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Abstract. This paper examines whether temporal difference methods for training connectionist networks, such 
as Sutton's TD(X) algorithm, can be successfully applied to complex real-world problems. A number of important 
practical issues are identified and discussed from a general theoretical perspective. These practical issues are then 
examined in the context of a case study in which TD(X) is applied to learning the game of backgammon from 
the outcome of self-play. This is apparently the first application of this algorithm to a complex non-trivial task. 
It is found that, with zero knowledge built in, the network is able to learn from scratch to play the entire game 
at a fairly strong intermediate level of performance, which is clearly better than conventional commercial programs, 
and which in fact surpasses comparable networks trained on a massive human expert data set. This indicates 
that TD learning may work better in practice than one would expect based on current theory, and it suggests 
that further analysis of TD methods, as well as applications in other complex domains, may be worth investigating. 
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1. I n t r o d u c t i o n  

One of the most  fascinating and challenging paradigms of traditional machine learning re- 

search is the delayed reinforcement learning paradigm. In the simplest form of this paradigm, 
the learning system passively observes a temporal sequence of input states that eventually 
leads to a final reinforcement or reward signal (usually a scalar). The learning system's 
task in this case is to predict  expected reward given an observation of an input state or 
sequence of  input states. The system may also be set up so that it can generate control 

signals that influence the sequence of states. In this case the learning task is usually to 
generate the optimal control signals that will  lead to maximum reinforcement. 

Delayed reinforcement learning is difficult for two reasons. First ,  there is no explicit 
teacher signal that indicates the correct output at each time step. Second, the temporal 
delay of  the reward signal implies that the learning system must solve a temporal credit 
assignment problem, i.e., must apportion credit and blame to each of the states and actions 
that resulted in the final outcome of  the sequence. 

Despite these difficulties, delayed reinforcement learning has attracted considerable inter- 
est for many years in the machine learning community. The notion of a learning system 
interacting with an environment and learning to perform a task solely from the outcome 
of  its experience in the environment is very intellectually appealing. It could also have 
numerous practical applications in areas such as manufacturing process control, navigation 
and path planning, and trading in financial markets. 

One possible approach to temporal credit  assignment is to base the apportionment of 
credit on the difference between temporally successive predictions. Algori thms using this 

approach have been termed "temporal  difference" methods in Sutton (1988), and have been 
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studied for many years in a variety of contexts. Examples include Samuel's checkers pro- 
gram (Samuel, 1959) and Holland's bucket brigade algorithm (Holland, 1986). An incremen- 
tal real-time algorithm called TD(~) has been proposed in Sutton (1988) for adjusting the 
weights in a connectionist network. It has the following form: 

t 

Awt = °t(Pt+l -- Pt) ~ ht-kVwPk (1) 
k = l  

where Pt is the network's output upon observation of input pattern xt at time t, w is the 
vector of weights that parameterizes the network, and VwP~ , is the gradient of network out- 
put with respect to weights. Equation 1 basically couples a temporal difference method 
for temporal credit assignment with a gradient-descent method for structural credit assign- 
ment. Many supervised learning procedures use gradient-descent methods to optimize net- 
work structures; for example, the back-propagation learning procedure (Rumelhart, et al., 
1986) uses gradient-descent to optimize the weights in a feed-forward multilayer perceptron. 
Equation 1 provides a way to adapt such supervised learning procedures to solve temporal 
credit assignment problems. (An interesting open question is whether more complex super- 
vised learning procedures, such as those that dynamically add nodes or connections during 
training, could be adapted to do temporal credit assignment.) 

It can be shown that the case k = 1 corresponds to an explicit supervised pairing of 
each input pattern xt with the final reward signal z. Similarly, the case k = 0 corresponds 
to an explicit pairing of xt with the next prediction Pt+I" The parameter ), provides a 
smooth heuristic interpolation between these two limits. 

Sutton provides a number of intuitive arguments why TD(X) should be a more efficient 
learning procedure than explicit supervised pairing of input states with final reward. A 
rigorous proof is also given that TD(0) converges to the optimal predictions for a linear 
network and a linearly independent set of input patterns. This proof has recently been ex- 
tended to arbitrary values of), in Dayan (1992). However, no theoretical or empirical results 
are available for more complex tasks requiring multilayer networks, although a related algo- 
rithm called the Adaptive Heuristic Critic (Sutton, 1984) has been successfully applied 
to a relatively small-scale cart-pole balancing problem (Barto, Sutton & Anderson, 1983; 
Anderson, 1987). 

The present paper seeks to determine whether temporal difference learning procedures 
such as TD(X) can be applied to complex, real-world problem domains. The paper ap- 
proaches this question from two perspectives. First, section 2 identifies a number of impor- 
tant practical issues and discusses them in the context of the current theoretical understand- 
ing of TD(X). Some of the issues are familiar to connectionist researchers who have been 
studying real-world applications of supervised learning procedures. Other issues are novel 
and more complex than those that arise in supervised learning. Next, section 3 examines 
these issues in the context of a specific application: learning backgammon strategy from 
the outcome of self-play. This application was selected because of its complexity and sto- 
chastic nature, and because detailed comparisons can be made with the alternative approach 
of supervised learning from expert examples (Tesauro, 1990). We shall see that, despite 
a number of potentially serious theoretical and practical problems, the TD approach works 
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amazingly well. With zero built-in knowledge (apart from the rules), networks are able 
to learn to play a fairly strong intermediate-level game. The level of performance achieved 
not only exceeds conventional commercial programs, but perhaps more surprisingly, it also 
surpasses what can be achieved by supervised training on a massive data base of human 
expert examples. The final section discusses the implications of these results for more general 
practical applications, and suggests a number of directions for further research. 

2. Practical issues in TD learning 

2.1. Task-dependent considerations 

Learning to predict and control simultaneously: A number of important practical issues 
in TD learning have to do with the exact nature of the task to be learned. For example, 
is the task purely a prediction task, or is it a combined prediction-control task? The latter 
is more representative of typical real-world problems, but is also presumably more difficult. 
The issue of simultaneously learning to predict and learning to control was not addressed 
in Sutton (1988), and may lie outside the scope of the TD(X) algorithm. It might be necessary 
to train a separate controller network with a different algorithm while the predictor network 
is learning with the TD algorithm. Alternatively, one can imagine some tasks in which 
the output of the predictor could be used to select the control action, for example, by choosing 
the state with maximum expected reward. In either case it is not known whether the com- 
bined learning system would converge at all, and if so, whether it would converge to the 
optimal predictor/controller. It might be possible for the system to get stuck in a self- 
consistent but non-optimal predictor/controller. 

Stationary vs. changing tasks: Another important issue is whether the task is stationary 
or changes over time. Also, even for fixed tasks, it is possible that the distribution of input 
patterns might change over time. In either case one would want the network to continually 
adapt in real time to changing conditions. However, there are presumably trade-offs between 
accuracy of learning and ability to respond to changing conditions. Such trade-offs have 
been extensively analyzed for the Widrow-Hoff LMS rule (Widrow, 1976), but have not 
been analyzed for TD learning. 

Markovian vs. non-Markovian tasks: Another important issue is whether the transi- 
tions from state to state are Markovian, i.e., depend only on the current state, or whether 
they also depend on the history of previous states. The analysis in Sutton (1988) is only 
for Markovian processes, as it is pointed out that any non-Markovian process can be in- 
cluded within this framework by receding the current state information so that it also con- 
tains all relevant information from previous states. However, in practice, this may make 
the input space so large and complex that the learning algorithm wouldn't work very well. 

Multiple outcomes: The simplest types of reinforcement tasks are characterized by a 
binary reward signal (e.g., a success/failure signal), but more general and more complex 
tasks may have many different possible outcomes. The way in which these outcomes are 
represented in the network may be just as important as the way in which the inputs are 
represented. Moreover, some of the outcomes may have a much lower likelihood of occur- 
ring than other outcomes, and one might expect that such rarely occurring outcomes would 
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be harder to learn. In this case, one might need special techniques analogous to those used 
in pattern classification tasks when some of the classes have a much lower probability of 
occurring than other classes. 

Noisy environment: A final issue is whether the environment is noisy or deterministic. 
Noise may appear, for example, in the rules which govern transitions from state to state, 
and in the final reward signal given at the terminal states. An important consideration which 
we examine in more detail below is the volatility of the stochastic environment, i.e., the 
step-to-step variance in expected reward. We shall see that learning is more difficult in 
highly volatile environments, and that a natural way to approach learning in such environ- 
ments is with a look-ahead process akin to search or planning. Noise may also enter into 
the representation of input patterns seen by the network. This was not addressed by Sutton, 
and it is not known to what extent such noise degrades the learning performance. 

2.2. Algorithmic considerations 

Parameter tuning: As in other connectionist learning procedures, the TD(k) algorithm 
has a number of adjustable parameters that have to be heuristically tuned for a given net- 
work and task. The main parameters are the learning rate ~, and of course, k itself. Ideally, 
one might want not just a fixed constant value of each parameter, but a schedule for varying 
the parameter value as a function of learning time. For example, when training a network 
on a stationary task, one probably needs a schedule for reducing the learning rate analogous 
to the 1/t schedules known in the stochastic approximation literature (Robbins & Monro, 
1951). Also, a schedule for k may be useful. Setting k to a large value early in learning 
might help the network get off the ground quickly, while later in learning, when the predic- 
tions become more accurate, it might be better to use smaller values of k. 

Convergence: As stated previously, convergence of TD(X) has only been proved for linear 
networks and linearly independent sets of input patterns. In the more general case, the 
algorithm may not converge even to a locally optimal solution, let alone to a globally op- 
timal solution. 

Scaling issues: Scaling considerations are often of critical importance in successful prac- 
tical applications of network learning procedures. No results are available to indicate how 
the speed and quality of TD learning will scale with the temporal length of sequences to 
be learned, the dimensionality of the input space, or the dimensionality of the network 
(as measured, for example, by the number of weights or by the VC dimension (Vapnik 
& Chervonenkis, 1971)). Intuitively it seems likely that the required training time might 
increase very dramatically, possibly exponentially, with the sequence length. The training 
time might also scale poorly with the network or input space dimension, e.g., due to in- 
creased sensitivity to noise in the teacher signal. (In contrast, with perfect teacher infor- 
mation, we might expect the required number of training sequences to scale roughly linearly 
with the network's VC dimension (Blumer, et al., 1989)). Another potential problem is 
that the quality of solution found by gradient-descent learning relative to the globally opti- 
mal solution might get progressively worse with increasing network size. 

Overtraining and overfitting: One potential advantage of the TD approach is that, unlike 
most applications of supervised learning, a fixed data set is not used. Instead, training takes 

36 



TEMPORAL DIFFERENCE LEARNING 261 

place on-line using patterns generated de novo. One might hope that in this situation, per- 
formance would always improve monotonically with increasing training time, i.e., overtrain- 
ing would not occur. One might also hope that one could always improve the performance 
of the TD nets by adding more and more hidden units to the network, i.e., overfitting would 
not occur. 

Both overtraining and overfitting may occur, however, if the error function minimized 
during training does not correspond to the performance function that the user cares about. 
For example, the performance that one cares about for a game-playing network is not how 
accurately it estimates the probability of winning in a given position, but rather its ability 
to select good moves. It may be the case that the network could produce fairly accurate 
predictions but not select very good moves. One would especially expect this to be true 
for games in which the best move is only slightly better than other alternatives. On the 
other hand, if the network has large errors in the absolute accuracy of its predictions, it 
coulc~ still be able to select good moves. This is because, as discussed in Christensen and 
Korf  (1986), and Utgoff and Clouse (1991), a heuristic evaluation function need not exactly 
represent the true values of states for correct move selection. Instead, it only needs to have 
the correct sign for the slope between pairs of points in order to make correct state prefer- 
ences. There may be many such functions, with widely varying degrees of  prediction accu- 
racy. A simple example illustrating this is shown in table 1. Overtraining and overfitting 
might also occur if the distribution of input training and testing patterns are different. For 
example, the game-playing network might be trained on its own play, but have to perform 
against other players. The differing styles of play would lead to different distributions of 
input patterns. 

Inc remen ta l  learning:  A nice feature of TD(X) is that the weights can be updated in a 
fully incremental fashion. It is not necessary to wait until the end of the sequence to com- 
pute the weight change at a given time step. However, this may not be strictly necessary 
in practical implementations. Modern workstations have enough memory to store the entire 
sequence of input and output patterns, even for fairly large problems, as long as the se- 
quences terminate in a reasonable amount of time. I f  the sequence is so long that it cannot 
be stored, the algorithm may not be able to learn the task in any case. Thus one could 
imagine other algorithms that give improved performance at the price of  sacrificing the 
fully incremental nature of TD(X). 

Table 1. An example showing the difference between a good 
predictor and a good move selector. 

Move True Prob .  Network #1 Network #2 

A 0.846 0.842 0.719 

B 0.840 0.843 0.621 

The network must choose either move A or move B. The true 
probabilities of winning are 0.846 and 0.840 respectively. Net- 
work #1 makes highly accurate estimates of the probabilities of 
winning, but selects the wrong move. Network #2's estimates 
have large errors, but it picks the right move. 
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2.3. Representational issues 

The way in which the input and output data are represented in multilayer connectionist 
networks has been found to be one of the most important factors in successful practical 
applications of supervised learning procedures. Such representational issues are likely to 
be equally important in practical applications of temporal difference learning. It is useful 
to distinguish between two basic kinds of representations: (a) lookup table representations, 
in which the network has enough adjustable parameters to explicitly store the correct out- 
put for every possible state in the input state space; and (b) compact representations, in 
which the number of adjustable parameters is much less than the number of states in the 
state space, and the network therefore has to capture the underlying regularity of the task. 

In Sutton (1988), the TD(X) algorithm is discussed only in terms of lookup table repre- 
sentations. However, the way in which TD learning works for lookup table representations 
is likely to be completely different from the way it works for compact representations. With 
lookup table representations, it is clear that the network has no way to estimate the predicted 
outcome of a particular state unless it has actually observed the state. Thus in order for 
the network to learn the entire function, it has to observe every possible state in the state 
space. In fact, Sutton's convergence theorem requires every possible state to be visited infi- 
nitely many times in order to guarantee convergence. This will clearly be intractable for 
real-world problems. Even if the state space is discrete, the number of possible states is 
likely to be so large that there is neither sufficient storage capacity to store the lookup 
table, not sufficient time to visit all possible states. 

On the other hand, with compact representations, it might be possible to learn complex 
tasks in high-dimensional spaces reasonably well. After observing an infinitesimal fraction 
of all possible states, the network might be able to find a solution that generalizes acceptably 
for states not seen during training. Thus we can see that the ability of compact networks 
to generalize provides an ability to tackle otherwise intractable problems. However, there 
are also a number of limitations to the generalization capability of compact networks. For 
example, if the task is complex, a network with a limited number of hidden units might not 
have enough structural complexity to exactly represent the task. Also, the gradient-descent 
method of assigning structural credit within the network can only find local optima, not 
global optima. Such factors will limit the effectiveness of TD learning in complex domains. 

2.4. Volatility limit 

Let us examine equation 1 in more detail. Note that for any given input state xt, there is 
a true expected outcome 0t associated with that state, and Pt is the network's estimate of 
Or. If we had access to the values of 0t we could use them to do back-propagation learning 
on the input-output pairs (xt, Ot ). But in TD learning 0t is not available. Instead, note that 
the next prediction Pt+l is used in a role analogous to 0, in back-propagation. The network 
output Pt is being driven toward Pt+a, and no learning takes place when Pt = Pt-+ It 
should be intuitively clear that in TD learning, Pt+l is being used as a heuristic stochastic 
estimator of the true expected outcome 0t. It should also be clear that the learning algo- 
rithm will only make progress when P~+~ is a more accurate stochastic estimator of 0, than 
P~ is. 
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There are a number of reasons why Pt+l might not be a more accurate stochastic esti- 
mator of Ot than Pt is. One possibility comes from the fact that the network has to gener- 
alize in any practical problem, as discussed previously. The network's generalizations for 
states near the end of the sequence may well be less accurate than for states far from the end. 

Another reason why Pt+l may fail to be a more accurate estimator of 0 t is due to volatility 
in the environment. As learning progresses, Pt approaches Or, while Pt+l approaches Ot+l. 
Now in highly volatile environments, Ot+~ may vary significantly from Or. It is true that 
the average value over all possible states that can evolve from x t is given by (0~+1) = Or, 
but we must remember that the network does not get to see infinitely many evolutions from 
xt. In a typical complex problem, the network will only see x t once, and thus only one 
state following xt. If  the value ofxt+~ has little to do with the value ofxt due to high volatil- 
ity, then Pt+~ may be a poor estimator of Or. Furthermore in some problems it could be 
the case that volatility increases with time, so that states near the end of the sequence are 
more volatile than earlier states. This would provide a further limitation on the ability of 
Pt+~ to estimate Ot more accurately than Pt. 

A natural way to try to overcome limitations due to volatility of the environment is to 
allow multiple evolutions from a given state, i.e., for each observed xt, reset the state to 
xt many times and let the stochastic process generate a distribution of successor states xt÷~ 
with average expected reward (Pt+~). The error signal at each time step would then be 
proportional to (Pt+~) - Pt. The multiple samples would provide an estimate of (Or+ ~), 
which, as stated previously, should equal Or. If  the temporal evolution at each step is gov- 
erned by a stochastic process with a small number of possible outcomes (such as flipping 
a coin or rolling dice), one could explicitly compute an average over all possible outcomes. 

3o A case study: TD learning of backgammon strategy 

We have seen that current theory provides little indication of how TD(X) will work in prac- 
tice. In the absence of theoretical guidance, we now empirically examine the previously 
discussed practical issues within the context of a specific application: learning to play the 
game of backgammon from the outcome of self-play. Complex board games such as checkers, 
chess, Othello and backgammon have been widely studied as testing grounds for various 
machine learning procedures (Samuel, 1959; Samuel, 1967; Griffith, 1974; Quinlan, 1983; 
Mitchell, 1984; Frey, 1986; Christensen & Korf, 1986; Lee & Mahajan, 1988; Tesauro 
& Sejnowski, 1989; Tesauro, 1990). Several of these studies have employed temporal dif- 
ference learning methods. 

Unlike checkers, chess, and Othello, backgammon is a nondeterministic game in which 
the players take turns rolling dice and moving their pieces around the board as allowed 
by the dice roll. The first player to move all of his pieces around and off the board wins 
the game. The game is complicated because it is possible to "hit" opponent pieces and 
send them to the far end of the board, and to form blocking configurations that impede 
the forward movement of opponent pieces. These facts lead to a number of subtle and com- 
plex strategies and tactics at the highest levels of play (Magriel, 1976). 

Backgammon offers a number of attractive features as a test vehicle for TD learning 
approaches. Due to the stochastic dice rolls, the evolution of board states during the course 
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of a backgammon game can be characterized as an absorbing Markov process, in which 
the initial state is always a unique starting configuration, and in which the subsequent tran- 
sitions proceed randomly, depending only on current state information, until a well-defined 
terminal state is reached, characterized by one side having all its pieces off the board. This 
is precisely the type of situation for which TD(X) was designed. Playing the game at expert 
level involves considerable complexity, but it has been demonstrated (Berliner, 1979; Tesauro 
& Sejnowski, 1989) that much of this complexity can be captured in a static evaluation 
function and does not require deep look-ahead searches. This means that a feed-forward 
neural network could learn a static evaluation function that would play well without search, 
and that the quality of learning can be directly assessed by measuring game performance. 
(In contrast, the performance of a search-based program depends on both the quality of 
the evaluation function and the power of the search procedure.) Finally, it is possible to 
make a detailed comparison of TD learning with the alternative approach of supervised 
learning from expert examples (Tesauro, 1990). This is important for general practical appli- 
cations, because in order for TD learning to be successful in the real world, it not only 
has to work well on hard problems, but it also has to be competitive with other approaches 
such as supervised learning. 

It seems reasonable that, by watching two fixed opponents play out a large number of 
games against each other, a network could learn by TD methods to predict the expected 
outcome of any given board position. In addition to estimating expected outcome, such 
a network could also be used for move selection by generating all legal moves in a given 
position and picking the move with the maximum expected outcome. A more interesting 
learning question, however, is whether the network could learn from the outcome of its 
own play. As the network learns, its control strategy changes, and thus the distribution 
of input patterns and final rewards would also change. This is the type of learning that 
will be examined in this section, even though it is not clear a priori that such a learning 
system would converge to a sensible solution. 

3.1. Set-up of the learning system 

The TD(X) algorithm can be applied to backgammon in the following straightforward way: 
a network is set up to observe a sequence of board positions xl, x2, . . . ,  xf, resulting in 
a final reward signal z. In the simplest case the reward signal is z = 1 if White wins and 
z = 0 if Black wins. In this case the network's output Pt is an estimate of White's proba- 
bility of winning from board position xt. The sequence of board positions is generated by 
setting up an initial configuration, and making plays for both sides using the network's 
output as an evaluation function. In other words, the move selected at each time step is 
the move that maximizes Pt when White is to play and minimizes Pt when Black is to play. 

A critical factor in the overall performance of the learning system is the representation 
scheme used to encode the input board description. It is well known in computer games 
research that significantly higher levels of performance can be achieved if the board state 
is described using "features" relevant to good play, as opposed to a "raw" board descrip- 
tion. In the experiments reported here, however, the input encoding schemes only contained 
simple encodings of the raw board information (the number of White or Black men at each 
location) and did not utilize any additional pre-computed features. 
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Since the input encoding scheme contains no built-in knowledge about useful features, 
and since the network only observes its own play, we may say that this is a "knowledge- 
free" approach to learning backgammon. Such an approach is interesting because it is not 
clear that it can make any progress at all beyond its starting state, which for a network 
with random initial weights is a random move selector. The zero-knowledge approach also 
provides an important baseline for judging other approaches using various forms of built-in 
knowledge. 

The approach described above is similar in spirit to Samuel's approach to learning checkers 
from self-play, but in several ways it is a more challenging learning task. One important 
difference is that Samuel's board description was in terms of a number of hand-crafted 
features, several of which were designed in consultations with human checkers experts. 
However, the networks studied here use only a raw board description and had no knowledge 
built into the input features. The evaluation function learned in Samuel's study was a linear 
function of the input variables, whereas multilayer networks learn more complex nonlinear 
functions. Also, the final reward signal in backgammon is noisy due to the dice rolls; this 
presumably makes the learning task more difficult than in noise-free games such as checkers. 
The branching ratios in backgammon are so large that look-ahead methods cannot be em- 
ployed, whereas Samuel used search both in move selection and in calculation of the learn- 
ing algorithm's error signal. Finally, Samuel found that it was necessary to give the learning 
system at least one fixed intermediate goal, material advantage, as well as the ultimate goal 
of the game. The proposed backgammon learning system has no such intermediate goals. 

3.2. Learning disengaged bearoff strategy 

Like many other games, the full complexity of backgammon is greatly simplified in certain 
special situations. For example, finding good moves in racing situations, in which hitting 
and blocking are not possible, is considerably easier than in fully engaged positions, in 
which hitting and blocking are possible. The first TD experiments we shall examine are 
designed to learn the case of disengaged bearoff positions, in which both sides have all 
of their men in the their home quadrant and can remove them from the board. This is 
an exceedingly simple situation because there is a simple yet strong heuristic for correct 
play: always select the move that takes the maximum number of pieces off the board. This 
principle is only violated in certain rare situations. If the principle does not uniquely deter- 
mine a move, a secondary consideration is to distribute the remaining men as smoothly 
as possible; this usually determines the best move. (An interesting exception to this rule 
is discussed in Berliner (1977).) 

Another advantage of studying this situation is that it can be solved essentially exactly 
by conventional algorithms (Berliner, 1977; Zadeh, 1977). For each of the approximately 
54,000 possible bearoff configurations for a given side, one can recursively compute and 
store in a table the exact probability of removing all men on one roll, two rolls, three rolls, 
etc.. One can then use this information to compute the exact probability that either side 
will win. Thus, in addition to comparisons with supervised learning of expert examples, 
one can also compare the results of TD learning with the exact optimal move choices and 
probabilities of winning. 
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The networks trained on this task had 16 units to encode the board description: 6 units 
to encode the number of Black men at locations 1-6, 6 units to encode the number of White 
men at locations 19-24, 2 units to encode the number of White and Black men off the 
board, and 2 units to encode the side to move. The networks had a feed-forward structure 
with full connectivity from one layer to the next. Two architectures were examined: a single- 
layer architecture with direct input-output connections and no hidden units, and a multi- 
layer architecture containing a single hidden layer with varying numbers of hidden units. 
The single-layer architecture can only represent linearly separable functions (Minsky & 
Papert,1969), while the multilayer architecture, given sufficient hidden units, is capable 
of universal function approximation (Hornik, Stinchcombe & White, 1989). Both the hidden 
units and the output unit utilized a sigmoidal transfer function y = 1/(1 + e-X). 

The initial board configurations were generated randomly by distributing all 15 men for 
each side with uniform probability in the six home board locations. With this distribution 
of initial positions, the average sequence length is about 14 time steps with good play on 
both sides. 

As with back-propagation, a certain amount of parameter tuning was required to get good 
results with the TD(X) algorithm. It was found that a learning rate of a = 0.1 usually gave 
good results. Lower learning rates did not improve the maximum performance (although 
they did reduce the level of stochastic fluctuations in performance), whereas significantly 
higher learning rates did degrade performance. Also, the value of k appeared to have almost 
no effect on the maximum obtainable performance, although there was a speed advantage 
to using large values of k. The results reported here used a value of k set (somewhat ar- 
bitrarily) at 0.7. The initial random weight scale also did not appear to be important; in 
the results reported here, weights were initialized to uniform random values in the range 
[-0.5, +0.5]. 

Two measures of performance were monitored to assess the results of learning. The abso- 
lute prediction error was monitored by comparing the network's outputs for the positions 
seen during training with the exact win probabilities computed from the lookup tables. 
(One should keep in mind that these exact probabilities were not used as part of the train- 
ing signal.) The network's move selection ability was also monitored during training by 
measuring the fraction of time the network selected the theoretically optimal move in a 
fixed set of test positions. (There were 210 test positions, taken from a set of games in 
which the author played both sides. This test set was pruned from a larger set of over 300 
positions by deleting all positions with no unique best move, according to the lookup tables. 
In most of the deleted positions, the probability of winning was either exactly 1 or exactly 
0 regardless of which move was selected.) 

A perhaps surprising discovery was that, apart from stochastic fluctuations controlled 
by the value of a,  the absolute prediction error always decreased during training. On the 
other hand, the move-selection performance usually reached a maximum after several tens 
of thousands of games, and then decreased thereafter. (Due to the stochastic training pro- 
cedure and the relatively flat nature of the learning curves, it is difficult to say precisely 
when the maximum performance was reached.) As stated previously, this "overtraining" 
could be due to the differing distributions of training and test positions, or it could also 
be due to the difference between the function minimized by the learning algorithm (predic- 
tion error) and the function that the user cares about (move-selection ability). 

42 



T E M P O R A L  D I F F E R E N C E  L E A R N I N G  267 

> .92 
0 

4~ 
~ .90 
.~. 
~_ 

o .88 
0 

"4- 
0 

.86 
c- 

. ~  
~ .~4 

m . 8 2 -  

0 ~0 20 40 80 

Numben of  h&dden u n i t s  

Figure 1. Plot of move selection performance vs. number of hidden units for networks trained on disengaged 
bearoff positions using TD learning from self-play (TD), and supervised training on human expert preferences 
(EP). Both learning systems used identical 16-unit coding schemes. 

The level of move-selection performance obtained by the networks was also surprising 
in view of the average absolute prediction errors. Typically the networks are only able to 
estimate the probability of winning to within about 10 % of the true probability. On the 
other hand, one usually needs to make discriminations at the 1% level or lower for accurate 
move selection. Thus based on this consideration alone, one would expect the networks 
to be rather poor move selectors. However, figure 1, which plots move-selection perfor- 
mance as a function of the number of hidden units for TD-trained networks, shows that 
performance is in fact quite good. Furthermore, the networks with hidden units clearly 
do better than networks without hidden units. This indicates that the networks have absorbed 
some of the nonlinear aspects of the problem, and are not just implementing a linear rule 
such as "maximize the number of pieces taken off the board." It is also reassuring that 
this nonlinear structure can be learned in the TD procedure, despite the lack of any theoreti- 
cal guarantees. 

Also plotted for comparison are the results of supervised training of identical networks 
with identical coding schemes on a data set of about 1700 training positions. In each train- 
ing position, a human expert (the author) recorded a preference of best move. The training 
methodology is the "comparison paradigm" described in Tesauro (1989), in which the net- 
work is trained by back-propagation to score the expert's move higher than each of the 
other legal moves. 

We can see that, as is usual with back-prop nets trained on a fixed data set, the ability 
to increase performance by adding more hidden units is eventually lost for sufficiently large 
nets: at this point, the networks start to overfit the training data. On the other hand, since 
the TD nets are not trained on a fixed data set, the performance can in principle always 
be improved by adding more hidden units. We do in fact find that, at least for the network 
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sizes studied here, performance increases monotonically with the number of hidden units, 
and that the TD nets eventually catch up to the performance level of the nets trained on 
expert preferences (denoted EP in figure 1). 

One should note that the absolute prediction error of the TD nets generally gets worse 
as the end of the game approaches. This is not surprising, because states far from the end 
can be accurately represented by a simple pip count approximation, but this breaks down 
when there are only a few pieces left. Also for this particular task, states near the end 
of the game have higher volatility than states far from the end. As stated previously, these 
factors may provide important limits to the ability of TD learning to approach theoretically 
optimal performance. 

3.3. Learning full-board racing strategy 

The results of TD training of disengaged bearoff situations were encouraging enough to 
attempt the next logical extension: training of general racing situations covering the entire 
board. These situations require many more units to encode the board description, and they 
are usually more complicated because of the possibility of bonus wins called "gammons." 
These occur when one side removes all its pieces before the other side takes off any pieces, 
and the point value awarded is double the normal value. (There is also the possibility of 
winning a triple-value "backgammon," but this will not be considered here.) Thus in a 
general racing situation, if one has men in the outer quadrants, one has to choose between 
playing for a win and avoiding the loss of a gammon. Strategies in these two cases are 
usually different. For example, in gammon avoidance situations it is usually correct to bear 
men into the 6 point, whereas if there is no gammon risk, one should distribute one's men 
evenly on the 6, 5 and 4 points. 

The possibility of winning a gammon means that a game can now end in one of four 
possible outcomes. A straightforward way to handle this is to use a four-component ~eward 
signal, with each component corresponding to one of the four possible outcomes. One would 
then train a network with four output units, which would learn to estimate for any input 
position the probabilities of the four separate outcomes. (Without additional constraints, 
however, there would be no guarantee that the network's estimated probabilities would sum 
to 1.) For move-making decisions, one could use the network's estimated probabilities to 
estimate expected payoff, and select the move that maximizes expected payoff. Specifically, 
if 091, P2, P3, P4) are the network's estimates of the probabilities of (W wins, W gammons, 
B wins, B gammons), then the expected payoff to White is given by Pl + 2p2 - P3 - 2p4. 
Thus even in this more complex situation, one can still cast the problem as a prediction 
learning problem only, and can use the predictor network's outputs to generate control deci- 
sions without training a separate control network. 

For TD training of general race situations, a 52-unit coding scheme was used: 24 units 
each to encode the number of White or Black men at locations 1-24, 2 units to encode 
White and Black men off, and 2 units to encode the player to move. A modified four- 
component reward signal was used in which the units representing regular wins were acti- 
vated if a side had either a regular or a gammon win. This should be easier to learn for 
a network with sigmoidal units, since a unit that only represents regular wins has to learn a 
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non-monotonic function of the lead in the race. The initial board configurations were gen- 
erated by randomly picking a divider location on the board, and randomly distributing 
all White men uniformly to one side and all Black men uniformly to the other side of the 
divider location. With this distribution of starting positions, the average number of time 
steps from start to finish was about 20, as compared to 14 in the bearoff experiments. As 
in the previous section, the algorithm parameters were set at ot = 0.1 and k = 0.7. 

In this more complex situation, algorithms are no longer available for computing the 
exact outcome probabilities. Hence the only performance measure used was the fraction 
of time the network agreed with a human expert (the author) on the best move in a fixed 
set of 248 full-board racing test positions. This test set measure is less reliable than in 
the previous section, because there may be significant human errors in the choice of best 
move. There may also be a substantial fraction of positions in which the outcome is uniquely 
determined regardless of which move is made. 

Results of TD training are shown in figure 2, which plots maximum test set performance 
as a function of number of hidden units. Once again these results are compared with net- 
works using an identical coding scheme trained on a data set of about 3100 human expert 
examples. Once again the TD networks reached peak performance after several tens of 
thousands of games. For this task, no clear evidence of overtraining was seen; thus with 
further training it might be possible to obtain higher levels of performance. 

We can see that, despite the increased size of the input space, complexity of the task, 
and length of the sequence, the TD networks still were able to achieve a high level of per- 
formance. The test set performance is almost as good as the EP nets. In fact, since the 
test set measure is admittedly biased in favor of the expert-trained nets (which could pick 
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Figure 2 Plot of move selection performance vs. number of hidden units for networks trained on full-board racing 
positions using TD learning from self-play (TD), and supervised training on human expert preferences (EP). 
Both learning systems used identical 52-unit coding schemes. 
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up consistently wrong or arbitrary stylistic preferences of the expert), one may legitimately 
wonder whether the TD net really is inferior in an absolute sense, and if so, by how much. 
Also, further improvements in TD performance might be obtainable by adding more hidden 
units to the TD networks, by training longer, or by using a more representative distribution 
of starting positions. 

Qualitatively, the TD nets appear to have discovered many important ingredients of general 
racing strategies. The main apparent defect is a tendency to waste pips when the network 
has both a small chance of winning and a small chance of losing a gammon. In this case 
a human would try to remove all doubt about saving the gammon, whereas the network 
tends to make plays that suggest trying to win. 

3.4. Learning to play the entire game 

We now consider extending TD learning to cover more general engaged situations, in which 
hitting and blocking are possible. These situations are much more complex than racing 
situations, and the sequences can be much longer. (In typical human play the average se- 
quence length from start to finish is around 50-60 time steps, whereas for random move 
selectors, games can last several hundred or even thousands of time steps.) Also the opti- 
mal strategy for one side depends more critically on what strategy the opponent is using, 
whereas in racing situations the choice of best move is largely independent of the opponent's 
strategy. This means that a network adapting to its own play has a more serious possibility 
of getting stuck in self-consistent but non-optimal strategies. 

The networks trained on this task used an expanded scheme to encode the local informa- 
tion. Rather than a single unit to encode the number of men of a given color at a given 
location, a truncated unary encoding with four units was used. The first three units encoded 
separately the cases of one man, two men, and three men, while the fourth unit encoded 
the number of men beyond 3. (In the development of Neurogammon, it was found that 
truncating at 5 or 6 units rather than 4 units gives better performance but of course'takes 
longer to simulate.) This coding scheme thus used 96 units for each side to encode the 
information at locations 1-24, and an additional 6 units to encode the number of men on 
the bar, off the board, and the player to move, for a total of 198 input units. 

The parameter settings in these experiments were once again c~ = 0.1 and X = 0.7. A few 
experiments with smaller and larger values of ~ seemed to indicate that larger values would 
decrease the performance, while smaller values would give about the same performance. 

Networks were trained on the entire game, starting from the opening position and going 
all the way to the end. This is an admittedly naive approach, and given the complexity 
of this task, one might wonder whether it would actually work. Alternatively, one can con- 
sider dividing the game into a number of phases (e.g., early engaged, middle engaged, 
late engaged, and race), and using as a heuristic reward for a given phase the network 
output for the next phase. Some preliminary experiments were performed with a two-phase 
approach in which the network was trained up to the point of disengagement, and the out- 
put of a previously trained racing net (described in the previous section) was used as a 
heuristic reward. In this way the network would see a shorter sequence of positions, and 
its evaluation function would be simpler than the evaluation function needed for the entire 
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game. On the other hand, there may be problems due to the fact that the racing network 
was trained with a somewhat arbitrary distribution of starting positions. Furthermore, any 
systematic biases in the racing network's judgement might be transferred to the engaged 
network. Empirically this two-phase approach seemed to offer some potential for improving 
the performance of smaller nets, but not for larger nets, and view of the above-mentioned 
theoretical concerns, this approach was eventually abandoned. 

Training a single net on the entire game was not expected to yield any useful results 
other than a reference point for judging more sensible approaches. However, the rather 
surprising result was that a significant amount of learning actually took place. Performance 
on the 248-position racing test set reached about 65 %. (This is substantially worse than 
the racing specialists described in the previous section.) Performance on a separate set 
of 500 full-contact test positions is plotted in figure 3. Again these figures are compared 
with results of supervised training on a human expert training set containing over 15,000 
engaged positions. We can see that the TD nets reached levels of performance well beyond 
the initial random networks, showing that substantial learning took place. (The random 
initial networks only select the right move about 5 % of the time.) The performance levels 
lag somewhat behind what can be achieved with expert preference training, but we must 
remember that this test set measure may not give the most accurate assessment of true 
game-playing strength. 

A more accurate and objective measure of game-playing strength is actual game perfor- 
mance against an opponent. Both the TD nets and the EP nets have been tested in actual 
game play against Sun Microsystem's Gammontool program. Gammontool is representative 
of the level of performance that is typically achieved with conventional commercial programs, 
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Figure 4. Plot of game performance against Gammontool vs. number of hidden units for networks trained using 
TD learning from self-play (TD), and supervised training on human expert preferences (EP). Each data point 
represents the result of a 10,000 game test, and should be accurate to within one percentage point. 

and provides a decent benchmark for measuring game-playing strength. Human beginners 
can win about 40% of the time against it, decent intermediate-level humans would win 
about 60 %, and human experts would win about 75 %. (The random initial networks before 
training win only about 1% .) Since the EP nets are trained on engaged positions only, the 
testing procedure is to play out the game with the network until it becomes a race, and 
then use Gammontool's algorithm to move for both sides until the end. This also does not 
penalize the TD net for having learned rather poorly the racing phase of the game. Results 
are plotted in figure 4. 

Given the complexity of the task, size of input space and length of typical sequences, 
it seems remarkable that the TD nets can learn on their own to play at a level substantially 
better than Gammontool. Perhaps even more remarkable is that the TD nets surpass the 
EP nets trained on a massive human expert data base: the best TD net won 66.2% against 
Gammontool, whereas the best EP net could only manage 59.4%. This was confirmed 
in a head-to-head test in which the best TD net played 10,000 games against the best EP 
net. The result was 55% to 45% in favor of the TD net. This confirms that the Gammon- 
tool benchmark gives a reasonably accurate measure of relative game-playing strength, 
and that the TD net really is better than the EP net. In fact, the TD net with no features 
appears to be as good as Neurogammon 1.0, backgammon champion of the 1989 Computer 
Olympiad, which does have features, and which wins 65 % against Gammontool. A 10,000 
game test of the best TD net against Neurogammon 1.0 yielded statistical equality: 50% 
for the TD net and 50 % for Neurogammon. 

The TD net's performance against these three opponents indicates that it has reached a 
significant level of playing ability. This violates a widely held belief in computer games and 
machine learning research that significant levels of  performance in game-playing programs 
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can only be achieved through the use of hand-crafted features in the evaluation function. 
Apparently the hidden units in the TD net have discovered useful features through self- 
play. When one looks at the pattern of weights learned by the TD net, one can see a great 
deal of spatially organized structure, and some of this structure can be interpreted as useful 
features by a knowledgeable backgammon player. Figure 5 shows the weights from the 
input layer to two of the hidden units in the best TD net. Both hidden units contribute posi- 
tively to the estimation of Black's chances of winning and gammoning, and negatively to 
the estimation of White's chances of winning and gammoning. The first hidden unit appears 
to be a race-oriented feature detector, while the second hidden unit appears to be an attack- 
oriented feature detector. 

The training times needed to reach the levels of performance shown in figure 4 were 
on the order of 50,000 training games for the networks with 0 and 10 hidden units, 100,000 
games for the 20-hidden unit net, and 200,000 games for the 40-hidden unit net. Since 
the number of training games appears to scale roughly linearly with the number of weights 
in the network, and the CPU simulation time per game on a serial computer also scales 
linearly with the number of weights, the total CPU time thus scales quadratically with the 
number of weights: on an IBM RS/6000 workstation, the smallest network was trained 
in several hours, while the largest net required two weeks of simulation time. 

The networks did not appear to overtrain, but it is not clear whether the performance 
increases very slowly with further training or stays flat. Since the networks in the previous 
sections also required several tens of thousands of training games, this suggests that the 
number of training sequences needed to train a TD network may not scale badly with the 
task complexity or average sequence length. Instead, the training time may just depend 
on the number of bits of information needed to specify a trained network, and on how 
many bits of information are received per game. Since the outcome of each game gives 
one bit of information (two bits including gammons), and since the networks have several 
thousand weights that probably must be specified to at least 4-8 bits of accuracy, this sug- 
gests a training time on the order of tens of thousands of games. 

Some qualitative observations on the styles of play learned by the TD and EP nets are 
worth noting. The TD nets have developed a style emphasizing running and tactical play. 
For example, it prefers to immediately split its back men rather than bringing down builders 
or slotting home board points. It is good in running game situations and in tactical situa- 
tions such as blot-hitting contests and blitz attacks. The EP nets, however, favor a more 
quiescent positional style of play emphasizing blocking rather than racing. This is more 
in line with human expert play (at least the particular human expert who made the training 
data), but it often leads to complex prime vs. prime and back-game situations that are hard 
for the network to evaluate properly. This suggests one possible advantage of the TD approach 
over the EP approach: by learning to imitate an expert teacher, the learning system may 
get itself into situations that it doesn't know how to handle. With the alternative approach 
of learning from experience, the learner may not reproduce the expert strategies, but at 
least it will learn to handle whatever situations are brought about by its own strategy. 

It's also interesting that TD net ended up playing well in the early engaged phase of play, 
whereas its play in the late racing phase is rather poor. This is contrary to the intuitive 
notion that in temporal credit assignment learning, states far from the end of the sequence 
will be harder to learn than states near the end. Apparently the inductive bias due to the 
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representation scheme and network architecture is more important than temporal distance 
to the final outcome. This may part ial ly explain why training times were not dramatically 
worse in the full-game situation than in the simplified endgame situations. 

4. Conclusions 

We have seen that, from the theoretical point of view, there may be a number of important 
Iimitations to the effectiveness of TD learning in large-scale complex domains. The algorithm 
~may not converge even for prediction only tasks, let alone for combined prediction/control 
tasks. Even if  the algorithm does converge, it may get stuck in poor locally optimal solu- 
tions. Finally, even if  the algorithm is able to find good solutions, the scaling of required 
training time with problem size or sequence length may be so poor that the learning task 
would be effectively intractable. 

In view of these potential difficulties, there are a number of very encouraging conclusions 

that  can be drawn from the backgammon application. Empirical ly the algorithm always con- 
!verges to at least a local minimum. The quality of  solution found by the network is usually 
fairly good, and generally improves with increasing numbers of hidden units. Furthermore, 
,the scaling of  training t ime with the length of input sequences, and with the size and com- 
I • 

plexlty of the task, does not appear to be a serious problem. Finally, it is encouraging 
that the network was able to learn to make good control decisions as well as learn to estimate 
expected outcome. In fact, the network's ability to select good moves is much better than 
!we have a right to expect, because its absolute accuracy in estimating expected outcome 
iis usually at the 10% level, whereas the difference in expected outcome between optimal 
and non-optimal moves is usually at the level of  1% or less. This suggests that much of 
the network's absolute prediction error  is systematic error that applies equally to all moves 
generated from the same initial position, and thus cancels out in move-making decisions. 

The most encouraging finding, however, is a clear demonstration that in the full-game 
situation, the TD learning network with zero built-in knowledge can achieve a higher level 
bf  overall game performance than an identical network trained on a massive data base of 

human expert  examples. The level of  performance achieved is in fact equal to a program 
that convincingly won the backgammon championship in a major  tournament for computer 
programs. This level of performance is so far beyond what one would have expected before- 
hand that it seems worthwhile to devote some further effort to understanding exactly how 

Figure _5. A diagram illustrating the weights from the input units to two of the 40 hidden units in the best TD 
net. Black squares represent negative weights and white squares represent positive weights; the size of the square 
indicates the magnitude of the weights. The rows represent from bottom to top the spatial locations 1-24. The 
top row represents: (W barmen, B barmen, W men off, B men off, W turn, B turn). The columns represent 
the number of Black and White men as indicated. The first hidden unit has two noteworthy features: a linearly 
increasing pattern of negative weights for Black blots and Black points, and a negative weighting of White men 
off and a positive weighting of Black men off. These features are recognizable as contributing to an estimate 
of Black's probability of winning based on his lead in the race. The second hidden unit has the following note- 
worthy features: strong positive weights for Black home board points, strong positive weights for White men 
on bar, positive weights for White blots, and negative weights for White points in Black's home board. The experi- 
enced backgammon player recognizes that these factors all contribute to the probability of a successful Black 
attacking strategy. 
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this is possible. It may also be worthwhile trying to apply the combination of TD with 
back-propagation, or TD with other supervised learning algorithms, to other difficult tem- 
poral credit assignment problems. 

Future prospects for the backgammon application look very promising. It certainly seems 
possible that further improvements in performance can be obtained merely by adding more 
hidden units to the network and training for longer training times, although the quadratic 
scaling of CPU time with the number of weights may limit how far this can be carried 
in practice. Better results might also be obtainable by optimizing the parameter settings, 
or by modifications of the TD training procedure. For example, the next prediction could 
be replaced by an average over all possible dice rolls; this could reduce limitations due 
to volatility. Also, partitioning the game into a number of temporal phases and training 
separate specialist networks on each phase may make it easier for each specialist network 
to learn the evaluation function appropriate for that particular phase. In actual game play, 
the outputs of the specialists could be combined using smoothly-varying application coef- 
ficients, as suggested in Berliner (1979). Finally, an improved representation scheme, which 
uses fdatures known to be useful in backgammon evaluation functions, and which is better 
able to represent the value of near-end states, might give substantially better results. Such 
improved representation schemes are currently under investigation. As this article goes 
to press, a TD net containing all of Neurogammon's features is learning from self-play. 
The network has reached 71% against Gammontool and continues to improve slowly with 
further training. It appears to be the strongest program ever seen by this author. 

Beyond this specific application, however, the larger and more important issue is whether 
learning from experience can be useful and practical for more general complex problems. 
Certainly the quality of results obtained in this study suggests that the approach may work 
well in practice, and may work better than we have a right to expect theoretically. There 
may also be some intrinsic advantages to this approach over supervised training on a fixed 
set of labeled exemplars. At the very least, for tasks in which the exemplars are hand- 
labeled by humans, it eliminates the laborious and time-consuming process of labeling the 
data. Furthermore, the learning system would not be fundamentally limited by the quantity 
of labeled data, or by any intrinsic errors in whatever process is used to label the data. 
Also, the learning system might be able to avoid getting itself into situations that it doesn't 
know how to handle, as can happen when one is learning by imitating an expert. Finally, 
preserving the intrinsic temporal nature of the task, and informing the system of the conse- 
quences of its actions, may convey important information about the task that is not necessarily 
contained in the labeled exemplars. More theoretical and empirical work will be needed 
to establish the relative advantages and disadvantages of the two approaches. A result of 
this may be the development of novel learning paradigms combining supervised learning 
with learning from outcome; in combination it might be possible to surpass what either 
approach could achieve individually. Preliminary work supporting this hypothesis is reported 
in Utgoff and Clouse (1991). 
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