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Abstract

In this paper we present a control-systems
perspective on one of the major neural-
network approaches to learning control,
reinforcement learning. Control problems
can be divided into two classes: 1) reg-
ulation and tracking problems, in which
the objective is to follow a reference tra-
jectory, and 2) optimal control problems,
in which the objective is to extremize a
functional of the controlled system’s be-
havior that is not necessarily defined in
terms of a reference trajectory. Adaptive
methods for problems of the first kind
are well known, and include self-tuning
regulators and model-reference methods,
whereas adaptive methods for optimal-
control problems have received relatively
little attention. Moreover, the adaptive
optimal-control methods that have been
studied are almost all indirect methods,
in which controls are recomputed from
an estimated system model at each step.
This computation is inherently complex,
making adaptive methods in which the
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optimal controls are estimated directly
more attractive. We view reinforcement
learning methods as a computationally
simple, direct approach to the adaptive
optimal control of nonlinear systems. For
concreteness, we focus on one reinforce-
ment learning method (Q-learning) and
on its analytically proven capabilities for
one class of adaptive optimal control
problems (markov decision problems with
unknown transition probabilities).

INTRODUCTION

All control problems involve manipulating a
dynamical system’s input so that its behavior
meets a collection of specifications constitut-
ing the control objective. In some problems,
the control objective is defined in terms of
a reference level or reference trajectory that
the controlled system’s output should match
or track as closely as possible. Stability is
the key issue in these regulation and track-
ing problems. In other problems, the con-
trol objective is to extremize a functional
of the controlled system’s behavior that is
not necessarily defined in terms of a refer-
ence level or trajectory. The key issue in the
latter problems is constrained optimization;
here optimal-control methods based on the
calculus of variations and dynamic program-
ming have been extensively studied. In re-
cent years, optimal control has received less
attention than regulation and tracking, which
have proven to be more tractable both ana-
lytically and computationally, and which pro-



duce more reliable controls for many applica-
tions.

When a detailed and accurate model of
the system to be controlled is not available,
adaptive control methods can be applied.
The overwhelming majority of adaptive con-
trol methods address regulation and tracking
problems. However, adaptive methods for op-
timal control problems would be widely ap-
plicable if methods could be developed that
were computationally feasible and that could
be applied robustly to nonlinear systems.

Tracking problems assume prior knowledge
of a reference trajectory, but for many prob-
lems the determination of a reference trajec-
tory is an important part—if not the most
important part—of the overall problem. For
example, trajectory planning is a key and dif-
ficult problem in robot navigation tasks, as it
is in other robot control tasks. To design a
robot capable of walking bipedally, one may
not be able to specify a desired trajectory for
the limbs a priori, but one can specify the ob-
jective of moving forward, maintaining equi-
librium, not damaging the robot, etc. Process
control tasks are typically specified in terms
of overall objectives such as maximizing yield
or minimizing energy consumption. It is gen-
erally not possible to meet these objectives
by dividing the task into separate phases for
trajectory planning and trajectory tracking.
Ideally, one would like to have both the tra-
jectories and the required controls determined
so as to extremize the objective function.

For both tracking and optimal control, it
is usual to distinguish between indirect and
direct adaptive control methods. An indirect
method relies on a system identification pro-
cedure to form an explicit model of the con-
trolled system and determines then the con-
trol rule from the model. Direct methods de-
termine the control rule without forming such
a system model.

In this paper we briefly describe learn-
ing methods known as reinforcement learning
methods, and present them as a direct ap-
proach to adaptive optimal control. These

methods have their roots in studies of an-
imal learning and in early learning control
work (e.g., [22]), and are now an active area
of research in neural networks and machine
learning (e.g., see [1,41]). We summarize here
an emerging deeper understanding of these
methods that is being obtained by viewing
them as a synthesis of dynamic programming
and stochastic approximation methods.

REINFORCEMENT LEARNING

Reinforcement learning is based on the com-
monsense idea that if an action is followed by
a satisfactory state of affairs, or by an im-
provement in the state of affairs (as deter-
mined in some clearly defined way), then the
tendency to produce that action is strength-
ened, i.e., reinforced. This idea plays a fun-
damental role in theories of animal learning,
in parameter-perturbation adaptive-control
methods (e.g., [12]), and in the theory
of learning automata and bandit problems
[8,26]. Extending this idea to allow action
selections to depend on state information in-
troduces aspects of feedback control, pattern
recognition, and associative learning (e.g.,
[2,6]). Further, it is possible to extend the
idea of being “followed by a satisfactory state
of affairs” to include the long-term conse-
quences of actions. By combining methods
for adjusting action-selections with methods
for estimating the long-term consequences of
actions, reinforcement learning methods can
be devised that are applicable to control prob-
lems involving temporally extended behav-
ior (e.g., [3,4,7,13,14,30,34,35,36,40]). Most
formal results that have been obtained are
for the control of Markov processes with un-
known transition probabilities (e.g., [31,34]).
Also relevant are formal results showing
that optimal controls can] often be com-
puted using more asynchronous or incremen-
tal forms of dynamic programming than are
conventionally used (e.g., [9,39,42]). Em-
pirical (simulation) results using reinforce-
ment learning combined with neural net-
works or other associative memory structures



have shown robust efficient learning on a
variety of nonlinear control problems (e.g.,
[5,13,19,20,24,25,29,32,38,43]). An overview
of the role of reinforcement learning within
neural-network approaches is provided by [1].
For a readily accessible example of rein-
forcement learning using neural networks the
reader is referred to Anderson’s article on the
inverted pendulum problem [43].

Studies of reinforcement-learning neural
networks in nonlinear control problems have
generally focused on one of two main types
of algorithm: actor-critic learning or Q-
learning. An actor-critic learning system con-
tains two distinct subsystems, one to estimate
the long-term utility for each state and an-
other to learn to choose the optimal action
in each state. A Q-learning system maintains
estimates of utilities for all state-action pairs
and makes use of these estimates to select ac-
tions. Either of these techniques qualifies as
an example of a direct adaptive optimal con-
trol algorithm, but because Q-learning is con-
ceptually simpler, has a better-developed the-
ory, and has been found empirically to con-
verge faster in many cases, we elaborate on
this particular technique here and omit fur-
ther discussion of actor-critic learning.

Q-LEARNING

One of the simplest and most promising re-
inforcement learning methods is called Q-
learning [34]. Consider the following finite-
state, finite-action Markov decision problem.
At each discrete time step, £ = 1,2, ..., the
controller observes the state zj, of the Markov
process, selects action ay, receives resulant re-
ward r, and observes the resultant next state
Zky1. The probability distributions for r; and
241 depend only on z; and ag, and r; has fi-
nite expected value. The objective is to find
a control rule (here a stationary control rule
suffices, which is a mapping from states to ac-
tions) that maximizes at each time step the
expected discounted sum of future reward.
That is, at any time step k, the control rule

should specify action a; so as to maximize

o0
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where v, 0 < v < 1, is a discount factor.

Given a complete and accurate model of
the Markov decision problem in the form of
the state transition probabilities for each ac-
tion and the probabilities specifying the re-
ward process, it is possible to find an optimal
control rule by applying one of several dy-
namic programming (DP) algorithms. If such
a model is not available a priori, it could be
estimated from observed rewards and state
transitions, and DP could be applied using
the estimated model. That would constitute
an indirect adaptive control method. Most
of the methods for the adaptive control of
Markov processes described in the engineer-
ing literature are indirect (e.g., [10,18,21,28]).

Reinforcement learning methods such as Q-
learning, on the other hand, do not estimate
a system model. The basic idea in QQ-learning
is to estimate a real-valued function, @), of
states and actions, where Q(z,a) is the ex-
pected discounted sum of future reward for
performing action a in state x and perform-
ing optimally thereafter. (The name “Q-
learning” comes purely from Watkins’s no-
tation.) This function satisfies the following
recursive relationship (or “functional equa-
tion”):

Q(z,a) = E{rk+7m(?xQ(xk+1, b) | zx = x, ay

An optimal control rule can be expressed in
terms of () by noting that an optimal action
for state x is any action a that maximizes
Q(z,a).

The Q-learning procedure maintains an es-
timate Q of the function Q. At each transtion
from step k to k& + 1, the learning system can
observe xy, ag, 1, and z;, 1. Based on these
observations, Q is updated at time step k+ 1

as follows: Q(x,a) remains unchanged for all
pairs (z,a) # (x, ax) and

~ ~

Q(wp, ar) = Q(z, ax) +
(1)



B[+ max Q(zh41,0)—Q (. ar)],

where (3, is a gain sequence such that 0 <
Br < 1, 372, B = oo, and Z;;‘;lﬂ,% < 0.
Watkins [34] has shown that () converges to
() with probability one if all actions continue
to be tried from all states. This is a weak
condition in the sense that it would have to
be met by any algorithm capable of solving
this problem. The simplest way to satisfy
this condition while also attempting to follow
the current estimate for the optimal control
rule is to use a stochastic control rule that
“prefers,” for state x, the action a that max-
imizes Q(z,a), but that occassionally selects
an action at random. The probability of tak-
ing a random action can be reduced with time
according to a fixed schedule. Stochastic au-
tomata methods or exploration methods such
as that suggested by Sato et al. [28] can also
be employed [4].

Because it does not rely on an explicit
model of the Markov process, Q-learning is
a direct adaptive method. It differs from
the direct method of Wheeler and Naren-
dra [37] in that their method does not es-
timate a value function, but constructs the
control rule directly. Q-learning and other
reinforcement learning methods are most
closely related to—but were developed inde-
pendently of—the adaptive Markov control
method of Jalali and Ferguson [16], which
they call “asynchronous transient program-
ming.” Asynchronous DP methods described
by Bertsekas and Tsitsiklis [9] perform local
updates of the value function asynchronously
instead of using the systematic updating
sweeps of conventional DP algorithms. Like
Q-learning, asynchronous transient program-
ming performs local updates on the state cur-
rently being visited. Unlike Q-learning, how-
ever, asynchronous transient programming is
an indirect adaptive control method because
it requires an explicit model of the Markov
process. The @ function, on the other hand,
combines information about state transitions
and estimates of future reward without rely-

ing on explicit estimates of state transition
probablities. The advantage of all of these
methods is that they require enormously less
computation at each time step than do indi-
rect adaptive optimal control methods using
conventional DP algorithms.

REPRESENTING THE Q
FUNCTION

Like conventional DP methods, the Q-
learning method given by (1) requires mem-
ory and overall computation proportional to
the number of state-action pairs. In large
problems, or in problems with continuous
state and action spaces which must be quan-
tized, these methods becomes extremely com-
plex (Bellman’s “curse of dimensionality”).
One approach to reducing the severity of this
problem is to represent Q not as a look-up
table, but as a parameterized structure such
as a low-order polynomial, k-d tree, decision
tree, or neural network. In general, the lo-
cal update rule for Q given by (1) can be
adapted for use with any method for adjust-
ing parameters of function representations via
supervised learning methods (e.g., see [11]).
One can define a general way of moving from
a unit of experience (zy, ay, ¢, and Ty 1, as
in (1)) to a training example for Q:

Q(xk,ak) should be rk—i-vm(?xQ(ka,b).

This training example can then be input
to any supervised learning method, such as
a parameter estimation procedure based on
stochastic approximation.  The choice of
learning method will have a strong effect on
generalization, the speed of learning, and the
quality of the final result. This approach has
been used successfully with supervised learn-
ing methods based on error backpropaga-
tion [19], CMACs [34], and nearest-neighbor
methods [25]. Unfortunately, it is not cur-
rently known how theoretical guarantees of
convergence extend to various function repre-
sentations, even representations in which the
estimated function values are linear in the



representation’s parameters. This is an im-
portant area of current research.

HYBRID DIRECT/INDIRECT
METHODS

Q-learning and other reinforcement learning
methods are incremental methods for per-
forming DP using actual experience with the
controlled system in place of a model of that
system [7,34,36]. It is also possible to use
these methods with a system model, for ex-
ample, by using the model to generate hypo-
thetical experience which is then processed by
Q-learning just as if it were experience with
the actual system. Further, there is noth-
ing to prevent using reinforcement learning
methods on both actual and simulated expe-
rience simultaneously. Sutton [32] has pro-
posed a learning architecture called “Dyna”
that simultaneously 1) performs reinforce-
ment learning using actual experiences, 2) ap-
plies the same reinforcement learning method
to model-generated experiences, and 3) up-
dates the system model based on actual ex-
periences. This is a simple and effective way
to combine learning and incremental planning
capabilities, an issue of increasing significance
in artificial intelligence (e.g., see [15]).

CONCLUSIONS

Although its roots are in theories of animal
learning developed by experimental psychol-
ogists, reinforcement learning has strong con-
nections to theoretically justified methods for
direct adaptive optimal control. When pro-
cedures for designing controls from a sys-
tem model are computationally simple, as
they are in linear regulation and tracking
tasks, the distinction between indirect and di-
rect adaptive methods has minor impact on
the feasibility of an adaptive control method.
However, when the design procedure is very
costly, as it is in nonlinear optimal control,
the distinction between indirect and direct
methods becomes much more important. In
this paper we presented reinforcement learn-
ing as an on-line DP method and a com-

putationally inexpensive approach to direct
adaptive optimal control. Methods of this
kind are helping to integrate insights from
animal learning [7,33], artificial intelligence
[17,27,31,32], and perhaps—as we have ar-
gued here—optimal control theory.
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