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Abstract—Connectionist learning schemes have hitherto seemed far removed from cogni-
tive skills such as reasoning, planning, and the formation of internal models. In this article
we investigate what sort of world models a connectionist system might learn and how it
might do so. A learning scheme is presented that forms such models based on observed
stimulus-stimulus relationships. The basis of the scheme is a recurrently connected net-
work of simple, neuron-like processing elements. The net produces a set of predictions of
future stimuli based on the current stimuli, where these predictions are based on a model
and involve multiple-step chains of predictions. Results are presented from computer sim-
ulations of the scheme connected to a simple world consisting of a stochastic maze (Markov
process). By wandering around the maze the network learns its construction. When re-
inforcement is subsequently introduced, the solution to the maze is learned much more
quickly than it is without the “exploration” period. The form and logic of the experiment
is the same as that of the latent learning experiments of animal learning research.

World Models and Connectionism

Many of the predominant high-level theories of cognition give a central role to internal
models (e.g., see Gelertner and Gerstenhaber, 1956; Craik, 1943; Dennett, 1978; Simon,
1969; or Sutton and Barto, 1981, for a review). Their central idea is that much of what we
mean by “thought” can be understood as the formation, modification, and use of internal
models of the world. Here, by internal models we mean cognitive structures that allow us
to predict the future and to anticipate the results of possible actions we might take. In
particular, we mean models that allow chains of anticipation and inference, e.g., “if I do
A then B will occur, and if B, then C will occur, etc.”

In connectionist networks, all concepts (e.g., perceptions of the environment, stimuli
and actions) are represented as activity in the elements of the network. In other words, the
activity of the network acts as a static model of the current situation. The natural place to
model the dynamics of the environment is in the connections between elements: if stimulus
or action A is always follows by stimulus B, then a strong connection from A to B models
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this fact in the sense that it causes the evolution of activity in the network to mimic the
evolution of states in the external environment. Of course the network’s evolution will be
much quicker than the environment’s, so its predictions will be anticipatory and thereby
valuable for directing behavior.

That the behavior of activity within a network might be used to model the behav-
ior of the world is a simply stated idea with many ramifications. The advantages are
apparent: besides inheriting the parallelism and mechanistic advantages of connection-
ism, the theory is also extremely parsimonious, since world modeling is achieved using
the same apparatus—the connections of a network—that is used to implement simple
stimulus-response mappings. Connectionist internal models could conceivably form a sort
of “missing link” between cognitive processes such as reasoning and planning on the one
hand, and stimulus-response learning and neuroscience on the other.

Problems with the idea are also apparent. If a network’s connections are used to
implement the dynamics of an internal model, how can they also be used to implement
stimulus-response mappings? Or how can they also be used to implement the structures
necessary for recognizing complex concepts and executing complex actions? In addition,
models can easily involve self-referential chains, e.g., “A is followed by B which is followed
by A again.” If a network forms cycles of excitatory connections in order to model such
an environment, it courts the danger of positive feedback and instability. The results
presented here deal with the self-reference issue, but not with the issue of how to integrate
the different functions of a network. We assume that the other functions are completely
separate from the network or sub-network that learns and embodies the internal model.

From the point of view of artificial intelligence, where the use of internal models is
commonplace, the primary advantage of connectionist models is that they are well-suited
for learning. Standard AI techniques include sophisticated methods for searching a model
efficiently when the model is completely defined and known. In practice, the model is often
only partially known, and search methods for such cases are less well understood. What
is needed is the ability both to learn a model and to search it as it is being learned. Con-
nectionist structures seem to be well suited to learning methods, particularly in uncertain
and noisy domains. As such they suggest an attractive direction in which to look for ways
of learning searchable models.

To limit the scope of this paper, we pay little attention to the issues involved in how
a connectionist net should best use a model, and instead concentrate on how it maybe ac-
quired. We also concentrate on capturing inferences that are not dependent on the actions
selected, that is, we focus on stimulus-stimulus rather than response-stimulus inferences.
A network and learning procedure are presented which can learn to mimic environments,
including multiple-step causal chains, as outlined above. The learning procedure, though
deterministic, is similar to the stochastic learning procedure used in the Boltzmann ma-
chine (Ackley, Hinton, and Sejnowski, 1985) in that it involves letting a recurrent network
run to equilibrium in response to two different stimulus patterns.
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There are numerous ties between this work and animal learning theory. The learning
involved in building an internal model is analogous to the S-S learning effectively advo-
cated by Tolman and others in response to the rise of behaviorism (e.g., see Hilgard and
Bower, 1975). The final simulation experiment reported here is directly analogous to their
“latent learning” experiments, in which it was shown that animals learn extensively about
their environment even if never rewarded or punished, the learning remaining latent and
unexpressed in behavior until reinforcement is introduced. The ties between this work and
modern animal learning theory are even stronger. Contemporary animal learning theory,
particularly that part concerning classical or Pavlovian conditioning, has a very cognitive
orientation (e.g., see Dickinson, 1980). Many of its results bear directly on the issues of
how a declarative internal model is learned by animals. The learning scheme used here is
a descendant of the model of classical conditioning developed by Sutton and Barto (1981),
pursuing the network approach illustrated by Moore and Stickney (1980).

Recurrent Networks and Markov Worlds

The network used here is of the simplest of connectionist designs. Each element receives
as input the activity of every element and an external input from outside the net. These
external stimuli are the variables to be predicted. They correspond to the stimuli A, B, etc.,
mentioned earlier, while the connections within the net are meant to model the world’s
dynamics. Accordingly, each connection between elements has a modifiable connection
weight, while each external input has a direct and unmodifiable effect on the activity of
its corresponding element. The activity of the network is updated according to

Y =z+Vy (1)

where y is the old activity vector, y' is the new activity vector, z is the external stimulus
vector, and V is the matrix of modifiable connection weights. The process given by (1)
may converge (reach equilibrium), diverge, or oscillate, depending on the weights. For the
weights found by the learning scheme in our simulations, it has always converged.

A perfect stimulus-stimulus model would produce complete information about future
stimuli. Given a stimulus z; at time t, it would be able to reply with E {z;,; | z:},
for any k > 0. Consider the special case of the stimuli z; being generated by a Markov
process with state transition matrix P *, where each z; is a vector with one component
for each state, that component being 1 when the Markov process is in that state and 0
otherwise. Then E {z¢y1 | z:} = Pz; and, in fact, E {zsy | z:} = P*z;. Recurrent nets
are good at computing such powers of matrices: If an autonomous (inputless) recurrent
network with connection matrix V = P is initialized to y = z;, then its activity will
naturally compute, in sequence, the desired P*z;.

* This is the matrix [p;;], where each p;; is the probability of a transition from state j to state 1,
given that the process is in state 7.



The above is a particularly clear special case, but is of little value in most practical
cases. The principal problem is that this approach focuses on a single-step model of the
world. It can know that A precedes B only if A tmmediately precedes B, or if distinct stimuli
C, D, E, etc., occur for every step intervening between A and B. This approach forces
the model to be an extremely local, myopic one, while the major observable regularities
inevitably appear at a variety of time scales. Alternatively, we can imagine learning
separately the l-step, 2-step, 3-step, etc., transition probabilities for the environment,
and then using each to answer specific questions. However, this approach violates the
whole idea of making multiple-step predictions by combining separate predictive steps. In
addition, it is not clear that all this information is needed. Do we need to know what is
going to happen at each future time step separately, or can some of this information by
merged without significant loss? To answer this question we must turn to that of how the
predictions are going to be used.

The ultimate use of the model will be to answer questions of the form “how desirable
are the consequences of this possible action?” and “now that I’ve made an action, how
well does it appear to have turned out?” One consequence of this is that we will not be so
concerned with making predictions of what will happen at specific future times as much as
we we will be concerned with the sum of future predictions. Rather than predicting that
“A will probably happen at t + k,” we will want to predict “A will probably happen n
times in the near future.” Rather than predicting Ttk We wish to predict something more
like E,klzl Tt4n. A similar approach, but which avoids an abrupt cutoff at an arbitrary
time limit ¢ + k, is to predict Z;”___l Y"ZTt4n, where 0 < 4 < 1. This measure adds up
all future stimuli xz;yx, weighting each according to 7*, i.e., the farther in the future a
stimulus will occur, the less it contributes to the sum. The value of ~ determines how
rapidly the weighting of future stimuli drops off.

An estimate of Z:ozl Y"Zt4n is also readily computed by a recurrent network if its
connection matrix incorporates the environment’s probability transition matrix. The equi-
librium value for the process given by (1) is domeoVz; (taking £ = ;). If V is a
fraction 4P of the probability transition matrix P of a Markov process, then this sum
is £ {E:’:o fy":z:H.n} , from which the desired quantity, E {Zz‘;l 'y"'a:t+n} can be imme-
diately obtained by subtracting z;. In other words, if V' is a fraction of the one-step
predictive relationships of the environment, then the network will converge to predictions
of how often each stimulus will occur in the near future.

A major advantage of being concerned only with the sum of all future predictions is
that one can easily incorporate predictions that span several steps and that cannot be
made as chains of one-step pfedictions. Recall that these are needed when A precedes B
with a “gap” of one or more time steps with no distinct stimuli filling the gap. Let us call a
prediction “irreducible” if it cannot be reduced to a chain of shorter predictions. All single-
step predictions are irreducible predictions, and, as we discussed above, for the Special case
of Markov environments that reveal their state completely, these are the onl'y irreducible
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predictions. In almost any real problem, however, multi-step irreducible predictions are
common. .

Irreducible predictions have a nice relationship to sums of future predictions. As a
generalization of the one-step prediction matrix P, we propose the irreducible prediction
matrix P, whose elements pij Tepresent the irreducible prediction of the 7th input from
the presence of the jth input. We conjecture that as long as one is interested only in the
sum of future predictions one can replace P with P, i.e., that Yomo Ptz =30, Prg,
Vz.* If one is discounting, things are slightly more complicated. In order for Z?:o Prz
to match ) .o ,y"P"z, the irreducible predictions in P should be discounted according
to their length, i.e., one-step predictions should be discounted by «, two-step irreducible

predictions by 4%, etc. An example is given below as part of the simulation results.

The Learning Procedure

At each new time step t + 1 the environment generates a new stimulus vector z;;;.
How can this information be used to update the predictions made by the net at time ¢
using z; 7 Within each time step the network is run completely to equilibrium (by repeated
application of (1)) for both z; and z¢41; let us denote the equilibrium value for the net’s
activity in response to z; as z, and the equilibrium value in response to z:1; as 2’. What
is the desired relationship between z and 2'? Recall that z is supposed to estimate the
discounted sum of future z’s:

(o 0]
n
z = _S_ 7 Ttin-
n=0

Similarly, 2’ & Y oo ;™ Tt4+n+1, 50 2’s desired value can be rewritten in terms of 2’ as
zrR T+ 'yz' .

The difference between z and z; + 42’ can be taken as an error in z and used to update
the connection matrix V. According to the learning scheme, each connection weight is
incremented proportionally to the product of this difference (z: + v2' — 2) at the post-
connection element and the recent external input to the pre-connection element. This
change tends to cause z to change so as to reduce the difference. Symbolically, the
learning scheme is defined by:

AVy = B(zi +v2' — 2)7], Vo =0,

where [ is a positive learning constant and z’{ denotes the transpose of a vector z; of
averages of recent values of z (taking the transpose makes the vector product here an

* This should probably be taken as a formal statement of the definition of an irreducible prediction,
with the conjecture being that such a matrix P exists.



outer product). Z: is iteratively computed as follows:
Tt = AEg-1 + (1 — /\)xt, IZo =0

where the parameter A, 0 < A < 1, determines how strongly previous values of z influence
current changes to V.

Simulation Results

Figure 1 shows the state transition structure of a simple autonomous Markov process.
The numbers on the arcs indicate the probability that the indicated transition occurs; this
information is also given in the state transition matrix P. Using the methods described
above, a network successfully learned to model this environment. The stimuli presented to
the net were unit basis vectors distinctly identifying the current state: if the environment
was in state ¢ at time ¢, then the ¢th component of z; was 1 and all other components
were 0. The parameters used were v = .5, f = .1, and A = .5. The activity of the
network after 200 steps was used as an approximation to its asymptotic behavior. Figure
2 shows a comparison of 7P and the V' matrix found by the learning algorithm after 1000
steps: The match is quite good; by choosing § smaller and taking more steps we were
able to make V approach 4P as closely as we desired.

o O = O
o = O ©
o © O >
S vt © w;

Figure 1. State transition structure and matrix of a simple
autonomous Markov process. Each circle represents a state of
the process and each arc a possible state transition. The numbers of
the arcs indicate the probability of the state transition.

Next we introduced a “gap” in the environment. The stimulus vector for State 2
was changed to 0, so that nothing could be associated with it. As a result, the two-step
predictive relationship between State 1 and State 3 became irreducible. Figure 3 shows
the new matrix found. Since stimulus component 2 no longer occurs, nothing has become
associated with it. The associations from 1 to 2 and from 2 to 3, which were formerly each
of strength ~, have been replaced by a single association from 1 to 3 of strength 2. This
two-step, direct association from 1 to 3 compensates for the network’s inability to form
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0 0 .25 .25 .00 .00 .31 .27

5 0 O 0 .50 —-.01 .01 -.01
AP = V =

0O 5 0 .25 .00 .51 .01 .25

0 0 25 O .00 —-.01 .17 -.02

Figure 2. Comparison of 7P and the found connection matrix V for the
environment shown in Figure 1.

an indirect association from 1 to 3 by way of the now undetectable State 2. As a result,
the predictions from all states other than State 2 are exactly the same as they were when
State 2 was observable. Figure 4 compares the ideal total prediction matrix ) .., y*P"
with the total prediction matrix Zf:’:l V™ found by the network.

.00 0 .26 .26
0 O 0 0
V =
25 0 —-.00 .30
01 0 25 -—.01

Figure 3. The connection matrix found for the
environment shown in Figure 1 when State 2 was
a “gap” and could not be the basis for predic-
tions.

Finally, we simulated the larger Markov environment shown in Figure 5, and we in-
troduced a reinforcement learning mechanism to illustrate how a model learned by this
method can be used to improve performance on reinforcement learning tasks. At each
time step one of two actions, LEFT or RIGHT, was selected by the reinforcement learning
system. This selection determines which of the arcs from each state shown in Figure 5 was
followed; where a state has only one arc Ieavingvit, the arc was followed independent of
the action selected. The experiment had two phases, 1) a pretraining phase, during which
no reinforcement was delivered and the environment was randomly explored, and 2) a test
phase, during which reinforcement was delivered upon reaching state F. During the test
phase, optimal performance is achieved by selecting the RIGHT action from states A, B,
C, and D, thereby moving around the maze as rapidly as possible and visiting state F as



prevent reinforcement during the pretraining phase, the 10th component of the stimulus
vector was held at 0, making state F 5 “gap” state.

models predictions of reinforcement, ie., according to the 10th component of z; 4~z —

NOMODEL gigd not construct a model and reinforced its action selections according to
external reinforcement directly, i.e., according to the 10th component of z. Both systems
select their actions by maintaining a weight w; for each state 1. When state ¢ is entered,
RIGHT is selected with probability 1/ (1 + e~wi/ T) » T a positive parameter; otherwise

61



LEFT is selected. If w; is zero (as it is initially), then this probability is 1/2. If w;
is positive then RIGHT will be favored in state 7, and if w; is negative, LEFT will be
favored. Whatever action is selected in a state, the probability of repeating that action
will be incremented or decremented proportionally to the reinforcement (as defined above
for MODEL and NOMODEL) that follows the action selection. The size of the increment

- or decrement also depends on how closely the reinforcement follows the action selection; it
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is proportional to Ag , where k is the (possibly zero) number of steps intervening between
action and reinforcement. For a more complete discussion of the type of reinforcement
learning algorithm employed here see (Sutton, 1984; Barto, Sutton, and Anderson, 1983).

In theory, the use of a model can be a great advantage on this task. The “wrong”
actions from states A, B, C, and D all ultimately lead to the goal state, just more slowly
than the correct actions. Without a model, a learning system can easily become stuck
making a wrong action selection without realizing that it could do better. To avoid this,
learning must be very slow. With a model, on the other hand, this problem can be
completely avoided. Once reinforcement has been received in state F, a pre-existing model
can make good predictions of reinforcement from every state. For example, the model
would immediately predict that state C is better (closer to reinforcement) than state C’,
that state B is better than state B’, etc. Armed with this information about the relative
desirability of states, in theory a much better job can be done assigning credit and blame
to action selections.

Both the pretraining and test phases lasted until the learning system had completed 100
circuits of the environment from state A back to state A. The first reinforcement occurred
on the 101st circuit. For the NOMODEL learning system we used the parameters that gave
the best performance on this problem. These were T =0.5 and A, =0.3. For the MODEL
learning system, we chose “reasonable” parameter values without making any attempt to
find the best. For the reinforcement-learning part of the system, the parameters used were
T =10and Aw =0 ; for the model-learning part of the system, the parameters used were
A=0 , f=0.01, and «=0.8. The activity of the network after 10 applications of (1) was
used as an approximation to its asymptotic (equilibrium) activity.

We found that the MODEL system did in fact perform much better than the
NOMODEL learning system on this task. Figure 6 compares the performance of the
MODEL and NOMODEL learning systems on this experiment. Average performance over
10 runs is plotted for each learning system for each circuit of the test phase. The per-
formance measure used for a circuit is the number of steps actually taken in completing
the circuit. Note that lower values are better for this performance measure. The learn-
ing system without a model clearly had a difficult time with this task. Its performance
improved over the duration of the test phase, but remained erratic and far from optimal.
The learning system with a model, on the other hand, acheived optimal or near optimal
performance after just 3 circuits on all ten runs. The use of a model results in a much
higher performance level after fewer experiences with reinforcement on this task.
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Figure 6. Average learning curves for the
MODEL and NOMODEL learning systems dur-
ing the test phase of the experiment whose en-
vironment is shown in Figure 5. A circuit is a
complete trip from state A back to state A. The hori-
zontal axis shows circuit number, and the vertical axis
shows steps taken to complete the circuit. Note that
a lower circuit time corresponds to better performance.
The lower dashed line indicates the optimal (fastest)
performance level, and the upper dashed line indicates
the chance performance level (acheived if RIGHT and
LEFT actions are chosen with equal probability from
all states).

Conclusions

The modeling and internal simulation of the world is an important part of cognition,
and one which the connectionist approach must eventually address. Surprisingly, in certain
respects connectionism is very well suited to world modeling. A dynamically evolving
network can be used as a world model by linking its activity to states of the world, as is
commonly done, and by linking the evolution of that activity to the evolution of world
states, as has been done here. The specific method used here to shape that the network’s
evolution has advantages with regard to the spanning of gaps in stimulus sequences, but
is limited to forming stimulus-stimulus as opposed to response-stimulus models. We have
tried to make the point that connectionist internal models are feasible, even natural, and

to show an example of how they can be used to improve performance on simple learning
tasks. ’
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