
Appeared in Proceedings of the Tenth Int. Conf. on Machine Learning, pp. 314–321, Morgan Kaufmann, 1993.

Online Learning with Random Representations

Richard S. Sutton and Steven D. Whitehead
GTE Laboratories Incorporated

40 Sylvan Road
Waltham, MA 02254

sutton@gte.com swhitehead@gte.com

Abstract
We consider the requirements of online
learning—learning which must be done in-
crementally and in realtime, with the results
of learning available soon after each new ex-
ample is acquired. Despite the abundance
of methods for learning from examples, there
are few that can be used effectively for on-
line learning, e.g., as components of reinforce-
ment learning systems. Most of these few, in-
cluding radial basis functions, CMACs, Ko-
honen’s self-organizing maps, and those de-
veloped in this paper, share the same struc-
ture. All expand the original input represen-
tation into a higher dimensional representa-
tion in an unsupervised way, and then map
that representation to the final answer using
a relatively simple supervised learner, such
as a perceptron or LMS rule. Such struc-
tures learn very rapidly and reliably, but
have been thought either to scale poorly or
to require extensive domain knowledge. To
the contrary, some researchers (Rosenblatt,
1962; Gallant & Smith, 1987; Kanerva, 1988;
Prager & Fallside, 1988) have argued that
the expanded representation can be chosen
largely at random with good results. The
main contribution of this paper is to de-
velop and test this hypothesis. We show that
simple random-representation methods can
perform as well as nearest-neighbor meth-
ods (while being more suited to online learn-
ing), and significantly better than backprop-
agation. We find that the size of the ran-
dom representation does increase with the
dimensionality of the problem, but not un-
reasonably so, and that the required size can
be reduced substantially using unsupervised-
learning techniques. Our results suggest that
randomness has a useful role to play in on-
line supervised learning and constructive in-
duction.

1. Online Learning

Applications of supervised learning can be divided into
two types: online and offline. By offline supervised
learning we mean the classical task in machine learn-
ing and statistics: a set of examples is obtained and
used to learn a good approximating function before the
function is used in the application. In online learning,
on the other hand, data gathered during the normal
operation of the system is used to continually adapt
the learned function.

Online learning has several advantages over offline
learning. First, online learning is potentially more ro-
bust because errors or omissions in the training set
can be corrected during operation. Second, training
data can often be generated easily and in great quan-
tities when a system is in operation, whereas it is usu-
ally scarce and precious before. Being able to use this
data sometimes puts online learning at a great advan-
tage; for example, this was probably the most impor-
tant reason for the success of Tesauro’s (1992) cham-
pion backgammon-playing program. Finally, online
training is necessary in order to learn and track time-
varying functions, to continue to adapt to a changing
environment. In a broad sense, online learning is essen-
tial if we want to obtain learning systems as opposed
to merely learned ones.

Online supervised learning methods are also needed
as components of reinforcement learning systems, for
example, to learn evaluation functions, policy func-
tions, and action models. In reinforcement learning
one learns by trial and error, so it is essential to learn
online. In addition, reinforcement learning usually in-
volves some form of temporal-difference learning, e.g.,
to handle the credit assignment problem involved in
learning an evaluation function. Temporal-difference
learning inherently involves non-stationarity because
the targets for learning are themselves learned quanti-
ties that change over time.

What supervised learning methods are suited to online
learning? The two most important requirements are

that the methods be incremental and able to handle
nonstationary (time-varying) target functions.

We distinguish two degrees of incrementality. We
say a method is weakly incremental if it requires rel-
atively little additional memory and computation in
order to process one additional example. Most clas-
sical machine learning and statistical methods do not
meet this standard of incrementality. Methods such
as ID3 (Quinlan, 1986), CART (Breiman et al., 1984),
INDUCE (Michalski, 1983), and MARS (Friedman,
1988) all take a training set as a whole and perform
a computationally intensive process that has to be
repeated anew each time examples are added to the
training set. Weakly incremental methods include ex-
tended decision tree methods such as ID4 (Schlimmer
& Fisher, 1986) and ID5R (Utgoff, 1989), and nearest-
neighbor and case-based learning methods. However,
the memory and (per-example) computational require-
ments of all of these methods may increase without
bound as more examples are seen,1 which is prob-
lematic for long-lived online applications. We say
a method is strictly incremental if its requirements
for memory and (per-example) computation do not
increase with the number of examples. Strictly in-
cremental methods include STAGGER (Schlimmer &
Granger, 1986) and most connectionist learning meth-
ods. Many weakly incremental methods can be con-
verted into strictly incremental variants, e.g., by re-
taining only a limited number of examples. Such modi-
fications usually involve some loss of the methods’ sim-
plicity, ease of use, and theoretical assurances, but are
nevertheless an interesting direction of research (e.g.,
see Moore & Atkeson (1992), Schwartz (1993)).

The situation with regard to nonstationarity is very
similar. Weakly incremental methods do not natu-
rally handle time-varying target functions, but most
can be adapted to do so. Many strictly incremental
methods, on the other hand, are well suited to non-
stationary problems. The approach we take in this
paper is to explore a particular class of connectionist
method, described in the next section, that is both
strictly incremental and able to handle nonstationar-
ity. As a challenging benchmark, we present results
comparing our approach to nearest-neighbor methods
on tasks well suited to nearest-neighbor methods.

Multilayer connectionist methods based on gradient
descent, such as backpropagation, are typically strictly
incremental and able to handle nonstationarity, but
have met with mixed success in online applications.
The primary problem here is that of “catastrophic
interference,” in which training on new examples in-
terferes excessively with previously learned examples.

1In a sense, the memory requirements of decision-tree
methods are always bounded by the size of the most com-
plex possible tree. However, as this bound is exponential
in the dimensionality of the input space, it is far to high
to be useful in practice.

This problem has been partially overcome in practice
by storing old examples and retraining on them (Lin,
1992), or by learning slowly and training extensively
(Tesauro, 1992), but it remains a significant limita-
tion. We also present results comparing our approach
to backpropagation in this paper.

2. Learning with Expanded
Representations

The most effective and popular methods for on-
line learning are radial-basis-function networks (e.g.,
Moody & Darken, 1989), CMAC networks (Albus,
1981), and closely related statistical methods such as
Parzen windows (e.g., see Duda & Hart, 1973). Other
important online methods are self-organizing maps
(Kohonen, 1990), STAGGER (Schlimmer & Granger,
1986), and unsupervised classifiers such as COBWEB
(Fisher, 1987), among many others. All of these meth-
ods are strictly incremental and able to handle non-
stationarity. Moreover, all share a similar two-layer
structure: The first layer expands the original input
representation into a high dimensional feature space,
and the second layer maps that expanded representa-
tion to the final answer. The first layer is non-linear
and either fixed or learned by an unsupervised learn-
ing process, and the last layer is much simpler and
is the only part affected by supervised training (see
Figure 1). In a radial-basis-function network, for ex-
ample, the first layer is composed of the radial basis
functions, and the last layer is usually a linear map-
ping or a linear mapping followed by a threshold or
sigmoid nonlinearity. In a self-organizing map and in
COBWEB the first-layer re-representation is formed
by an unsupervised process. This general architecture
is the primary focus of this paper. We call it learning
with an expanded representation (ER).2

The first ER learning system was Rosenblatt’s percep-
tron. Although ignored in most modern treatments,
the original perceptron included a preprocessing layer
of fixed, random, boolean functions (see also Uhr &
Vossler, 1963; Klopf & Gose, 1969). More recently,
Gallant and Smith (1987), Kanerva (1988), and Prager
and Fallside (1988) have also advocated ER networks
in which the first layer consists entirely of fixed, ran-
dom functions of the original input. They proposed
that the random functions be simply linear threshold
functions with random weights. This approach may
seem naive, but Kanerva’s analytic arguments and the
results by Gallant and Smith (1987) and Prager and
Fallside (1988) suggest that it can perform well. We
call ER systems in which the expanded representation

2Grouping and clustering methods such as Chapman &
Kaelbling (1991), Mahadevan & Connell (1992), and Ma-
hadevan (1992) can also be viewed as ER methods where
the final layer is a lookup table rather than a linear map-
ping.

Original input Rep'n

First Layer: Expanded Input Representation

Final Output

Last Layer: Simple mapping
adapted by supervised learning

First Layer: Complex mapping that is fixed
or adapted by unsupervised learning

Figure 1. General architecture for learning with an Ex-
panded Representation (ER).

is constructed with a significant random component
random representation (RR) systems.

In this paper, the performance of RR methods is mea-
sured along three co-varying dimensions: speed of
learning, asymptotic error, and number of hidden units
required (i.e., size of the random representation). If
the number of hidden units is allowed to be arbitrarily
large, then it is fairly easy to show that any static tar-
get function can be learned to arbitrary accuracy. A
more significant result is suggested by Kanerva (1988),
who concluded that the speed of learning also becomes
very good as the number of hidden units increases,
approaching that of nearest-neighbor methods. We
present empirical results for a specific RR system that
confirm this prediction.

The key question, however, is how many hidden units
are needed to obtain desirable speed and accuracy
properties? If the number required grows too rapidly
with, say, the size of the original input space, or the
complexity of the target function, then these meth-
ods would be impractical. Gallant and Smith (1987)
showed that good results could be obtained with a
few hundred hidden units on s set of tasks from the
neural network literature such as 7-input parity and
right-shift. Is a few hundred a lot? Certainly it is
more than is used in typical connectionist networks,
but it is no challenge to the memory capacity of to-
day’s computers, even conventional serial ones. As
proponents of other memory-intensive learning meth-
ods have pointed out, memory is cheap; we should not
be stingy with our hidden units. Nevertheless, we still
seek to obtain the best performance possible with the
fewest number of hidden units. We present several in-
novations that appear to improve this tradeoff for ER
systems.

Last Layer: Linear mapping
adapted by cross-entropy perceptron

First Layer: Fixed, random mapping

LTU

f

vij

wj

N bits: x1, x2, . . ., xN

M Fixed Random LTUs: y1, y2, . . ., yM

Figure 2. The basic Random Representation (RR) learning
system used in this paper.

3. A Basic RR Network

In this section we describe a basic RR network based
on linear threshold units (LTUs) which we evaluate
and extend in subsequent experiments. This system
is very close to that described by Gallant and Smith
(1987).

The RR system is shown schematically in Figure 2,
as an instance of the general architecture of Figure 1.
There are n inputs denoted x1, x2, . . . , xn (xi ∈ {0, 1})
and m hidden units. The hidden units are LTUs,
meaning that each unit j is connected to each input
by a weight vij ∈ <, and its output yj is given by

yj =

{
1, if

∑n
i=1 vijxi ≥ θj ;

0, else.
(1)

For now the weights vij will be fixed and chosen as
either +1 or −1, with equal probability. Each unit
has one input pattern to which it responds maximally,
sometimes called its prototype, or address. The pro-
totype for unit j is the input pattern with xi = 1 for
those i where vij = +1 and xi = 0 where vij = −1.
The threshold θj is chosen so that the unit will be ac-
tive (yj = 1) if slightly more than half of the input bits
match the prototype, i.e.,

θj = Smin
j + βn, (2)

where Smin
j is the minimum possible value for the jth

unit’s weighted sum (Smin
j is just minus the number of

the unit’s negative weights) and β is the proportion of
the bits that have to match the prototype (β = 0.6 in
all but one of the experiments reported in this paper).

The final unit of our basic RR network is also an LTU.
Its output f is given by

f =

{
1, if

∑m
j=0 wjyj ≥ 0

0, else,
(3)

where wj ∈ <, j = 1, . . . ,m, are weights from each
hidden unit to the final LTU. The 0th weight, w0, acts
as a negative threshold or bias; the corresponding in-
put signal y0 is defined always to be 1. All of the
weights are initially zero and then adjusted according
to a normalized, cross-entropy perceptron rule:

∆wj =
α

N
(f∗ − p)yj , (4)

where α > 0 is a learning-rate parameter (α = 1 in all
experiments reported in this paper), N is the number
of hidden units that are active (N =

∑m
k=0 y

2
k), f∗ is

the target value for the current example, and p is the
estimated probability that f∗ = 1, given by

p =
1

1 + e
−
∑m

j=0
wjyj

. (5)

This learning rule is a version of the perceptron suited
to binary classification problems (Hinton, 1989). If
the overall problem were instead one of minimizing
squared error, then an LMS or normalized LMS rule
would be more appropriate (see Section 7). This is an
online learning procedure because the learning rule (4)
is applied once to each example as it is received.

4. Performance vs Representation Size

The first experiment evaluated the learning perfor-
mance of the basic RR network as a function of m,
the size of the expanded representation in number of
random LTUs. We designed the tasks to be suitable
for solution by nearest-neighbor methods, so that these
methods could serve as challenging benchmarks to the
performance of the RR methods.

The tasks were generated randomly as follows. Each
input consisted of 16 randomly generated bits, of
which 8 were designated as relevant and 8 as irrel-
evant. For each task, 8 prototypical inputs were also
generated and half assigned a target bit of 1 and half a
target bit of 0. To determine the target for a randomly
generated 16-bit input, it was compared to each of the
prototypical inputs. The prototypical input that was
closest in hamming distance (based only on the rele-
vant bits) was selected and its target bit used as the
target for the input. Ties were broken according to an
arbitrary ordering of the prototypical inputs. Finally,
noise was introduced by flipping the target bit on a
random 5% of the examples.

The basic RR network was run on this problem with
random representations ranging in size from m = 25
to m = 5000. We also ran a simple nearest-neighbor
method called 1NN on this problem. In this method,
for each new input we first found its nearest neighbor,
the previously experienced input closest to it in ham-
ming distance (using all 16 bits). The guess for the
new input was then the same as the target bit stored
with the nearest neighbor. Ties were broken in favor

Number of Examples

%
Correct

0 . 6

0 . 65

0 . 7

0 . 75

0 . 8

0 . 85

0 . 9

0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 5 0 0 0

RR:5000

1 -NN

RR:100
Perceptron

Figure 3. Learning curves on the first task.

Size of Random Representation

Examples
Correct
out of
5000

3 2 0 0

3 4 0 0

3 6 0 0

3 8 0 0

4 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0 0 0

Perceptron

1 -NN

RR

Figure 4. Performance vs. rep’n size on the first task.

of the most recent nearest neighbor. Finally, we also
ran on this problem a single cross-entropy perceptron
using the original input representation. The perfor-
mance of this perceptron tells us the extent to which
the problem is solvable by a linear method.

Each algorithm was run for 5000 examples. The num-
ber of correct guesses by each algorithm was averaged
over blocks of 200 examples and then over 20 repe-
titions of the whole procedure to obtain the learning
curves shown in Figure 3. This figure shows the be-
havior of the RR algorithm with a small representation
(m = 100) and with a large representation (m = 5000).
In general, the performance of the method improves
with larger representations. Figure 4 is a summary
graph that plots the total number of examples guessed
correctly by the RR methods as a function of represen-
tation size. The flat lines show the performance levels
of the perceptron and of the 1NN method. The RR
method performed better than both the perceptron
and the 1NN method as long as the representation
was larger than about 200 units.

Note that the performance of the RR method only im-
proves as the number of hidden units increases. This
behavior may be surprising to those accustoming to
thinking that excessive memory results in “memoriza-
tion” of the training examples and poor generalization
to new ones. In all of our work with online train-
ing with RR systems we have never found this to be

K/K'

Examples
Correct
out of
5000

3400

3600

3800

4000

4200

1 10 100 1000

Perceptron

KNN RR:2000

Figure 5. KNN vs. RR on the first task, varying the num-
ber of neighbors (KNN) or the average number of active
hidden units (RR). For RR, the total number of hidden
units was 2000.

a problem.3 Accordingly, we have not sought ways
of simplifying RR networks (e.g., removing little-used
hidden units) in the hope of improving generalization.

The 1NN method performs relatively poorly on this
task in part because the task is noisy and includes
irrelevant input dimensions. In these cases, nearest-
neighbor methods perform better if they are based not
on the single nearest neighbor, but on the majority
recommendation of several near neighbors. These are
called K-nearest-neighbor (KNN) methods, where K
is the number of neighbors considered. Figure 5 shows
the total performance of a KNN method as a function
of K. If K was chosen within the right range, then the
KNN method performed better than the 1NN method.

The β parameter of the RR methods plays a role sim-
ilar to that of K. β determines the average number of
hidden units that respond to an input pattern, which
we here call K ′. The K ′ hidden units that respond
together determine the network’s output, much as the
K nearest neighbors together determine the output of
the KNN method. In fact, the effects of K and K ′

on the performance of the two method is very simi-
lar, as shown in Figure 5. Within the right range of
their respective parameters, the two methods perform
roughly equally as well.

5. Unsupervised Learning

The preceding experiments showed that randomly con-
structed features, if sufficiently numerous, can be use-
ful in learning arbitrary functions. However, the
method as presented so far is potentially inefficient.
For example, depending on the input distribution, it
is possible for many of the randomly-constructed LTUs
to be always active or always inactive. Such units do
not contribute to learning because they cannot dis-
criminate between inputs. Additionally, units that are

3This is may be due more to the use of online training
than to the use of RR methods

active too often can slow learning by causing excessive
generalization between inputs with different targets.

Ideally, one would like to construct hidden units whose
frequency of activation is normalized to fall within a
desirable range, neither too rare nor too common. Be-
cause this sort of normalization is based purely on the
input distribution, without reference to the targets, it
is a form of unsupervised learning. It is also desir-
able to normalize the density of activation, that is, the
number of unit’s that are active at one time. We don’t
want all the units to be active or inactive at the same
times because then they are redundant.

In this section we explore the ability of simple unsuper-
vised learning processes to reduce the size of the rep-
resentation required by RR methods. It has long been
recognized that unsupervised processes can improve
the representation used by subsequent linear learning
processes. Competitive learning methods (Rumelhart
and Zipser, 1986; Kohonen, 1990) have been widely
used for this purpose. Sanger (1991), Oja (1983),
Linsker (1988), and Földiák (1990) have all argued
that the activity of hidden units should be uncorre-
lated, and have proposed learning methods that detect
and eliminate correlations. A significant disadvantage
of these latter methods is that they require communi-
cation and memory between each pair of units. Gener-
ating hidden units at random, as in RR methods, can
be seen as an attempt to produce a similar result with
no communication at all, relying on statistical prop-
erties to ensure that no hidden units are extremely
similar.

In this and the following experiments we applied two
unsupervised learning techniques. Their overall goal
was to keep the frequency and density of activity (as
defined above) within a desirable range. Unsupervised
learning occurred online, at the same time as super-
vised learning proceeded in the final layer.

To normalize the frequency of activation of a unit, j,
we continually estimated the proportion ȳj of examples
on which it was active (yj = 1):

ȳj ← λȳj + (1− λ)yj , (6)

where λ = 0.99. Our objective was to keep the fre-
quency of activation at 25%±5%. Thus, whenever the
estimate ȳj fell below 0.2 we decremented the thresh-
old θj by ε, so that the unit would come on more often.
Whenever the estimate rose above 0.3, we incremented
the threshold by ε, so that the unit would come on less
often. In the following experiments we used ε = 0.001.

To normalize the density—the proportion of units ac-
tive at one time—we adjusted the weights of each unit
so that they would respond maximally to different por-
tions of the input space. As with frequency, we sought
to keep the density at 25% ± 5%. If the density on
some time step was less than 0.2 (less than 20% of
the units active) then it was considered too low, and

Size of Random Representation

Examples
Correct
out of
5000

3 0 0 0

3 2 0 0

3 4 0 0

3 6 0 0

3 8 0 0

4 0 0 0

1 0 1 0 0 1 0 0 0 1 0 0 0 0

RR with
unsupervised
learning

RR without
unsupervised

learning

Figure 6. Comparison of RR methods with and without
unsupervised learning on a task with many unchanging in-
put bits.

some of the inactive units were selected and changed
so as to become more responsive to that time step’s
input pattern. Each inactive unit was selected for
being changed with a probability of 0.0001. Selected
units were changed by selecting at random one of their
weights that did not agree with the input pattern and
flip it so that it did agree. If the selected bit was 1 and
the weight was v = −1, then the weight was flipped
to v = +1, and if the input bit was 0 and the weight
+1, then the weight was flipped to −1. In either case
the unit’s threshold θ was decreased by 1 so that the
primary effect was on density (when the unit comes
active) rather than frequency. Conversely, if the den-
sity on some time step was greater than 0.3, then it
was considered too high, and in a symmetrical way we
picked some units at random and flipped one of their
bits so that it did not agree with the current input. In
this case the selection probability was 0.0005, and the
threshold was increased by 1 rather than decreased.

The next experiment was designed to directly assess
the benefits to the RR algorithm of the unsupervised
adaptations. The task was the same as the first ex-
periment (8 relevant inputs, 8 irrelevant) except that
16 additional inputs were added that were always 1.
This was done as a simple way to generate tasks with
a nonuniform input distribution. Note that in the first
experiment all input patterns were equally likely. Such
a uniform input distribution is a favorable case for
RR approaches and is the case used in most of Kan-
erva’s analyses and Gallant and Smith’s experiments.
When the distribution is instead nonuniform, many
of the randomly constructed units may respond most
strongly to parts of the input space that never occur,
or that occur too often. It is here that unsupervised
learning may have a significant effect.

Figure 6 summarizes the performance of the RR al-
gorithm with and without unsupervised learning at a
variety of representation sizes. The graph shows the
numbers of examples correctly guessed by the algo-
rithm out of 5000, plotted against representation size.

Size of Random Representation

Examples
Correct
out of
5000

3 0 0 0

3 2 0 0

3 4 0 0

3 6 0 0

3 8 0 0

4 0 0 0

1 0 0 1 0 0 0 1 0 0 0 0

30-NN
15-NN

RR

Perceptron

4 -NN

1 -NN

Figure 7. Performance on a task with many irrelevant in-
put bits.

Within the range where the size of the representation
has an effect on performance, unsupervised learning
permits the representation to be reduced by roughly
40%.

6. Many Irrelevant Inputs

One of the strengths claimed for RR methods is that
they are relatively unaffected by irrelevant inputs.
Other online learning methods such as radial basis
functions are known to have great difficulty with ir-
relevant inputs (e.g., Hartman and Keeler, 1991). As
we show next, irrelevant inputs also cause difficulties
for nearest-neighbor methods.

This experiment was identical to the first experiment
(8 relevant input bits, 8 target prototypes, 5000 steps
per run, 20 runs) except that it used 22 irrelevant input
bits instead of 8. The summary results for the RR
method with unsupervised learning and for the KNN
methods are shown in Figure 7. In this experiment the
KNN method performed worse than the RR method at
most values of K tried, and much worse at low values
of K.

7. RR vs Backpropagation

The backpropagation algorithm has been widely criti-
cized as being poorly suited to online learning because
it learns too slowly, requires repeated passes through
the training set, and generalizes too much between ex-
amples. This final experiment is meant to briefly il-
lustrate these problems and show that the RR method
does not suffer from them.

We sought a simple class of problems well suited to
solution by both backpropagation and RR methods.
The basic idea was to learn to replicate the behav-
ior of a randomly constructed network. This target
network consisted of three LTUs, each of which had
connections to three randomly selected inputs. The

weights of the connections were set to +1 or −1 with
equal probability, and each LTU’s threshold was set
so that the LTU was active and inactive with roughly
equal probability. The LTU output values were +1
for active and −1 for inactive. The final output of
the target network was determined by a linear unit
with connections to each LTU (and to a constant bias
input) weighted either +1 or −1 with equal probabil-
ity. There were 9 binary inputs signals, which took on
the values +1 and −1 with equal probability. 50 tasks
were created in this way and used to test all algorithms
and parameter values. All algorithms were run for 500
examples.

For the backpropagation algorithm, networks with 4,
40, and 400 hidden units were used. The RR method
was run with a range of representation sizes from 10
to 4000. Unsupervised learning was not used in this
experiment. For backpropagation, the final layer con-
sisted of a single linear unit. The RR method was
adapted from the binary classification form described
earlier to a minimum squared error form by replacing
equations (3) and (5) with a normalized weighted sum
(weighted average):

f = p =

∑m
j=0 wjyj∑m
i=0 yj

. (7)

For the backpropagation method, many different val-
ues were tried for the learning rates for the first and
second layers, and for the variance of the gaussian dis-
tribution of initial weights. The results we report are
for the best values found. Momentum was not used.

Figure 8 shows average learning curves for the RR
method with representation sizes of 100 and 1000, and
for backpropagation with 4, 40, and 400 hidden units.
The backpropagation results shown are for the best pa-
rameter values found after a substantial search. Higher
numbers of hidden units were not explored due to the
computational expense, but the general trend of the
data was toward worse performance at higher num-
bers of hidden units.

On might wonder why RR methods do so much better
than backpropagation on this task. A backpropaga-
tion network with a large number of hidden units, and
whose initial random weights are chosen with a large
variance is in fact almost equivalent to a RR network,
However, in this case roughly half the units are on for
each input pattern resulting in excessive generalization
between input patterns. To get best performance from
backpropagation, the number of hidden units must be
chosen carefully, neither too small nor too big.

8. Conclusions

In this paper we have begun to experimentally evaluate
the performance and utility of random-representation
methods for online learning. Our results significantly

Example Number

M
ea

n
Sq

ua
re

d
Er

ro
r

0

5

1 0

1 5

2 0

2 5

3 0

3 5

4 0

5
0

1
0

0

1
5

0

2
0

0

2
5

0

3
0

0

3
5

0

4
0

0

4
5

0

5
0

0

RR 1000

RR 100

BP 40

BP 4
BP 400

Figure 8. RR vs. Backpropagation.

extend what was previously known about RR methods
in that:

• We have shown a rough parity between the per-
formance of RR methods and nearest-neighbor
methods, without requiring unreasonably large
random representations. This is a promising re-
sult because RR methods are more immediately
suitable for online learning tasks than nearest-
neighbor methods, which are neither strictly in-
cremental nor easily adapted to nonstationary
problems. This general result was predicted by
Kanerva (1988) for a related system, but had not
previously been shown.

• Our results show that RR methods can handle
moderately high dimensional input spaces with
many irrelevant inputs (e.g., 22 irrelevant bits out
of 30) with little increase in representation size.
This is in sharp contrast with other ER methods
such as radial-basis-function networks, which have
great difficulties with these cases.

• We have introduced two simple methods for unsu-
pervised adaptation of randomly constructed rep-
resentations and shown that they can significantly
reduce the required representation size on a prob-
lem with a nonuniform input distribution.

• We have presented results showing much faster
initial learning by RR methods than by backprop-
agation networks.

These results show that randomness can play a surpris-
ingly useful role in the search for good representations.
Random selection is easy to implement, and, suitably
biased, can be an effective search strategy for high-
dimensional spaces. Rather than trying to follow gra-
dients, or proposing a small number of carefully chosen
features, why not generate a great many at random?
What is lost in missteps may be more than made up
by the freedom to take simultaneous large steps in a
wide variety of directions.

For future work, we are interested in applications to
inherently online tasks, such as reinforcement learn-
ing tasks, in extensions to continuous inputs and con-
tinuous hidden-unit weights, in data-driven methods
for biasing the generation of hidden-units (e.g., as in
Rogers (1990)), and in multi-layer RR systems. In
this paper we have shown that network and nearest-
neighbor methods can yield surprisingly similar perfor-
mance. Does this similarity of performance reflect a
deeper similarity between these superficially very dif-
ferent approaches? In our current work we are ex-
ploring algorithms that further blur the distinctions
between these two classes of methods, in the attempt
to get all the advantages of both.

Acknowledgments

We gratefully acknowledge the helpful comments we
have received from Dan Schwartz, Ming Tan, Richard
Yee, Chris Atkeson, and the ML93 reviewers.

References

Albus, J.S. (1981) Brain, Behavior, and Robotics. Peter-
borough, NH: Byte Books. Chapter 6, pp. 139–179.

Breiman, L., Friedman, J., Olshen, R., Stone, C.J. (1984)
Classification and Regression Trees. Belmont, California:
Wadsworth.

Duda, R.O., Hart, P.E. (1973) Pattern Classification and
Scene Analysis. New York: Wiley.

Fisher, D.H. (1987) Knowledge acquisition via incremental
conceptual clustering. Machine Learning 2: 139–172.

Földiák, P. (1990) Forming sparse representations by lo-
cal anti-Hebbian learning. Biological Cybernetics 64: 165–
170.

Friedman, J.H. (1988) Multivariate adaptive regression
splines. Technical Report 102, Stanford Univ. Lab. for
Computational Statistics.

Gallant, S., Smith, D. (1987) Random cells: an idea whose
time has come and gone ... and come again? Proceeding
of the IEEE International Conference on Neural Networks.

Hartman, E., Keeler, J.D. (1991) Predicting the future:
Advantages of semilocal units. Neural Computation 3:
566–578.

Hinton, G.E. (1989) Connectionist learning procedures.
Artificial Intelligence 40: 185–234.

Kanerva, P. (1988) Sparse Distributed Memory. Cam-
bridge, MA: MIT Press.

Klopf, A.H., Gose, E. (1963) An evolutionary pattern
recognition network. IEEE Transactions on Systems, Man,
and Cybernetics 15: 247–250.

Kohonen, T. (1990) The self-organizing map. Proceedings
of the IEEE 78: 1464–1480.

Lin, L.-J. (1992) Self-improving reactive agents based on
reinforcement learning, planning, and teaching. Machine
Learning 8: 293–322.

Linsker, R. (1988) Self-organization in a perceptual net-
work. Computer 21: 105–117.

Mahadevan, S. (1992) Enhancing transfer in reinforcement
learning by building stochastic models of robot actions.
Proceedings ML92: 290–299.

Mahadevan, S., Connell, J. (1992) Automatic program-
ming of behavior-based robots using reinforcement learn-
ing. Artificial Intelligence: 311–365.

Michalski, R.S. (1983) A theory and methodology of in-
ductive learning. In Machine Learning: An Artificial Intel-
ligence Approach, R.S. Michalski, J.G. Carbonell, & T.M.
Mitchell (Eds.). San Mateo, CA: Morgan Kaufmann.

Moody, J., Darken, C.J. (1989) Fast learning in networks
of locally-tuned processing units. Neural Computation 1:
281–294.

Moore, A.W., Atkeson, C.G. (1992) An investigation of
memory-based function approximators for learning control.
MIT AI Laboratory Techical Report.

Oja, E. (1983) Subspace Methods of Pattern Recognition.
Letchworth, Hertfordshire, UK: Research Studies Press.

Prager, R.W., Fallside, F. (1988) The modified Kanerva
model for automatic speech recognition. Computer Speech
and Language 5: 257–274.

Quinlan, J.R. (1986) Induction of decision trees. Machine
Learning 1: 81–106.

Rogers, D. (1990) Predicting weather using a genetic mem-
ory: a combination of Kanerva’s sparse distributed mem-
ory and Holland’s genetic algorithm. NIPS-2, pp. 455–464.
San Mateo, CA: Morgan Kaufmann.

Rosenblatt, F. (1962) Principles of Neurodynamics. New
York: Spartan Books.

Rumelhart, D.E., Zipser, D. (1986) Feature discovery by
competitive learning. In: Parallel Distributed Processing:
Explorations in the Microstructure of Cognition, Vol. 1,
151–193. Cambridge, MA: MIT Press.

Sanger, T.D. (1991) Optimal hidden units for two-layer
nonlinear feedforward neural networks. Int. J. Pattern
Recognition and AI 5: 545-561.

Schlimmer, J.C., Fisher, D. (1986) A case study of incre-
mental concept induction. AAAI-86: 496–501.

Schlimmer, J.C., Granger, R.H., Jr. (1986) Incremental
learning from noisy data. Machine Learning 1: 317–354.

Schwartz, D. (1993) ATM scheduling with queuing delay
predictions. Proceedings ML-93.

Tesauro, G. (1992) Practical issues in temporal difference
learning. Machine Learning 8: 257–278.

Uhr, L., Vossler, C. (1961) A pattern recognition program
that generates, evaluates and adjusts its own operators.
Proc. of the Western J. Computer Conference, 555–569.

Utgoff, P.E. (1989) Incremental induction of decision trees.
Machine Learning 4: 161–186.

This paper has been digitally remastered so that it looks
better as a pdf file. Some of the formatting is slightly
different but the content has not been changed. No typos
have been corrected.

