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Abstract
In reinforcement learning, the notions of experi-
ence replay, and of planning as learning from re-
played experience, have long been used to find
good policies with minimal training data. Re-
play can be seen either as model-based reinforce-
ment learning, where the store of past experi-
ences serves as the model, or as a way to avoid
a conventional model of the environment alto-
gether. In this paper, we look more deeply at
how replay blurs the line between model-based
and model-free methods. First, we show for the
first time an exact equivalence between the se-
quence of value functions found by a model-
based policy-evaluation method and by a model-
free method with replay. Second, we present a
general replay method that can mimic a spectrum
of methods ranging from the explicitly model-
free (TD(0)) to the explicitly model-based (linear
Dyna). Finally, we use insights gained from these
relationships to design a new model-based rein-
forcement learning algorithm for linear function
approximation. This method, which we call for-
getful LSTD(λ), improves upon regular LSTD(λ)
because it extends more naturally to online con-
trol, and improves upon linear Dyna because it is
a multi-step method, enabling it to perform well
even in non-Markov problems or, equivalently,
in problems with significant function approxima-
tion.

1. Introduction
In reinforcement learning (RL) (Sutton & Barto, 1998;
Kaelbling et al., 1996; Szepesvári, 2009), value-function
based methods are traditionally divided into two categories:
model-free and model-based. Model-free, or direct, meth-
ods learn a value function directly from samples, from
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which a policy can be easily derived. By contrast, model-
based, or indirect, methods learn a model of the environ-
ment dynamics and derive a value function or policy from
the model using planning.

The distinction between model-free and model-based (and
similarly, learning and planning) is not always clear. For
example, with linear Dyna (Sutton et al., 2008) samples are
used to simultaneously update a value function and learn a
model. The model is then used to generate simulated sam-
ples to further improve the value function. Another exam-
ple are model-free methods that store observed samples for
reuse at a later time, like LSTD (Bradtke & Barto, 1996;
Boyan, 2002) or experience replay (Lin, 1992; Adam et al.,
2012). While such methods do not store an explicit tran-
sition model, they share many characteristics with model-
based methods, such as increased computational require-
ments and improved sample efficiency, which has led some
people to argue that a stored set of samples should also be
considered a model.

The distinction between model-free and model-based
methods is further blurred by the theoretical result that the
fixed point of a linear, least-squares model on a set of sam-
ples is the same as the LSTD solution of those samples
(Sutton et al., 2008; Parr et al., 2008). In practise, however,
the value function computed by a model-based method (at
any particular time) is different. This is partly because it
learns only an estimate of the least-squares model, and be-
cause, due to bounded computation per time step, its it-
erative planning process terminates before convergence is
reached.

In this paper, we show that the relation between model-free
and model-based methods runs even deeper. Specifically,
we show for the first time an exact equivalence between
the sequence of value functions found by a model-based
method and by a model-free method with replay.

The replay technique we use is different from the tradi-
tional way of doing replay as introduced by Lin (1992).
Rather than presenting old samples as new to the learn-
ing agent, we recompute the update targets of old samples
based on current information and redo the updates start-
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ing from the initial estimate. This has the advantage that
the order of samples remains intact and that it can be com-
bined with any update target, including the frequently used
λ-return (Sutton, 1988). Traditional replay prohibits this
because it interleaves new samples with old samples. We
present a general algorithm based on this replay technique
that can mimic a whole spectrum of other methods rang-
ing from model-free methods, like TD(0), to model-based
methods using a linear model, to anything in between.

Using a specific instantiation of our general replay method,
we derive a new method that can be interpreted both as a
variation on LSTD(λ) that gracefully forgets old informa-
tion and as a model-based method based on a multi-step
linear model. Inspired by the former interpretation, we call
this method forgetful LSTD(λ). Forgetting old information
is important in control tasks, where the policy changes over
time. On the other hand, multi-step models are key for ob-
taining robust model-based behaviour in problems with sig-
nificant function approximation, or similarly, state aggrega-
tion. This is not widely known, however, as evidenced by
a number of recent publications that conclude that learned
models appear to be fundamentally limited, based on ob-
served behaviour from a one-step model. We illustrate the
importance of multi-step models with a small experiment.

This paper is organized as follows. After introducing the
problem setting, we present our replay technique and show
that combining it with TD(0) is equivalent to planning
based on a learned linear model. We then present a general
replay algorithm that can mimic a whole range of model-
free and model-based methods. Finally, based on a specific
instantiation of this general replay algorithm, we derive for-
getful LSTD(λ).

2. Problem Setting and Notation
In this section, we present the main learning framework. In
addition, we define the learning function, which will play a
key role in this paper. As a convention, we indicate random
variables by capital letters (e.g., St, Rt), vectors by bold
letters (e.g., θ, φ), functions by lowercase letters (e.g., v),
and sets by calligraphic font (e.g., S, A).

2.1. Markov Reward Processes

We focus in this paper primarily on discrete-time Markov
reward processes (MRPs), which can be described as 4-
tuples of the form 〈S, p, r, γ〉, consisting of S, the set of
all states; p(s′|s), the transition probability function, giv-
ing for each state s ∈ S the probability of a transition to
state s′ ∈ S at the next step; r(s, s′), the reward function,
giving the expected reward after a transition from s to s′.
γ is the discount factor, specifying how future rewards are
weighted with respect to the immediate reward.

The return at time step t is the discounted sum of rewards
observed after time step t:

Gt =

∞∑
i=1

γi−1Rt+i .

The value-function v of an MRP maps each state s ∈ S to
the expected value of the return:

v(s) = E{Gt |St = s} .

We consider the case where the learner does not have ac-
cess to s directly, but can only observe a feature vector
φ(s) ∈ Rn. We estimate the value function using linear
function approximation, in which case the value of a state
is the inner product between the weight vector θ and a fea-
ture vector φ. In this case, the value of state s at time step
t is approximated by:

v̂t(s) = θ>t φ(s) .

As a shorthand, we will indicate φ(St), the feature vector
of the state visited at time step t, by φt.

A general model-free update rule for linear function ap-
proximation —inspired by stochastic gradient descent— is:

θt+1 = θt + α [Ut − θ>t φt]φt , (1)

where Ut, the update target, is some estimate of the ex-
pected return at time step t. There are many ways to con-
struct an update target. For example, the TD(0) update tar-
get is, indicated by G(1)

t , is:

G
(1)
t = Rt+1 + γθ>t φt+1 .

A generalization of this update target is the n-step return,
which is based on a feature vector observed n steps later in
time.

G
(n)
t =

n∑
i=1

γi−1Rt+i + γn θ>t φt+n .

The λ-return generalizes this further by taking a weighted
sum over n-step returns:

Gλt = (1− λ)

∞∑
n=1

λn−1G
(n)
t .

Note that for λ = 0, the λ-return reduces to the TD(0)
update target, while for λ = 1 it reduces to the full return.

It is often useful to extend the basic MRP definition with
the concept of terminal states. The interpretation of a ter-
minal state is that the return for the current episode is ter-
minated and the state is reset to the initial state (possi-
bly drawn from a fixed distribution), which starts a new
episode.
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The concept of terminal states can be modelled using a
state-dependent discount factor γ(s), that is equal to 0 if
the state s is a terminal state. Because we consider the sce-
nario where the learner does not have direct access to states,
we model terminal states using a time-dependent γ that is
produced by the environment, and observed by the learner
in addition to the reward and feature vector. When a ter-
minal state is reached, the learner is instantly transported
to the initial state and γ is set to 0. This way of modelling
episodic tasks makes that we can treat episodic tasks and
continuing tasks fully uniformly. Hence, the algorithms we
introduce will not explicitly consider episodes; they con-
sider time-dependent γ instead.

2.2. The Learning Function

The quality of a prediction algorithm, be it a model-free
or a model-based method, is determined by two distinct
aspects: its computational complexity (in terms of space
and time) and the weight vectors it computes. In this
paper, we formalize the latter by the learning function,
h, that outputs a weight vector, given a sample sequence
Ωt = {φ0, R1,φ1, . . . , Rt,φt} and a set of internal pa-
rameters. For example, for TD(0) the learning function
looks like:

θt = h(Ωt|α,θinit) ,

where α is the step-size parameter and θinit is the initial
value of the weight vector.

This definition allows us to talk about equivalence of algo-
rithms from the perspective of the value function. Algo-
rithms can have very different computational complexities,
but still have the same learning function.

This notion of equivalence has been around for a long time.
For example, it underlies the forward/backward view of el-
igibility traces (Sutton & Barto, 1998): the forward view
provides a conceptually simple learning method; while the
backward view provides an efficient implementation.

3. New Interpretation of Planning
In RL, the act of planning is typically thought of as looking
ahead. For example, the one-step linear model used by the
Dyna architecture gives, for an arbitrarily input feature vec-
tor, the expected next feature vector and reward. Planning
is thought of as exploiting this ability by performing an up-
date in the direction of the expected future reward and state
value. We introduce an alternative viewpoint that, rather
than interpreting planning as looking ahead, interprets it as
a re-evaluation of the past using current information. In
particular, we demonstrate that the one-step linear model
of Dyna can be interpreted both ways.

3.1. Planning by Re-Evaluating the Past

In this section, we illustrate the basic idea of re-evaluating
the past and we introduce a method based on this principle.

Consider a learning agent that performs regular TD(0) up-
dates at the first three time steps, starting from the initial
weight vector θ0:

θ1 = θ0 + α [R1 + γθ>0 φ1 − θ
>
0 φ0]φ0

θ2 = θ1 + α [R2 + γθ>1 φ2 − θ
>
1 φ1]φ1

θ3 = θ2 + α [R3 + γθ>2 φ3 − θ
>
2 φ2]φ2 .

Now consider that after performing these three updates,
the agent takes a moment to reflect upon the updates it
made. It would realize that the update targets — based on
θ>0 φ1,θ

>
1 φ2 and θ>2 φ3 — all use outdated weight vectors

with respect to its current weight vector θ3. Subsequently,
it could reason about how its current weight vector would
look like, if it had used θ3 from the start to construct the
update targets:

θ′1 = θ0 + α [R1 + γθ>3 φ1 − θ
>
0 φ0]φ0

θ′2 = θ′1 + α [R2 + γθ>3 φ2 − (θ′1)>φ1]φ1

θ′3 = θ′2 + α [R3 + γθ>3 φ3 − (θ′2)>φ2]φ2 .

It seems reasonable to assume that θ′3 is more accurate than
θ3, because it is constructed from update targets that use
a more recent weight vector. By that same reasoning, an
even better weight vector θ′′3 can be obtained, by replaying
the updates once more, now with update targets based on
θ′3 instead of θ3. This process can be repeated until the
weight vector converges or the budget of computation time
has ran out. Algorithm 1 shows an algorithm that performs
this form of re-evaluation at every time step.

Algorithm 1 Replaying TD(0) updates
INPUT: α, k,θinit
θ ← θinit
V ← ∅ // V is a list of observed samples
obtain initial φ
Loop:

obtain next feature vector φ′, γ and reward R
add (φ, R, γ,φ′) to V
Repeat k times:

θ∗ ← θ
θ ← θinit
For all (φ̇, Ṙ, γ̇, φ̇

′
) in V (from oldest to newest):

θ ← θ + α
[
Ṙ+ γ̇ θ>∗ φ̇

′
− θ>φ̇

]
φ̇

φ← φ′

Note that this form of replaying experience is different
from the traditional way, introduced by Lin (1992). In the
traditional way, previously observed samples are presented
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to the learning agent as new samples. By contrast, in Algo-
rithm 1, the replay is started from the initial weight vector
and the weight vector used for the update targets is fixed.
One advantage of this approach is that it can be applied
to any type of update target, including multi-step update
targets such as the λ-return. Traditional experience replay
cannot be combined with the λ-return (Sutton, 1988), be-
cause the λ-return requires an online sample sequence and
mixing old samples with new samples breaks this condi-
tion.

Obviously, Algorithm 1 is very inefficient when long sam-
ple sequences are involved: both memory and computa-
tion per time step increases linearly with the number of ob-
served samples. But we can now search for a more efficient
implementation with the same learning function. This leads
to a surprising result, as we show in the next section.

3.2. Relation to Linear Models

While on an abstract level, planning by looking ahead and
planning by re-evaluating the past appear to be opposite
approaches, there is a surprising relation when applied to
RL. We demonstrate this by rewriting the updates of Algo-
rithm 1 in terms of vectors and matrices.

Let {φ0, R1, γ1,φ1, . . . , Rt, γtφt} be the observed expe-
rience sequence at time t. In addition, let θ(t) be the result
of a single replay sweep over the t samples in V . Then, θ(t)
is incrementally defined by:

θ(i+1) = θ(i) + α [Ri+1 + γθ>∗ φi+1 − θ
>
(i)φi]φi ,

for 0 ≤ i < t and with θ(0) := θinit. This update can be
rewritten as:

θ(i+1) = (I−αφiφ
>
i )θ(i)+αφi

[
Ri+1+γφ>i+1θ∗

]
, (2)

where I is the identity matrix. Using (2), θ(1) can be writ-
ten as:

θ(1) = (I − αφ0φ
>
0 )θ(0) + αφ0R1 + αγφ0φ

>
1 θ∗

= b1 + F>1 θ∗ , (3)

where b1 is a vector of size n and F>1 is an n×nmatrix (the
transpose of a matrix F1—which we discuss later), defined
as:

b1 := (I − αφ0φ
>
0 )θ(0) + αφ0R1

F>1 := αγφ0φ
>
1 .

By writing down the update for θ(2) and substituting (3),

the following is obtained:

θ(2) = (I − αφ1φ
>
1 )θ(1) + αφ1

[
R2 + γφ>2 θ∗

]
= (I − αφ1φ

>
1 )b1 + (I − αφ1φ

>
1 )F>1 θ∗ +

+αφ1R2 + αγφ1φ
>
2 θ∗

]
= b2 + F>2 θ∗ ,

with

b2 := (I − αφ1φ
>
1 )b1 + αφ1R2

F>2 := (I − αφ1φ
>
1 )F>1 + αγφ1φ

>
2 .

By repeating this process up to time t, it follows that a sin-
gle iteration of the update sequence of Algorithm 1 can be
written as:

θ(t) = bt + F>t θ∗ , (4)

where F>t and bt are incrementally defined by:

bi+1 := (I − αφiφ
>
i )bi + αφiRi+1 (5)

F>i+1 := (I − αφiφ
>
i )F>i + αγφiφ

>
i+1 . (6)

for 1 ≤ i < t. Note that by initializing b0 = θinit and
F>0 = 0 (that is, F>0 is equal to an all-zero matrix), b1 and
F>1 can also be computed using these equations.

Equation (5) can be rewritten as:

bi+1 = bi + α
[
Ri+1 − b>i φi

]
φi . (7)

In addition, Equation (6) can be rewritten as an update for
F , resulting in:

Fi+1 =
[
(I − αφiφ

>
i )F>i + αγφiφ

>
i+1

]>
= Fi(I − αφiφ

>
i )> + αγφi+1φ

>
i

= Fi(I − αφiφ
>
i ) + αγφi+1φ

>
i

= Fi + α
[
γφi+1 − Fiφi

]
φ>i . (8)

Using equations (4), (7) and (8) Algorithm 2 can be con-
structed, which has the same learning function as Algo-
rithm 1, but a different computational complexity. Specif-
ically, the memory and computation per time step do not
increase with the number of observed samples.

The surprising part about Algorithm 2 is that it uses the
same one-step model, and model updates, as the Dyna ar-
chitecture (Sutton et al., 2008), which is based on the con-
cept of planning by looking ahead. This demonstrates that
planning by re-evaluating the past or planning by looking
ahead are just two different ways of looking at the same
phenomena.
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Algorithm 2 Planning with the linear Dyna model
INPUT: α, k,θinit
θ ← θinit // vector of size n
b← θinit // vector of size n
F ← 0 // n× n matrix
obtain initial φ
Loop:

obtain next feature vector φ′, γ and reward R
F ← F + α

[
γφ′ − Fφ

]
φ>

b← b+ α(R− b>φ)φ
Repeat k times:

θ ← b + F>θ
φ← φ′

4. General Planning by Replay
In this section, we generalize the replay algorithm intro-
duced in the previous section. In particular, we extend it to
arbitrary update targets. We also extend it to retain previ-
ous estimates to various degrees. This enables it to mimic
a whole spectrum of methods ranging from the simplest
model-free method, TD(0), to full model-based methods.

4.1. Generalized Algorithm

Algorithm 3 shows pseudo-code of a general method based
on planning by replay. It contains three sub-methods:
replay, compute targets and update weights.

The replay method takes as input a list of update targets and
a list of feature vectors, and computes a weight vector by
sequentially performing updates, starting from the initial
weight vector. Algorithm 4 shows an implementation for
use with linear function approximation.

The compute targets method computes a list of update tar-
gets. As input it uses a list of 〈reward, discount factor,
feature vector〉 tuples and a list of weight vectors. Each
weight vector corresponds with exactly one sample. Algo-
rithm 5 shows an example implementation that computes
1-step returns. However, any type of update target is possi-
ble. In the next section, we discuss the case where interim
λ-returns are computed.

The update weights method updates the weight vectors
used to construct the update targets. At time t, the agent
has visited t states whose value can be used in an update
target. The listW assigns to each of these visited states a
weight vector that will be used to determine its value. The
update weights method sets the weight vectors in W cor-
responding to the m most recent states equal to the current
weight vector.

The value of m determines whether the learning function
of Algorithm 3 behaves like that of a model-free or model-

based method — or something in between. More specifi-
cally, for m = 1 and k = 1 (and compute targets as in Al-
gorithm 5), the learning function of Algorithm 3 is equal to
that of TD(0). On the other hand, for m =∞, the learning
function is equal to that of Algorithm 2 (and of Algorithm
1). Using a value for m in between these two extremes will
result in learning functions with behaviour in between that
of TD(0) and a one-step model. Other weight update strate-
gies are also possible, but updating the weights for the most
recent states makes sense, because, due to the steps-size,
the values of older states have less impact on the current
weight vector.

Algorithm 3 General Planning by Replay
INPUT: θinit, α, k,m // k ∈ N+, m ∈ N+

θ ← θinit
Φ,Y,W,← ∅ // Φ,Y andW are lists
obtain initial φ
Loop:

obtain next feature vector φ′, γ and reward R
add φ to Φ; add 〈R, γ,φ′〉 to Y; add θ to W
Repeat k times:

W ← update weights(W,θ,m)
U ← compute targets(Y,W )
θ ← replay(Φ,U , α,θinit)

φ← φ′

Algorithm 4 replay (invoked at time t)
INPUT: Φ,U , α,θinit
OUTPUT: θ
// Φ = 〈φ1, . . . ,φt〉 : list of feature vectors
// U = 〈U1, . . . , Ut〉 : list of update targets

θ ← θinit
For i = 1 : t

θ ← θ + α(Ui − θ>φi)φi

Algorithm 5 compute targets (invoked at time t)
INPUT: Y,W
OUTPUT: U
// Y = 〈〈R1, γ1,φ

′
1〉, . . . , 〈Rt, γt,φ

′
t〉〉

// W = 〈w1, . . . ,wt〉: list of weight vectors
// U = 〈U1, . . . , Ut〉: list of update targets

For i = 1 : t
Ui ← Ri + γiw

>
i φ
′
i,

4.2. The Interim λ-return

The general advantage of replay is that the update target
of a visited state can be recomputed using new information
that was not available just after the state was visited. So
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Algorithm 6 update weights (invoked at time t)
INPUT:W,θ,m
OUTPUT:W ′
// W = (w1, . . . ,wt): list of weight vectors
// θ : current weight vector
// m ∈ N+

// W ′ = (w′1, . . . ,w
′
t): list of (updated) weight vectors

For i = 1 : t
if i > t−m :

w′i ← θ
else :

w′i ← wi

far, we just considered 1-step update targets and focussed
on using more accurate weight vectors in replay. Another
option is to use new samples to construct a more sophisti-
cated update target. For example, an increasing n-step re-
turn could be used, where n is kept equal to the difference
between the current time step and the time step the relevant
state was visited.

The interim λ-return generalizes the idea of an increas-
ing n-step return. It was recently introduced to derive an
improved version of TD(λ), called true online TD(λ) (van
Seijen & Sutton, 2014). The interim λ-return can be inter-
preted as a finite version of the regular λ-return. It uses at
most an n-step return in its weighted sum, with n equal to
the time difference between the current time step and the
time step the state for which the update target is computed
was visited.

To compute interim λ-returns, the update of Ui in Algo-
rithm 5 should be changed to:

Ui ← (1− λ)

t−i−1∑
n=1

λn−1G
(n)
i + λt−i−1G

(t−i)
i ,

with

Gi :=

n∑
j=1

Ri+j

j−1∏
k=1

γi+k + θ>i+nφi+n

n∏
k=1

γi+k .

With this update target and with k = 1 and m = 1, the
learning function of Algorithm 3 is equal to that of true
online TD(λ).

5. Forgetful LSTD(λ)
In this section, we introduce a new model-based algo-
rithm that combines a multi-step model, similar to the one
of LSTD(λ), with graceful forgetting, as occurs in linear
Dyna.

5.1. Derivation

When interim λ-returns are used as update targets and m
is set to∞, Algorithm 3 mimics a model-based version of
true online TD(λ). Rewriting the updates of this method in
terms of vectors and matrices (just as was done for Algo-
rithm 1 in Section 3.2) results in the following updates:

bi+1 =
(
I − αφiφ

>
i

)
bi + αei+1Ri+1 (9)

F>i+1 =
(
I − αφiφ

>
i

)
F>i

+αei+1[γtφi+1 − φi]> + αφiφ
>
i , (10)

with b0 = θinit and F>0 = 0, and

ei+1 =
(
I − αφiφ

>
i

)
γiλei + φi ,

with e0 = 0. Note that for λ = 0, ei+1 = φi and equations
(9) and (10) reduce to equations (5) and (6).

Equation (10) can be simplified by defining Ai := (I −
F>i )/α, and rewriting the update for F> as an update for
A:

(I − F>i+1)/α = I/α−
(
I − αφiφ

>
i

)
F>i /α

−ei+1[γi+1φi+1 − φi]> − φiφ
>
i

= (I − F>i )/α+ φiφ
>
i F
>
i

−ei+1[γi+1φi+1 − φi]> − φiφ
>
i

= (I − F>i )/α− φiφ
>
i (I − F>i )

−ei+1[γi+1φi+1 − φi]>

=
(
I − αφiφ

>
i

)(
I − F>i

)
/α

+ ei+1 [φi − γi+1φi+1]>

Ai+1 =
(
I − αφiφ

>
i

)
Ai

+ ei+1 [φi − γi+1φi+1]> .

Because F>0 = 0, A0 = (I − F>0 )/α = I/α. In addition,
we define di := bi/α to obtain the update:

di+1 =
(
I − αφiφ

>
i

)
di + ei+1Ri+1 ,

with d0 = θinit/α. Finally, Equation (4) can be rewritten
in terms of At and dt:

θ(t) = bt + F>t θ∗

= αdt + (I − αAt)θ∗
= θ∗ + α(dt −Atθ∗) .

The method implementing these updates is shown in Al-
gorithm 7. We added two generalizations: we allow the
matrix A and vector d to be initialized randomly, and we
allow the step-size used in the update of the model to be
different than the step-size used in the planning updates.
The former, we indicate by β; the latter by α. The rea-
son for making this distinction is that α and β influence
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the learning function is very different ways. The parame-
ter β is a forgetting parameter that determines how easily
old information is overwritten by new information. It di-
rectly influences the model and hence the fixed point. On
the other hand, α is a parameter that influences the iterative
process for finding this fixed point. Its value determines if,
and how quickly, this process converges.

We call this method forgetful LSTD(λ) for obvious rea-
sons: when the forgetting parameter β is set equal to 0, and
Ainit = 0 and dinit = 0, the model 〈At,dt〉 reduces to
the model learned by LSTD(λ) (Boyan, 2002). With these
settings, the learning function of forgetful LSTD(λ) cannot
be reproduced by the replay method (Algorithm 3). Forget-
ful LSTD(λ) is a special case of the replay method only if
β = α, Ainit = I/α and dinit = θinit/α. Note as well
that LSTD(λ) traditionally solves the model using the in-
verse of At, whereas Algorithm 7 uses an iterative process.
While in principle these techniques can be interchanged,
an iterative process offers more flexibility and control over
computation time, which is important in an online setting.

Algorithm 7 Forgetful LSTD(λ)
INPUT: α, β, λ, k,θinit,dinit, Ainit
// For replay-equivalence, use:
// β ← α, Ainit ← I/α, dinit ← θinit/α
θ ← θinit, d← dinit, A← Ainit
obtain initial φ
e← 0
Loop:

obtain next feature vector φ′,γ and reward R
e← (I − βφφ>)e+ φ
A← (I − βφφ>)A+ e(φ− γφ′)>
d← (I − βφφ>)d+ eR
e← γλe
Repeat k times:

θ ← θ + α(d−Aθ)
φ← φ′

5.2. Computational Considerations

First, we consider the time complexity for learning the
model. While the update of d in Algorithm 7 is expressed
in terms of matrices, it can simply be changed to an up-
date that only involves vectors by using (I − αφφ>)d =
d−αφ(φ>d). Hence, the cost of this update is onlyO(n),
with n the total number of features. A similar argument
holds for b. The update of A is more expensive. Using
sparse feature vectors, its cost is O(nm), where m is the
number of active features, that is, the number of non-zero
elements of a feature vector.

The planning updates of Algorithm 7 have a time complex-
ity of O(n2k) per time step, which is considerably more
than the cost for learning the model. However, there are

many different iterative techniques that can be used to es-
timate the solution of A and d. For example, at each it-
eration, only a single feature can be updated, as is done
in iLSTD (Geramifard et al., 2006). In this case, the time
complexity reduces to O(nk). Using this strategy while
setting k equal to m results in a total time complexity (for
learning plus planning) of O(nm) per time step.

The memory required for storing the model depends on the
sparsity of A. In the worst case, the memory requirements
are O(n2).

5.3. Extension to Control

One of the main advantages of having a prediction method
that gracefully forgets old information when new informa-
tion comes in is that such predictions are well suited for
control. In control tasks, forgetting is vital, because the
policy changes over time. Hence, old samples are no longer
representative for the current policy and can inhibit policy
improvement when maintained in the model.

Forgetful LSTD(λ) can be turned into a control method
with minimal modification. Simply using feature vectors
based on state-action pairs, φt = φ(St, At), instead of
only states is sufficient; the same update rules can be used.
With these features, values can be computed that predict
the return for separate actions in a state (i.e., the Q-values),
which can then be used for any exploration strategy, for
example ε-greedy or some softmax selection strategy. Ap-
plying this strategy to forgetful LSTD(λ) results in an on-
policy control method that we call LS-Sarsa(λ).

5.4. Mountain Car Experiment

To demonstrate the importance of a multi-step models, we
performed a comparison on the mountain car task (Sutton
& Barto, 1998), in which an underpowered car has has to
move itself out of a valley. 1 Our mountain car task imple-
mentation is as described by Sutton and Barto (1998), but
we made the domain more challenging by using coarser tile
coding: 3 tilings, each consisting of 3-by-3 tiles.

The learning methods used are LS-Sarsa(λ) with λ = 0 and
λ = 0.95. We used α = 0.01/3 , k = 1 and θinit = 0, and
ε-greedy exploration with ε = 0.01. In addition, we used
the settings β = α, dinit = θinit/α and Ainit = I/α. At
these settings, LS-Sarsa(0) reduces to the on-policy control
version of Algorithm 2, based on the linear Dyna model.

In our experiments, we measured the number of steps to
the end of an episode for the first 2000 episodes, averaged
over 100 independent runs. We set the maximum length
of an episode at 10,000 steps. Figure 1 shows the results.

1The code for this experiment can be found on
https://github.com/vanseijen/singlestep-vs-multistep.
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Note that the graph of linear Dyna contains performance
jumps with a size of roughly 100 steps, which corresponds
with 1 run out of the 100 runs hitting the 10,000 steps limit.
This illustrates very clearly the stability issues that one-step
models can cause.2
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Figure 1. Illustration of the importance of multi-step models. The
figure shows the steps per episode on the mountain car control
task using three 3-by-3 tilings for LS-Sarsa(λ) with λ = 0, for
which the algorithm reduces to on-policy linear Dyna, and λ =
0.95. The graphs are averaged over 100 independent runs.

6. Related Work
The replay strategy described in Section 3.1 has been pre-
viously mentioned in the context of best-match learning
(van Seijen et al., 2011). In best-match learning it is used
to combine a partial, tabular model with a model-free, tab-
ular value function in a principled way. We use it here to
derive an equivalence relation between model-free updates
with linear function approximation and model-based learn-
ing based on a linear model. In addition, we show that the
replay strategy can be combined with multi-step update tar-
gets.

The importance of multi-step models for obtaining robust
performance in problems with state aggregation was first
observed by Sutton (1995). The idea of a multi-step model
was extended to problems that use linear function approx-
imation by Yao et. at. (Yao et al., 2009). However,
their multi-step model is constructed by learning a one-step
model and iterating this model a number of times. While
this approach captures some aspects of multi-step models,
it fails to capture the important robustness aspect because
at its core it still learns a one-step model.

Least-squares policy iteration (LSPI) (Lagoudakis & Parr,

2We performed additional experiments using other step-sizes,
but in none of these experiments did the performance of LS-
Sarsa(0) come close to that of LS-Sarsa(λ).

2003) is another control method related to LSTD. LSPI
computes an optimal control policy given a set a samples
and an initial policy. It achieves this by repeatedly perform-
ing LSTD-like evaluations of its current policy, combined
with greedy policy improvements, until the policy has con-
verged. LSPI is an off-policy method based on a one-step
model/one-step update targets; by contrast, LS-Sarsa(λ) is
an on-policy method based on a multi-step model/multi-
step update targets.

7. Future Work
While we focussed only on linear function approximation,
the ideas naturally extend to non-linear function approx-
imation. It simply requires a new implementation of the
replay method (Algorithm 4), such that it is based on the
update for non-linear function approximation,

θt+1 = θt + α [ut − v̂(St,θt)]∇θt v̂(St,θt) ,

as well as a new implementation of the compute targets
method.

Another interesting research direction is to look at differ-
ent versions of the update weights method (Algorithm 6).
Different versions of this method correspond with different
types of partial models. For example, only specific features
could be updated. Using partial models not only reduces
the compute time, but also the memory requirements.

8. Conclusion
We showed that there is a close relation between replay-
ing experience and exploiting a model. Specifically, we
showed that there are instances where replaying the past
results in the same learning function as planning with a
learned model. This insight challenges the traditional view
on planning and can be used to derive new model-based
methods. We demonstrated this by deriving a model-based
method, forgetful LSTD(λ), that combines a multi-step
model with graceful forgetting. To demonstrate the im-
portance of multi-step models we applied this method to
a small control problem with substantial function approxi-
mation. Whereas using a multi-step model resulted in fast
convergence, the method using a one-step model failed to
perform consistently.
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