
Temporal-Difference Networks

Richard S. Sutton and Brian Tanner
Department of Computing Science

University of Alberta
Edmonton, Alberta, Canada T6G 2E8

{sutton,btanner}@cs.ualberta.ca

Abstract

We introduce a generalization of temporal-difference (TD) learning to
networks of interrelated predictions. Rather than relating a single pre-
diction to itself at a later time, as in conventional TD methods, a TD
network relates each prediction in a set of predictions to other predic-
tions in the set at a later time. TD networks can represent and apply TD
learning to a much wider class of predictions than has previously been
possible. Using a random-walk example, we show that these networks
can be used to learn to predict by a fixed interval, which is not possi-
ble with conventional TD methods. Secondly, we show that if the inter-
predictive relationships are made conditional on action, then the usual
learning-efficiency advantage of TD methods over Monte Carlo (super-
vised learning) methods becomes particularly pronounced. Thirdly, we
demonstrate that TD networks can learn predictive state representations
that enable exact solution of a non-Markov problem. A very broad range
of inter-predictive temporal relationships can be expressed in these net-
works. Overall we argue that TD networks represent a substantial ex-
tension of the abilities of TD methods and bring us closer to the goal of
representing world knowledge in entirely predictive, grounded terms.

Temporal-difference (TD) learning is widely used in reinforcement learning methods to
learn moment-to-moment predictions of total future reward (value functions). In this set-
ting, TD learning is often simpler and more data-efficient than other methods. But the idea
of TD learning can be used more generally than it is in reinforcement learning. TD learn-
ing is a general method for learning predictions whenever multiple predictions are made of
the same event over time, value functions being just one example. The most pertinent of
the more general uses of TD learning have been in learning models of an environment or
task domain (Dayan, 1993; Kaelbling, 1993; Sutton, 1995; Sutton, Precup & Singh, 1999).
In these works, TD learning is used to predict future values of many observations or state
variables of a dynamical system.

The essential idea of TD learning can be described as “learning a guess from a guess”. In
all previous work, the two guesses involved were predictions of the same quantity at two
points in time, for example, of the discounted future reward at successive time steps. In this
paper we explore a few of the possibilities that open up when the second guess is allowed
to be different from the first.

To be more precise, we must make a distinction between the extensive definition of a predic-
tion, expressing its desired relationship to measurable data, and its TD definition, express-
ing its desired relationship to other predictions. In reinforcement learning, for example,
state values are extensively defined as an expectation of the discounted sum of future re-
wards, while they are TD defined as the solution to the Bellman equation (a relationship to
the expectation of the value of successor states, plus the immediate reward). It’s the same
prediction, just defined or expressed in different ways. In past work with TD methods, the
TD relationship was always between predictions with identical or very similar extensive
semantics. In this paper we retain the TD idea of learning predictions based on others, but
allow the predictions to have different extensive semantics.

1 The Learning-to-predict Problem

The problem we consider in this paper is a general one of learning to predict aspects of the
interaction between a decision making agent and its environment. At each of a series of
discrete time steps t, the environment generates an observation ot ∈ O, and the agent takes
an action at ∈ A. Whereas A is an arbitrary discrete set, we assume without loss of gener-
ality that ot can be represented as a vector of bits. The action and observation events occur
in sequence, o1, a1, o2, a2, o3 · · ·, with each event of course dependent only on those pre-
ceding it. This sequence will be called experience. We are interested in predicting not just
each next observation but more general, action-conditional functions of future experience,
as discussed in the next section.

In this paper we use a random-walk problem with seven states, with left and right actions
available in every state:

11
1 2 3 4 5 6 7

00000

The observation upon arriving in a state consists of a special bit that is 1 only at the two ends
of the walk and, in the first two of our three experiments, seven additional bits explicitly
indicating the state number (only one of them is 1). This is a continuing task: reaching an
end state does not end or interrupt experience. Although the sequence depends determinis-
tically on action, we assume that the actions are selected randomly with equal probability
so that the overall system can be viewed as a Markov chain.

The TD networks introduced in this paper can represent a wide variety of predictions, far
more than can be represented by a conventional TD predictor. In this paper we take just
a few steps toward more general predictions. In particular, we consider variations of the
problem of prediction by a fixed interval. This is one of the simplest cases that cannot
otherwise be handled by TD methods. For the seven-state random walk, we will predict
the special observation bit some numbers of discrete steps in advance, first unconditionally
and then conditioned on action sequences.

2 TD Networks

A TD network is a network of nodes, each representing a single scalar prediction. The
nodes are interconnected by links representing the TD relationships among the predictions
and to the observations and actions. These links determine the extensive semantics of
each prediction—its desired or target relationship to the data. They represent what we
seek to predict about the data as opposed to how we try to predict it. We think of these
links as determining a set of questions being asked about the data, and accordingly we
call them the question network. A separate set of interconnections determines the actual

computational process—the updating of the predictions at each node from their previous
values and the current action and observation. We think of this process as providing the
answers to the questions, and accordingly we call them the answer network. The question
network provides targets for a learning process shaping the answer network and does not
otherwise affect the behavior of the TD network. It is natural to consider changing the
question network, but in this paper we take it as fixed and given.

Figure 1a shows a suggestive example of a question network. The three squares across
the top represent three observation bits. The node labeled 1 is directly connected to the
first observation bit and represents a prediction that that bit will be 1 on the next time
step. The node labeled 2 is similarly a prediction of the expected value of node 1 on the
next step. Thus the extensive definition of Node 2’s prediction is the probability that the
first observation bit will be 1 two time steps from now. Node 3 similarly predicts the first
observation bit three time steps in the future. Node 4 is a conventional TD prediction, in this
case of the future discounted sum of the second observation bit, with discount parameter γ.
Its target is the familiar TD target, the data bit plus the node’s own prediction on the next
time step (with weightings 1− γ and γ respectively). Nodes 5 and 6 predict the probability
of the third observation bit being 1 if particular actions a or b are taken respectively. Node
7 is a prediction of the average of the first observation bit and Node 4’s prediction, both on
the next step. This is the first case where it is not easy to see or state the extensive semantics
of the prediction in terms of the data. Node 8 predicts another average, this time of nodes 4
and 5, and the question it asks is even harder to express extensively. One could continue in
this way, adding more and more nodes whose extensive definitions are difficult to express
but which would nevertheless be completely defined as long as these local TD relationships
are clear. The thinner links shown entering some nodes are meant to be a suggestion of the
entirely separate answer network determining the actual computation (as opposed to the
goals) of the network. In this paper we consider only simple question networks such as the
left column of Figure 1a and of the action-conditional tree form shown in Figure 1b.

L

LL

R

RR

1 5

2

3

4

a b

6

7 8

γ
γ1−

(a) (b)

Figure 1: The question networks of two TD networks. (a) a question network discussed in
the text, and (b) a depth-2 fully-action-conditional question network used in Experiments
2 and 3. Observation bits are represented as squares across the top while actual nodes of
the TD network, corresponding each to a separate prediction, are below. The thick lines
represent the question network and the thin lines in (a) suggest the answer network (the bulk
of which is not shown). Note that all of these nodes, arrows, and numbers are completely
different and separate from those representing the random-walk problem on the preceding
page.

More formally and generally, let yi
t ∈ [0, 1], i = 1, . . . , n, denote the prediction of the

ith node at time step t. The column vector of predictions yt = (y1
t , . . . , yn

t)T is updated
according to a vector-valued function u with modifiable parameter W:

yt = u(yt−1, at−1, ot,Wt) ∈ <n. (1)
The update function u corresponds to the answer network, with W being the weights on
its links. Before detailing that process, we turn to the question network, the defining TD
relationships between nodes. The TD target zi

t for yi
t is an arbitrary function zi of the

successive predictions and observations. In vector form we have1

zt = z(ot+1, ỹt+1) ∈ <n, (2)
where ỹt+1 is just like yt+1, as in (1), except calculated with the old weights before they
are updated on the basis of zt:

ỹt = u(yt−1, at−1, ot,Wt−1) ∈ <n. (3)
(This temporal subtlety also arises in conventional TD learning.) For example, for the
nodes in Figure 1a we have z1

t = o1
t+1, z2

t = y1
t+1, z3

t = y2
t+1, z4

t = (1− γ)o2
t+1 + γy4

t+1,
z5

t = z6
t = o3

t+1, z7
t = 1

2
o1

t+1 + 1

2
y4

t+1, and z8
t = 1

2
y4

t+1 + 1

2
y5

t+1. The target functions
zi are only part of specifying the question network. The other part has to do with making
them potentially conditional on action and observation. For example, Node 5 in Figure
1a predicts what the third observation bit will be if action a is taken. To arrange for such
semantics we introduce a new vector ct of conditions, ci

t, indicating the extent to which yi
t

is held responsible for matching zi
t, thus making the ith prediction conditional on ci

t. Each
ci
t is determined as an arbitrary function ci of at and yt. In vector form we have:

ct = c(at, yt) ∈ [0, 1]n. (4)
For example, for Node 5 in Figure 1a, c5

t = 1 if at = a, otherwise c5
t = 0.

Equations (2–4) correspond to the question network. Let us now turn to defining u, the
update function for yt mentioned earlier and which corresponds to the answer network. In
general u is an arbitrary function approximator, but for concreteness we define it to be of a
linear form

yt = σ(Wtxt) (5)
where xt ∈ <m is a feature vector, Wt is an n × m matrix, and σ is the n-vector form
of the identity function (Experiments 1 and 2) or the S-shaped logistic function σ(s) =

1

1+e−s
(Experiment 3). The feature vector is an arbitrary function of the preceding action,

observation, and node values:
xt = x(at−1, ot, yt−1) ∈ <m. (6)

For example, xt might have one component for each observation bit, one for each possible
action (one of which is 1, the rest 0), and n more for the previous node values yt−1. The
learning algorithm for each component w

ij
t of Wt is

w
ij
t+1 − w

ij
t = α(zi

t − yi
t)c

i
t

∂yi
t

∂w
ij
t

, (7)

where α is a step-size parameter. The timing details may be clarified by writing the se-
quence of quantities in the order in which they are computed:

yt at ct ot+1 xt+1 ỹt+1 zt Wt+1 yt+1. (8)
Finally, the target in the extensive sense for yt is

y∗

t = Et,π

{

(1 − ct) · y∗

t + ct · z(ot+1, y∗t+1)
}

, (9)
where · represents component-wise multiplication and π is the policy being followed,
which is assumed fixed.

1In general, z is a function of all the future predictions and observations, but in this paper we treat
only the one-step case.

3 Experiment 1: n-step Unconditional Prediction

In this experiment we sought to predict the observation bit precisely n steps in advance,
for n = 1, 2, 5, 10, and 25. In order to predict n steps in advance, of course, we also
have to predict n − 1 steps in advance, n − 2 steps in advance, etc., all the way down to
predicting one step ahead. This is specified by a TD network consisting of a single chain of
predictions like the left column of Figure 1a, but of length 25 rather than 3. Random-walk
sequences were constructed by starting at the center state and then taking random actions
for 50, 100, 150, and 200 steps (100 sequences each).

We applied a TD network and a corresponding Monte Carlo method to this data. The Monte
Carlo method learned the same predictions, but learned them by comparing them to the
actual outcomes in the sequence (instead of zi

t in (7)). This involved significant additional
complexity to store the predictions until their corresponding targets were available. Both
algorithms used feature vectors of 7 binary components, one for each of the seven states, all
of which were zero except for the one corresponding to the current state. Both algorithms
formed their predictions linearly (σ(·) was the identity) and unconditionally (ci

t = 1 ∀i, t).

In an initial set of experiments, both algorithms were applied online with a variety of values
for their step-size parameter α. Under these conditions we did not find that either algorithm
was clearly better in terms of the mean square error in their predictions over the data sets.
We found a clearer result when both algorithms were trained using batch updating, in which
weight changes are collected “on the side” over an experience sequence and then made all
at once at the end, and the whole process is repeated until convergence. Under batch
updating, convergence is to the same predictions regardless of initial conditions or α value
(as long as α is sufficiently small), which greatly simplifies comparison of algorithms. The
predictions learned under batch updating are also the same as would be computed by least
squares algorithms such as LSTD(λ) (Bradtke & Barto, 1996; Boyan, 2000; Lagoudakis &
Parr, 2003). The errors in the final predictions are shown in Table 1.

For 1-step predictions, the Monte-Carlo and TD methods performed identically of course,
but for longer predictions a significant difference was observed. The RMSE of the Monte
Carlo method increased with prediction length whereas for the TD network it decreased.
The largest standard error in any of the numbers shown in the table is 0.008, so almost
all of the differences are statistically significant. TD methods appear to have a significant
data-efficiency advantage over non-TD methods in this prediction-by-n context (and this
task) just as they do in conventional multi-step prediction (Sutton, 1988).

Time 1-step 2-step 5-step 10-step 25-step
Steps MC/TD MC TD MC TD MC TD MC TD

50 0.205 0.219 0.172 0.234 0.159 0.249 0.139 0.297 0.129
100 0.124 0.133 0.100 0.160 0.098 0.168 0.079 0.187 0.068
150 0.089 0.103 0.073 0.121 0.076 0.130 0.063 0.153 0.054
200 0.076 0.084 0.060 0.109 0.065 0.112 0.056 0.118 0.049

Table 1: RMSE of Monte-Carlo and TD-network predictions of various lengths and for
increasing amounts of training data on the random-walk example with batch updating.

4 Experiment 2: Action-conditional Prediction

The advantage of TD methods should be greater for predictions that apply only when the
experience sequence unfolds in a particular way, such as when a particular sequence of
actions are made. In a second experiment we sought to learn n-step-ahead predictions
conditional on action selections. The question network for learning all 2-step-ahead pre-

dictions is shown in Figure 1b. The upper two nodes predict the observation bit conditional
on taking a left action (L) or a right action (R). The lower four nodes correspond to the
two-step predictions, e.g., the second lower node is the prediction of what the observation
bit will be if an L action is taken followed by an R action. These predictions are the same
as the e-tests used in some of the work on predictive state representations (Littman, Sutton
& Singh, 2002; Rudary & Singh, 2003).

In this experiment we used a question network like that in Figure 1b except of depth four,
consisting of 30 (2+4+8+16) nodes. The conditions for each node were set to 0 or 1 de-
pending on whether the action taken on the step matched that indicated in the figure. The
feature vectors were as in the previous experiment. Now that we are conditioning on action,
the problem is deterministic and α can be set uniformly to 1. A Monte Carlo prediction
can be learned only when its corresponding action sequence occurs in its entirety, but then
it is complete and accurate in one step. The TD network, on the other hand, can learn
from incomplete sequences but must propagate them back one level at a time. First the
one-step predictions must be learned, then the two-step predictions from them, and so on.
The results for online and batch training are shown in Tables 2 and 3.

As anticipated, the TD network learns much faster than Monte Carlo with both online and
batch updating. Because the TD network learns its n step predictions based on its n − 1
step predictions, it has a clear advantage for this task. Once the TD Network has seen
each action in each state, it can quickly learn any prediction 2, 10, or 1000 steps in the
future. Monte Carlo, on the other hand, must sample actual sequences, so each exact action
sequence must be observed.

1-Step 2-Step 3-Step 4-Step
Time Step MC/TD MC TD MC TD MC TD

100 0.153 0.222 0.182 0.253 0.195 0.285 0.185
200 0.019 0.092 0.044 0.142 0.054 0.196 0.062
300 0.000 0.040 0.000 0.089 0.013 0.139 0.017
400 0.000 0.019 0.000 0.055 0.000 0.093 0.000
500 0.000 0.019 0.000 0.038 0.000 0.062 0.000

Table 2: RMSE of the action-conditional predictions of various lengths for Monte-Carlo
and TD-network methods on the random-walk problem with online updating.

Time Steps MC TD
50 53.48% 17.21%

100 30.81% 4.50%
150 19.26% 1.57%
200 11.69% 0.14%

Table 3: Average proportion of incorrect action-conditional predictions for batch-updating
versions of Monte-Carlo and TD-network methods, for various amounts of data, on the
random-walk task. All differences are statistically significant.

5 Experiment 3: Learning a Predictive State Representation

Experiments 1 and 2 showed advantages for TD learning methods in Markov problems.
The feature vectors in both experiments provided complete information about the nominal
state of the random walk. In Experiment 3, on the other hand, we applied TD networks to
a non-Markov version of the random-walk example, in particular, in which only the special
observation bit was visible and not the state number. In this case it is not possible to make

accurate predictions based solely on the current action and observation; the previous time
step’s predictions must be used as well.

As in the previous experiment, we sought to learn n-step predictions using action-
conditional question networks of depths 2, 3, and 4. The feature vector xt consisted of
three parts: a constant 1, four binary features to represent the pair of action at−1 and ob-
servation bit ot, and n more features corresponding to the components of yt−1. The features
vectors were thus of length m = 11, 19, and 35 for the three depths. In this experiment,
σ(·) was the S-shaped logistic function. The initial weights W0 and predictions y0 were
both 0.

Fifty random-walk sequences were constructed, each of 250,000 time steps, and presented
to TD networks of the three depths, with a range of step-size parameters α. We measured
the RMSE of all predictions made by the networks (computed from knowledge of the task)
and also the “empirical RMSE,” the error in the one-step prediction for the action actually
taken on each step. We found that in all cases the errors approached zero over time, showing
that the problem was completely solved. Figure 2 shows some representative learning
curves for the depth-2 and depth-4 TD networks.

0

 .1

 .2

 .3

0 50K 100K 150K 200K 250K

Time Steps

Empirical
RMS error

α=.1

α=.25α=.5

α=.75
α=.5

depth 2

Figure 2: Prediction performance on the non-Markov random walk with depth-4 TD net-
works (and one depth-2 network) with various step-size parameters, averaged over 50 runs
and 1000 time-step bins. The “bump” most clearly seen with small step sizes is reliably
present and may be due to predictions of different lengths being learned at different times.

In ongoing experiments on other non-Markov problems we have found that TD networks
do not always find such complete solutions. Other problems seem to require more than one
step of history information (the one-step-preceding action and observation), though less
than would be required using history information alone. Our results as a whole suggest that
TD networks may provide an effective alternative learning algorithm for predictive state
representations (Littman et al., 2000). Previous algorithms have been found to be effective
on some tasks but not on others (e.g, Singh et al., 2003; Rudary & Singh, 2004; James &
Singh, 2004). More work is needed to assess the range of effectiveness and learning rate
of TD methods vis-a-vis previous methods, and to explore their combination with history
information.

6 Conclusion

TD networks suggest a large set of possibilities for learning to predict, and in this paper we
have begun exploring the first few. Our results show that even in a fully observable setting
there may be significant advantages to TD methods when learning TD-defined predictions.
Our action-conditional results show that TD methods can learn dramatically faster than
other methods. TD networks allow the expression of many new kinds of predictions whose
extensive semantics is not immediately clear, but which are ultimately fully grounded in
data. It may be fruitful to further explore the expressive potential of TD-defined predictions.

Although most of our experiments have concerned the representational expressiveness and
efficiency of TD-defined predictions, it is also natural to consider using them as state, as in
predictive state representations. Our experiments suggest that this is a promising direction
and that TD learning algorithms may have advantages over previous learning methods.
Finally, we note that adding nodes to a question network produces new predictions and
thus may be a way to address the discovery problem for predictive representations.

Acknowledgments

The authors gratefully acknowledge the ideas and encouragement they have received in this
work from Satinder Singh, Doina Precup, Michael Littman, Mark Ring, Vadim Bulitko,
Eddie Rafols, Anna Koop, Tao Wang, and all the members of the rlai.net group.

References

Boyan, J. A. (2000). Technical update: Least-squares temporal difference learning. Machine Learn-
ing 49:233–246.

Bradtke, S. J. and Barto, A. G. (1996). Linear least-squares algorithms for temporal difference learn-
ing. Machine Learning 22(1/2/3):33–57.

Dayan, P. (1993). Improving generalization for temporal difference learning: The successor repre-
sentation. Neural Computation 5(4):613–624.

James, M. and Singh, S. (2004). Learning and discovery of predictive state representations in dy-
namical systems with reset. In Proceedings of the Twenty-First International Conference on Machine
Learning, pages 417–424.

Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains: Preliminary results. In Pro-
ceedings of the Tenth International Conference on Machine Learning, pp. 167–173.

Lagoudakis, M. G. and Parr, R. (2003). Least-squares policy iteration. Journal of Machine Learning
Research 4(Dec):1107–1149.

Littman, M. L., Sutton, R. S. and Singh, S. (2002). Predictive representations of state. In Advances
In Neural Information Processing Systems 14:1555–1561.

Rudary, M. R. and Singh, S. (2004). A nonlinear predictive state representation. In Advances in
Neural Information Processing Systems 16:855–862.

Singh, S., Littman, M. L., Jong, N. K., Pardoe, D. and Stone, P. (2003) Learning predictive state
representations. In Proceedings of the Twentieth Int. Conference on Machine Learning, pp. 712–719.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences. Machine Learning
3:9–44.

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time scales. In A. Prieditis
and S. Russell (eds.), Proceedings of the Twelfth International Conference on Machine Learning,
pp. 531–539. Morgan Kaufmann, San Francisco.

Sutton, R. S., Precup, D. and Singh, S. (1999). Between MDPs and semi-MDPs: A framework for
temporal abstraction in reinforcement learning. Artificial Intelligence 112:181–121.

