction of future sensory events falls within the er-
ror induced by sensor noise. Equipped with a measure of
surprise, an agent can react—change how it is behaving—to
unexpected situations to encourage relearning. This reactive
adaptation we call curious behavior. In this paper we study
how surprise and curiosity can be used to adjust a robot’s
behavior in the face of changing world.

In particular, we focus on the situation where a robot has
already learned two off-policy predictions about two distinct
policies. The robot then experiences a physical change that
significantly impacts the predictive accuracy of a single pre-
diction. The robot observes its own inability to accurately
predict future battery current draw when it executes a ro-
tation command, exciting its internal surprise measure. The
robot’s behavior responds by selecting actions to speed re-
learning of the incorrect prediction—spinning in place until
the robot is no longer surprised—then returning to normal
operation.

This paper provides the first empirical demonstration of
surprise and curiosity based on off-policy learning progress
on a mobile robot. Our specific instantiation of surprise is
based on the instantaneous temporal difference error, rather
than novelty, salience, or predicted error (all explored in pre-
vious work). Our measure is unique because 1) it balances
knowledge and competence-based learning and 2) it uses
error generated by off-policy reinforcement learning algo-
rithms on real robot data. Our experiment uses commodity
off-the-shelf iRobot Create and simple camera resulting in
real-time adaptive control with visual features. We focus on
the particular case of responding to a dramatic increase in
surprise due to a change in the world—rather than initial
learning. The approach described in this paper scales nat-
urally to massive temporal streams, high dimensional fea-
tures, and many independent off-policy learners common in
life-long robot learning.

Background
We model an agent’s interaction with the world (includ-
ing the robot’s body) as a discrete time dynamical system.
On each time step t, the agent observes a feature vector
xt 2 X ⇢ Rn, that only partially characterizes the envi-
ronmental state st 2 S . We assume st is the current state of
some unobservable Markov Decision Process (MDP), and
thus xt is computed from any information available to the
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agent at time t. On each step the agent takes an action
at 2 A, resulting in an transition in the underlying MDP,
and the agent observes a new feature vector xt+1.

In conventional reinforcement learning, the agent’s objec-
tive is to predict the total discounted future reward on ev-
ery time step. The reward is a special scalar signal rt+1 =
r(xt+1) 2 R, that is emitted by the environment on each
step. To predict reward the agent learns a value function
v : S ! R. The time scale of the prediction is controlled
by a discount factor � 2 [0, 1). The precise quantity to be
predicted is the return gt =

P1
k=0 �

krt+k+1, and the value
function is the expected value of the return,
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where the expectation is conditional on the actions (after t)
selected according to a particular policy ⇡ : X ⇥A! [0, 1]
as denoted by the subscript on the expectation operator. As
is common in reinforcement learning, we estimate v with
a linear approximation, vw(st) = w>xt ⇡ v(st), where
w 2 Rn.

We use generalized notions of reward and termination to
enable learning a broader class of predictions than is typ-
ically considered in conventional reinforcement learning.
First notice we can define the reward to be any bounded
function of xt, such as the instantaneous value of an IR sen-
sors, which we call pseudo reward. Second, � need not be
constant, but can also be defined as a function the features
� : X ! [0, 1]. These changes require the definition of a
general value function (GVF)

v(s) = E
" 1X

k=0

�
⇧k

j=1�(Xt+j)
�
r(Xt+k+1)

#
,

but no special algorithmic modifications are required to
learn GVFs. See Modayil et al (2014) for a more detailed
explanation of GVF prediction.

In order to learn many value functions in parallel, each
conditioned on a different policy, we require off-policy
learning. Off-policy reinforcement learning allows the agent
to learn predictions about one policy while following an-
other. In this setting, the policy that conditions the value
function—the target policy ⇡—is different from the policy
used to select actions and control the robot, called the be-
havior policy µ : X ⇥ A ! [0, 1]. Separating the data gen-
eration policy from the policy to be learned allows learning
about many value functions in parallel from a single stream
of experience. Each prediction V (i)

t = v(i)w (st) is about fu-
ture pseudo reward r(i)(xt) observed if the agent follows
⇡(i) with pseudo termination according to �(i)(xt). These
policy-contingent predictions can each be learned by inde-
pendent instances of off-policy reinforcement learning algo-
rithms.

One such off-policy algorithm is GTD(�) which preforms
stochastic gradient descent on the Mean Squared Projected
Bellman Error (MSPBE), with linear time and space com-

plexity. The update equations for GTD(�),

et  
⇡(xt, at)

µ(xt, at)
(xt + �(xt)�et�1)

wt+1  wt + ↵(�tet � �(xt+1)(1� �)(e>t ht)xt+1)

ht+1  ht + �(�tet � (x>
t ht)xt),

require an eligibility trace vector e 2 Rn, scalar learn-
ing rate parameters ↵ and �, and the usual temporal differ-
ence error �t = r(xt+1)+ �(xt+1)wt

>xt+1�wt
>xt. The

MSPBE is a convex objective that can be directly estimated
from data, MSPBE(w) = Eµ[�e]TEµ[xxT ]�1Eµ[�e], useful
for tracking the learning progress of off-policy predictions
(White et al 2013).

Experiment
The objective of this paper is to investigate one poten-
tial benefit of using surprise to influence decision making.
Specifically we seek a concrete demonstration of adapting
the behavior policy automatically, in response to a pertur-
bation to the agent’s sensorimotor stream. The change is
unexpected and not modelled by the agent. The change is
designed to influence the accuracy of only one GVF predic-
tion. Consider a measure of surprise based on the temporal
difference error of each GVF

Z(i)
t =

�(i)p
var[�(i)]

, (1)

where · denotes an exponentially weighted average. This
measure of surprise increases when instantaneous errors fall
considerably outside the mean error.

A curious behavior is any policy that uses a measure of
surprise from several GVFs to influence action selection.
Here we consider a rule-based curious behavior that uses
surprise to determine whether the behavior should continue
selecting actions according to target policy ⇡(i) or switch
to another target ⇡(j). Assuming the behavior µ had se-
lected actions according to ⇡(i) for k consecutive steps, the
agent decides to continue following ⇡(i) for k more steps, or
switch to a new target policy:

if Z(i)
t < ⌧ then

j = argmaxj 6=iZ
(j)
t

if Z(j)
t < ⌧ (2)
pick j randomly

µ = ⇡(j)

follow µ for k consecutive steps

In our experiment reported here k was set to 120 steps or
approximately four seconds, ⌧ was set to 0.2, and the decay
rate of the exponential average in Equation 1 was 0.01.

Intuitively we expect a curious behavior to select actions
that encourage or facilitate re-learning of an inaccurate GVF.
In the case of a perturbation that affects a single GVF v(i),
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Figure 1: Non-reactive control of the Create in its pen.

we expect the curious behavior (2) to continually select ac-
tions according to the corresponding target policy ⇡(i) un-
til the surprise has subsided, and thus the new situation has
been learned.

To investigate this hypothesis, we conducted an experi-
ment in which two GVFs were learned from off-policy ex-
perience. The first GVF predicted future discounted battery
current draw while counter-clockwise spinning, encoded as
⇡(0)(x, rotateCCW) = 1.0, �(0)(x) = 0.8 8 x 2 X ,
and r(0)t = battery currentt. We used a simple discrete
action set of {forward, reverse, stop, rotate
cw, and rotate ccw}. The second GVF predicted the ex-
pected number of time steps until bump if the robot drove
forward, encoded as ⇡(1)(x, forward) = 1.0 8 x 2 X ,
�(1)(x) = 0.0 on bump and 0.95 otherwise (a 6.6 second
prediction horizon), and r(1)t = 1.0.

Each GVF had a unique feature representation. The rota-
tion GVF’s binary feature vector was produced by a single
tiling of a decaying trace of the observed battery current,
with a tile width of 1/16th. The forward GVF used a fea-
ture vector constructed from 120⇥ 160 web-camera images
sampled at 30 frames per second. At the start of the exper-
iment, 100 pixels were selected at random, and from these
pixels either the luminance or color channel was selected
at random, and these selected values were used to construct
features from the most recent image. Each value (between
0 and 255) was independently tiled into 16 non-overlapping
tiles of width 16, producing a binary feature vector xt, with
16000 components, of which 100 were active on each time
step (see Sutton and Barto (1998) for a review of tile cod-
ing). The camera was mounted directly on top of the robot
facing forward.

Both GVFs were learned using a separate instances of
GTD(� = 0.9) with ↵ = 0.05 and � = 0.0005. All learn-
ing was done directly on a raspberry pi directly connected
to an iRobot Create with an update cycle of 30 ms. The per-
turbation involved putting a heavy load in the back of the
robot, which changes the current draw and directly affects
the rotation GVF. The drive speed and thus the forward GVF
prediction will be unaffected.

Our experiment involved two phases. During the first
phase (roughly ten mins) the robot followed a hand-coded
non-reactive behavior policy that alternated between driv-
ing forward until bumping, rotating counter clockwise in
free-space (not against the wall), and rotating away from the
wall after bump. Figure 1 shows a visualization of the non-
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Figure 2: A time-series plot of the surprise measure for the
Forward (top) and Rotation (bottom) GVFs. Both graphs
show the three phases of the experiment: 1) initial learning
under the non-reactive behavior, 2) learning under the cu-
rious behavior, and 3) learning after load was added to the
robot. Notice that during phase 1, a spike in rotation sur-
prise is present. This was the robot’s first rotation just after
bumping, which generates a novel current profile. A second
spike in surprise occurs after the load is added in phase 3.
The later spike is larger, but reduces faster because the robot
effectively modifies its behavior.

reactive behavior during the first phase of learning. Phase
one was interrupted after each GVF had learned to an ac-
ceptable level of accuracy, after which time the behavior was
switched to a curious behavior policy (described in 2). After
about two minutes, a 5 pound load was placed in the cargo
bay of the Create. The load had a significant effect on the
battery current draw, but was not heavy enough to affect the
robot’s ability to achieve the requested wheel velocity for
the drive forward actions.

Figure 2 shows the effect of the load on each GVF’s pre-
diction via the surprise measures. The forward GVF’s pre-
diction is largely unaffected by the load; the robot was un-
surprised. The rotation GVF’s pseudo reward was based on
current draw, and was therefore significantly affected as seen
in a substantial increase in surprise. The extra load generated
a clear and obvious change in the robot’s behavior. The first
time the curious behavior selected a counter-clockwise rota-
tion (after the load was added) a large increase in surprise
was produced. The increased surprise caused an extended
counter-clockwise rotation. When neither surprise measure
exceeds the threshold, the curious behavior will drives for-
ward, only occasionally executing rotations in free space.
The effect of the load produced a very distinctive and ex-
tended change in behavior. Figure 3 provides two quanti-
tative measures of how the actions were selected before the
load was added, during the surprise period, and after relearn-
ing. After several seconds of rotation the surprise for rotating
subsided below ⌧ , constant rotation ceased, and the behavior
returned to normal operation.

The experiment was repeated several times varying the
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Figure 3: The top figure shows which GVF policy is active
while the robot was under curious behavior control. The bot-
tom histogram shows the number of time steps on which
the rotation action was selected over the same time period.
The upper figure clearly shows that the robot continually se-
lected actions according to the rotate target policy after the
load was added (marked by the red bar), and then returned
to normal operation. The lower figure illustrates the same
phenomenon, and also shows the variability in the number
of rotations before the load was added to the robot.

lighting conditions, wall-clock duration of each phase, and
camera orientation. The increase in surprise and resultant be-
havior modification was reliably demonstrated each time.

Discussion
Our experiment was designed to highlight one way in which
the off-policy learning progress of multiple GVFs can influ-
ence control. We crafted the GVFs and introduced a change
that would be immediately detected, and would produce a
distinctive change in behavior (constant rotation). Although
limited, our demonstration is novel, and demonstrates a fun-
damental idea in a scalable way.

Surprisingly this work is the first demonstration of adap-
tive control for the behavior policy of an off-policy learning
system on a robot. All previous GVF learning systems used
non-adaptive behaviors (see Sutton et al 2010, Modayil et al
2012, White et al 2013). Typically intrinsically motived sys-
tems are segregated into two camps: 1) knowledge-driven
sequential task learning (Schmidhuber 1991, Oudeyer et al
2007), and 2) competence-driven option or subtask train-
ing (Singh et al 2005, Simsek and Barto 2006, Schembri
et al 2007). Our approach unifies these two approaches. A
GVF can be used to represent a prediction conditioned on a
fixed target policy (as used here) and encode an state-action-
value function used to learn a policy (learned with greedy-
GQ(�)). Therefore adapting behavior based-on GVF error
drives both predictive knowledge acquisition and improv-
ing competence. Finally, our work is the first to highlight
and demonstrate the role of surprise and curiosity in a non-

stationary setting.
The approach described here is small, but surprisingly

scalable. Consider an alternative approach to reacting to
change like following each target policy in sequence. The
robot might be learning thousands of different GVFs con-
ditioned on thousands of target polices, as in previous work
(White et al 2013). It would be infeasible to rely on sequenc-
ing target policies to efficiently detect and react to changes
when the number of GVFs is large.

Assuming any change to the robot’s world only affects a
subset of the GVFs, our approach to curiosity will provide
data to GVF’s that are capable of more learning. A more
general approach would be to learn the curious behavior
with reinforcement learning and a surprise-based reward. If
the behavior were generated via average reward actor critic,
then the robot could balance the needs of many GVFs in its
action selection without the restriction of following any tar-
get policy.

The approach explored here is the first step in exploring
the natural synergy between parallel off-policy learning and
curious behavior. Although surprise is useful for adapting
to non-stationarity, it can be usefully deployed for a wide
range of settings. Imagine a setting where new GVFs are
continually created over time. A curious behavior, in a sim-
ilar way to adapting to a perturbation, can adjust action se-
lection to provide relevant data for new GVFs. We focused
here on using curiosity after initial learning—each GVF had
been learned to high accuracy. Curiosity can also be used
during initial learning to avoid the inherent limitations of
hand-coded behaviors. Finally, what does an robot do when
its no-longer surprised or bored? Could a curious behavior
select actions in such a way to ready itself to react efficiently
to new perturbations or new GVFs? These questions are left
to future work.

Conclusion
This paper provides 1) the first measure of surprise based
on off-policy GVF learning progress, 2) the first investi-
gation of reactive behavior control with parallel gradient
TD learning and function approximation, and 3) the first
demonstration of using curiosity driven control to react to
non-stationarity—all on a mobile robot. The ability to deter-
mine which off-policy predictions are substantially inaccu-
rate, and modifying robot behavior online to improve learn-
ing efficiency is particularly important in large-scale, paral-
lel, off-policy learning systems.
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