
The Grand Challenge of
Predictive Empirical Abstract Knowledge

Richard S. Sutton
Reinforcement Learning and Artificial Intelligence Laboratory

Department of Computing Science
University of Alberta

Edmonton, Alberta, Canada T6G 2E8

Abstract

We survey ongoing work at the University of Alberta
on an experience-oriented approach to artificial intelli-
gence (AI) based an reinforcement learning ideas. We
seek to ground world knowledge in a minimal ontology
of just the signals passing back and forth between the AI
agent and its environment at a fine temporal scale. The
challenge is to connect these low-level signals to higher-
level representations in such a way that the knowledge
remains grounded and autonomously verifiable. The
mathematical ideas of temporally abstract options, op-
tion models, and temporal-difference networks can be
applied to begin to address this challenge. This has been
illustrated in several simple computational worlds, and
we seek now to extend the approach to a physically re-
alized robot. A recent theoretical development is the
extension of simple temporal-difference methods to off-
policy forms using function approximation; this should
enable, for the first time, efficient and reliable intra-
option learning, bringing the goal of predictive empir-
ical abstract knowledge closer to achievement.

Introduction
The Predictive Empirical Abstract Knowledge (PEAK)
project at the University of Alberta is a radical attempt to
understand world knowledge in terms of a minimal ontology
of sensori-motor experience. Experience is defined as the
time sequence of low-level signals passing back and forth
between the AI agent and its world at some relatively fast
rate, say 100 times a second. The signals passing from the
world to the agent are termed sensations, and the signals
from the agent to the world are termed actions. For concrete-
ness, time is taken to be discrete. The minimal ontology is
then exactly these three things: sensations, actions, and time
steps. The PEAK project explores the hypothesis that all
world knowledge can be precisely characterized as predic-
tions about the relationships among these three things, with-
out reference to any other concepts or entities except insofar
as they themselves can be precisely characterized in terms
of the minimal ontology.

The primary challenge to the PEAK hypothesis is the mis-
match between low-level experience and human-level world

Copyright c© 2009, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

knowledge as we normally think of it. The gap between even
relatively simple concepts, such as that of a cup or a chair,
and low-level 100-times-a-second experience can seem im-
mense. Thus the PEAK project is appropriately focused on
the issue of abstraction. Its primary objective is to stretch
our imagination through examples and implemented sys-
tems until bridging the abstraction gap seems possible and
plausible.

Grounding knowledge in experience is extremely chal-
lenging, but may bring an equally extreme benefit. Rep-
resenting knowledge in terms of experience enables it to be
compared with experience. Knowledge imparted by human
experts can be verified or disproved by this comparison. Ex-
isting knowledge can be tuned and new knowledge can be
created (learned). The overall effect is that the AI agent may
be able to take much more responsibility for maintaining and
organizing its knowledge.

The ability of an AI system to self-verify its knowledge is
indeed a substantial benefit. While large amounts of knowl-
edge is a great strength of AI systems, it is also a great weak-
ness. The problem is that as knowledge bases grow they
become brittle and difficult to maintain. There arise incon-
sistencies in the terminology used by different people or at
different times. Errors are inevitably present. When an er-
ror becomes apparent, the problem can only be fixed by a
human who is expert in the structure and terminology of the
knowledge base. This puts an upper bound on the size of the
AI system’s knowledge base. As long as people are the ul-
timate guarantors of truth, then the machine cannot become
much smarter than its human handlers. In this sense, verify-
ing knowledge by consistency with human knowledge may
inevitably be a dead end.

Predictive Knowledge
Much everyday knowledge is clearly predictive. To know
that Joe is in the coffee room is to predict that you will see
him if you went there, or that you will hear him if you tele-
phoned there. To know what’s in a box is to predict what
you will see if you open it, or hear if you shake it, feel if
you lift it, and so on. To know about gravity is to make pre-
dictions about how objects behave when dropped. To know
the three-dimensional shape of an object in your hand, say a
teacup, is to predict how its silhouette would change if you
were to rotate it along various axes. A teacup is not a sin-



Figure 1: On the left is a bit-to-bit world, a world with one
bit of sensation and one of action; the triangle shows the
agent’s position and orientation. On the right is a subjective,
action-conditional representation of the agent’s local knowl-
edge. The colored bars each represent a prediction that the
agent is making. For example, the agent predicts that if it
steps forward three times then it will see a wall.

gle prediction but a pattern of interaction, a coherent set of
relationships between action and sensation.

Although these examples of predictive world knowledge
are substantially abstracted from the minimal ontology, a
formal argument can be made that they all must be reducible
to statements about low-level sensations and actions. By
world knowledge we mean knowledge about a particular
world, not knowledge that is true in any world, such as
knowledge of mathematics or logic. Let us denote the ac-
tion taken at time t as at ∈ A, and the sensation generated
at time t as st ∈ S . Experience then is the sequence of in-
termingled actions and sensations s1, a1, s2, a2, s3, a3, . . . ,
each element of which depends only on those preceding it.
Define E = {S ×A}∗ as the set of all possible experiences.
Let us call the experience sequence up through some action a
history. Formally, any world can be completely specified by
a probability distribution over next sensations conditional on
history, that is, by the probability P (s|h) that the next sen-
sation is s given history h, for all s ∈ S and h ∈ E . To know
P exactly and completely is thus to know everything there
is to know about the world.

PEAK Systems in Computational Worlds
Figures 1 and 2 show two illustrations of PEAK systems
from previous work. These initial systems are simple but
still instructive and representative of directions that could be
pursued further.

A Bit-to-Bit World
The world shown in Figure 1 (Tanner & Sutton, 2005; Tan-
ner, 2006) is an instance of a bit-to-bit world, a world with
only one bit of sensation and one bit of action. The agent,
shown as a triangle, can be in any cell and oriented in any of
four directions, but it can sense only whether the cell in front
of it is open or blocked; it cannot directly sense its position
in the grid. Actions are similarly limited to a single binary
choice: the agent can either step forward, or turn in place

Figure 1: The test world (left) and the question network (right) used in the experiments.
The triangle in the world indicates the location and orientation of the agent. The walls
are labeled R, O, Y, G, and B representing the colors red, orange, yellow, green and blue.
Note that the left wall is mostly blue but partly green. The right diagram shows in full the
portion of the question network corresponding to the red bit. This structure is repeated,
but not shown, for the other four (non-white) colors. L, R, and F are primitive actions, and
Forward and Wander are options.

There are three possible actions: A ={F, R, L}. Actions were selected according to a fixed
stochastic policy independent of the state. The probability of the F, L, and R actions were
0.5, 0.25, and 0.25 respectively. L and R cause the agent to rotate 90 degrees to the left or
right. F causes the agent to move ahead one square with probability 1 − p and to stay in
the same square with probability p. The probability p is called the slipping probability. If
the forward movement would cause the agent to move into a wall, then the agent does not
move. In this experiment, we used p = 0, p = 0.1, and p = 0.5.

In addition to these primitive actions, we provided two temporally abstract options,
Forward and Wander. The Forward option takes the action F in every state and termi-
nates when the agent senses a wall (color) in front of it. The policy of the Wander option
is the same as that actually followed by the agent. Wander terminates with probability 1
when a wall is sensed, and spontaneously with probability 0.5 otherwise.

We used the question network shown on the right in Figure 1. The predictions of nodes 1, 2,
and 3 are estimates of the probability that the red bit would be observed if the corresponding
primitive action were taken. Node 4 is a prediction of whether the agent will see the red bit
upon termination of the Wander option if it were taken. Node 5 predicts the probability of
observing the red bit given that the Forward option is followed until termination. Nodes 6
and 7 represent predictions of the outcome of a primitive action followed by the Forward
option. Nodes 8 and 9 take this one step further: they represent predictions of the red bit if
the Forward option were followed to termination, then a primitive action were taken, and
then the Forward option were followed again to termination.

We applied our algorithm to learn the parameterW of the answer network for this question
network. The step-size parameter α was 1.0, and the trace-decay parameter λ was 0.9. The
initial W0, E0, and y0 were all 0. Each run began with the agent in the state indicated in
Figure 1 (left). In this experiment σ(·) was the identity function.
For each value of p, we ran 50 runs of 20,000 time steps. On each time step, the root-mean-
squared (RMS) error in each node’s prediction was computed and then averaged over all the
nodes. The nodes corresponding to the Wander option were not included in the average
because of the difficulty of calculating their correct predictions. This average was then

LeapLeap

Leap

Figure 2: The compass world (left) and a portion of the
structure of the corresponding TD network representing the
agent’s knowledge (right). L, F, and R are elementary ac-
tions, and Leap and Wander are temporally abstract options.
Node 9, for example, will hold a numerical prediction of the
probability of finally sensing Red if the agent were to step
Forward until it sensed non-White (the Leap option), turn
Right (the R action), and then step Forward again until sens-
ing non-White (the Leap option again).

in one direction (to the right). This is the simplest possible
sensori-motor interface for a decision-making agent. Even
so, this small interface does not limit the size of the world
that can be represented; by attending to the sequence of ac-
tion and sensation bits, an agent could have complete knowl-
edge of, and be able localize within, a world of arbitrary size
and complexity. The world shown in the figure is sufficiently
small that complete knowledge of it was represented and
learned using a temporal-difference (TD) network (Sutton
& Tanner, 2005), a form of predictive state representation
(Littman, Sutton & Singh, 2002; Rosencrantz, Gordon &
Thrun, 2004; Jaeger, 2000). Larger worlds would require a
more efficient learning algorithm than was used in this work
(see below). Other natural extensions of this work would
be to consider larger grids, to introduce stochastic elements
into the sensation and action bits, and to consider bit-to-bit
worlds with non-grid dynamics.

The Compass World
The world shown in Figure 2, the “compass world” (Rafols,
2006; Sutton, Rafols & Koop, 2005), has a slightly larger
sensori-motor interface. The agent can sense the color of
the cell in front of it, as before, but here that color can take
on any of six values: Red, Blue, Green, Orange, Yellow,
and White. There are now three actions: step Forward, turn
Right, and turn Left. The TD network here involves ab-
straction not just in state but also in time. In addition to
the primitive actions, the agent can also represent knowl-
edge using temporally abstract macro-actions known as op-
tions (Precup, 2000; Sutton, Precup & Singh, 1999). Op-
tions are closed-loop policies defined here entirely in terms
of sensations, actions, and predictive state representations.
For example, in this system, there are two options, Leap and
Wander. Leap is the policy of taking the Forward action un-
til sensing non-White, and Wander is the policy of acting
randomly until sensing non-White. The TD network in this
illustration (suggested by the right panel of Figure 2) is ca-



Figure 3: Left) the Critterbot, a sensor-rich mobile robot approximately one foot in diameter; middle) a GUI visualization of
its sensor values; right) a 2D Critterbot simulator, with the simulated Critterbot in the upper left of a bounded field with various
objects. Agent programs and the GUI can be used interchangeably with the physical Critterbot and the simulator.

pable of representing and learning abstractions in state and
time that can be composed to build abstractions upon ab-
stractions. For example, in the state shown in the left panel
of Figure 2, the agent predicts that Leaping (stepping For-
ward until non-White) will result finally in sensing Yellow.
This prediction will form part of its state representation for
the state shown. These state abstractions and action abstrac-
tions can be flexibly interrelated and composed. For exam-
ple, the agent knows that, in the state shown, if it were to turn
Right, then it would be in a state where it will predict that
Leaping would produce Red. In other words, if you are ‘fac-
ing a yellow wall’ then, if you turn Right, you will be ‘fac-
ing a red wall’, where the quoted phrases are fully, explicitly
grounded in sensations and actions. Moreover, such tempo-
rally abstract knowledge can be maintained without constant
sensory clarification. In fact, the agent can make many turns
in the center of the compass world, without sensing any of
the walls, and keep track indefinitely of which wall it is fac-
ing.

A Robot for Exploring PEAK
Computational worlds such as the bit-to-bit world and the
compass world have the advantage that everything about
them can be precisely controlled and understood. However,
this is also a disadvantage in that we might deceive ourselves
by designing worlds that are easy for our PEAK methods
but not reflective of the real worlds of interest. An alter-
native approach that partially alleviates this problem, and
which we are pursuing in parallel with studies of computa-
tional worlds, is to use physically realized robotic systems.
A real robot forces one to come to grips with temporal issues
such as sensing and acting delays, asynchrony of perception
and action, and the need for real-time responses. It can also
provide a focus for group activity, a single system that can
be addressed in multiple ways while reflecting a consensus
about objectives.

To these ends, we have over the last year and a half de-
signed and constructed a small, sensor-rich mobile robot,

the Critterbot, shown in the left panel of Figure 3. The sen-
sors include infrared proximity detectors going out to about
one meter in ten different directions, light sensors in four di-
rections, binaural microphones, a three-axis accelerometer,
a gyroscope, a radio-spectrum sensor that can detect WiFi
base-station signal strengths, a compass, sensors for the bat-
tery level, and three sensors each for wheel velocity, motor
current, and motor temperature. A real-time display of the
instantaneous sensor values and various statistics of their re-
cent values is shown in the second panel of Figure 3. Bump
or contact sensors are currently being designed, and a cam-
era is planned for the future. We have deliberately avoided
laser range-finders and other sensors that would tempt us
to think in cartesian rather than experience-centered terms.
The only physical actuators are the three motors driving the
wheels of a holonomic-drive system that enables the robot
to translate and rotate independently and simultaneously in
any direction. The robot can also express itself through a
speaker and a circle of bright color LEDs around its upper
surface.

The robot runs at a natural time cycle of 100Hz. Every
1/100th of a second, all sensor values are read and trans-
ferred to the control program, and an output is taken from
the control program that directs the control of the motors.
The control program may run directly on the robot, which
includes a 500MHz x86 processor with 1GB of RAM and
a full-function Gentoo unix environment, or it can run off-
robot using the wireless interface, with some additional de-
lay. Overall, there may be a delay of 3–5 cycles between
emitting a motor command and sensing its consequences as
motor velocities. We have also built a 2D Critterbot simu-
lator (see right panel of Figure 3) which supports the same
sensori-motor interface as the physical robot, though the dy-
namics are inevitably slightly different. A standard RL-Glue
interface is available to both the robot and simulator. In pro-
gramming the Critterbot we must directly and immediately
face the challenge of a dense stream of low-level sensori-
motor information. The Critterbot will be a focus of much
of our future work with PEAK systems.



New Gradient-Based Learning Algorithms
The systems described earlier in this paper were handi-
capped by their use of learning algorithms that do not scale
well. The natural learning algorithms are those that can
learn about an option even from fragments of its execution,
known as intra-option learning algorithms (Sutton, Precup
& Singh, 1998, 1999). Intra-option learning holds out the
possibility of learning simultaneously about a great many
different options at once from a single rich stream of sensori-
motor experience. However, this plan runs afoul of the prob-
lem of off-policy learning, one of the greatest standing prob-
lems in reinforcement learning. Off-policy learning refers
to learning about one policy while following another. Off-
policy learning most commonly arises in algorithms such
as Q-learning that learn about an optimal or greedy policy
while actually following a more explorative policy such as
softmax or ε-greedy (Sutton & Barto, 1998). It also arises
here as we try to learn simultaneously about many differ-
ent options each with their own internal policy, while ac-
tual behavior is generated by at most one of those policies.
The problem of off-policy learning is that conventional TD
learning procedures, such as Q-learning and TD(λ), are not
completely sound when trained off-policy and when using
linear function approximation; for some problems and poli-
cies their parameters diverge to infinity (Baird, 1995). There
have been numerous partial solutions (some of which were
used in the example systems above) but none has been com-
pletely satisfactory. Some require a restricted form of func-
tion approximator, some scale quadratically rather than lin-
early in the number of features, and some have high vari-
ance.

Very recently, however, new algorithms have been de-
veloped which may solve essentially all of these problems
(Sutton, Maei, Precup, Bhatnagar, Silver, Szepesvári &
Wiewiora, 2009). These new algorithms are variations on
conventional TD learning procedures that adhere more thor-
oughly to the idea of gradient descent. As such, it is straight-
forward to prove that they converge under general on- or off-
policy training. Empirically, the latest gradient TD meth-
ods appear to learn at a rate comparable to conventional TD
methods on on-policy problems, while converging reliably
on off-policy problems. The new methods are more com-
plex than conventional methods, but only by a factor of two
(memory and computation). Although it has not yet been
done as of this writing, it should be straightforward to ex-
tend these methods to intra-option learning methods that can
be used off-policy, and thus learned in parallel from a single
stream of experience. This would be a significant step to-
ward solving the learning part of the PEAK challenge.

Conclusion
We have illustrated in computational worlds that PEAK sys-
tems can build non-trivial abstract concepts from the min-
imal ontology of sensations, actions, and time steps. Ex-
tensions to a physical robot and to the new more-scaleable
gradient-based learning algorithms are currently being de-
veloped. Although the gap between low-level experience
and human-level knowledge remains immense, perhaps it

can be bridged bit by bit. If so, it might remake our en-
tire conception of knowledge in knowledge-based systems,
enabling them to self-maintain, and thus to become much
larger than has hitherto been possible. This is a large prize
and deserves a sustained effort. That is the grand challenge
of predictive empirical abstract knowledge.

References
Baird, L. C. (1995). Residual algorithms: Reinforcement

learning with function approximation. In Proceedings of
the Twelfth International Conference on Machine Learn-
ing, pp. 30–37.

Jaeger, H. (2000). Observable operator models for discrete
stochastic time series. Neural Computation 12(6):1371–
1398.

Koop, A. (2007). Investigating Experience: Temporal Co-
herence and Empirical Knowledge Representation. Uni-
versity of Alberta MSc. thesis.

Littman, M., Sutton, R. S., Singh, S. (2002). Predictive
representations of state. Advances In Neural Information
Processing Systems 14, pp. 1555–1561. MIT Press.

Precup, D. (2000). Temporal Abstraction in Reinforcement
Learning. University of Massachusetts PhD thesis.

Rafols, E. J. (2006). Temporal Abstraction in Temporal-
difference Networks. University of Alberta MSc. thesis.

Rosencrantz M., Gordon G. J., Thrun S. (2004). Learning
low dimensional predictive representations. Proceedings
of the 21st International Conf. on Machine Learning.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning:
An Introduction. MIT Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver,
D., Szepesvári, Cs., Wiewiora, E. (2009). Fast gradient-
descent methods for temporal-difference learning with
linear function approximation. Proceedings of the 26th
International Conference on Machine Learning.

Sutton, R. S., Precup, D., Singh, S. (1998). Intra-option
learning about temporally abstract actions. Proceedings
of the 15th International Conference on Machine Learn-
ing, pp. 556–564.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs
and semi-MDPs: A framework for temporal abstraction
in reinforcement learning. Artificial Intelligence 112,
pp. 181–211.

Sutton, R. S., Rafols, E. J., Koop, A. (2006). Temporal ab-
straction in temporal-difference networks. Advances in
Neural Information Processing Systems 18.

Sutton, R. S., Tanner, B. (2005). Temporal-difference net-
works. Advances in Neural Information Processing Sys-
tems 17.

Tanner, B., Sutton, R. S. (2005). Temporal-difference net-
works with history. Proceedings of the Nineteenth Inter-
national Joint Conference on Artificial Intelligence.

Tanner, B. (2006). Temporal-Difference Networks. Univer-
sity of Alberta MSc. thesis.


