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Abstract—Rescorla and Wagner’s model of classical conditioning has been one of the most
influential and successful theories of this fundamental learning process. The learning rule
of their theory was first described as a learning procedure for connectionist networks by
Widrow and Hoff. In this paper we propose a similar confluence of psychological and en-
gineering constraints. Sutton has recently argued that adaptive prediction methods called
temporal-difference methods have advantages over other prediction methods for certain
types of problems. Here we argue that temporal-difference methods can provide detailec
accounts of aspects of classical conditioning behavior. We present a model of classical
conditioning behavior that takes the form of a temporal-difference prediction method. We
argue that it is an improvement over the Rescorla-Wagner model in its handling of within-
trial temporal effects such as the ISI dependency, primacy effects, and the facilitation of
remote associations in serial-compound conditioning. The new model is closely related
to the model of classical conditioning that we proposed in 1981, but avoids some of the ’
problems with that model recently identified by Moore et al. We suggest that the theory
of adaptive prediction on which our model is based provides insight into th~ functionality
of classical conditioning behavior.

Introduction

The increasing interest in connectionist or parallel distributed processing models of
cognitive behavior provides a new rationale for examining animal conditioning behavior.
: Many of the rules used for adjusting connection weights in connectionist models are the
~ result of postulating that single neuron-like units exhibit simplified analogs of animal be-
havior in conditioning experiments. Connectionist theories of higher functions therefore
provide vehicles for integrating insights from animal learning research into more compre-
l_lensive theories of behavior. At the same time, the mathematical theories associated with

connectionist learning provide new theoretical perspectives on conditioning behavior.
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AFOSR-87-0030. The authors wish to thank Harry Klopf, Jim Morgan, Jim Kehoe, John Moore, John
Desmond, Diane Blazis, and Neil Berthier for sharing their ideas and simulation results with us. We

also particularly thank John Moore for reading and providing valuable comments on an earlier draft
of this paper. ‘
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Viewed at the trial level, classical, or Pavlovian, conditioning is related to supervised
associative learning as studied by engineers and computer scientists and embodied in many
connectionist learning systems. The system is repeatedly presented with an input pattern,
corresponding to a conditioned stimulus (CS), together with a specification of a desired
response, which corresponds to the presentation of an unconditioned stimulus (US) and
the unconditioned response (UR) that it reflexively elicits. After a number of such CS-US
pairings, the CS comes to elicit a conditioned response (CR) that closely resembles the
UR or some part of it.* When details occurring within trials are considered, classical
conditioning is seen to involve the extraction of predictive relationships among stimuli as

if causal rules are being learned.

In a previous paper (Sutton and Barto, 1981), we pointed out that the Rescorla-
Wagner model of classical conditioning (Rescorla and Wagner, 1972) is nearly identical
to the learning algorithm introduced earlier by engineers Widrow and Hoff (1960), which
is used in practical engineering applications (Duda and Hart, 1973; Widrow and Stearns,
1985) as well as in recent connectionist models (e.g., see Rumelhart and McClelland, 1986).
That there is this degree of correspondence between psychological models and engineering
methods should not be surprising given the similarity of the functional demands made
in each case. In this paper, we propose a refinement of this correspondence. We pro-
pose a new model of classical conditioning based on a new theory of engineering methods
called temporal-difference methods (Sutton, 1987). Temporal-difference methods have been
shown to be superior in certain respects to the Widrow-Hoff algorithm and to other engi-
neering algorithms for adaptive prediction. Here, we argue that the new model of classical
conditioning, which we call the Temporal-Difference, or TD, model, also provides a better
account of animal learning data than the Rescorla-Wagner model. In addition, the TD
model and the theory of temporal-difference methods provides specific new suggestions

about the functional nature of classical conditioning.

The TD model is a minor variant of the Adaptive Heuristic Critic (AHC) algorithm
developed by Sutton for temporal credit assignment (Sutton, 1984; Barto, Sutton, and
Anderson, 1983) and combined with the error back-propagation method of Rumelhart,
Hinton, and Williams (1985) by Anderson (1986). The AHC algorithm itself is closely

* For example, a human subject is repeatedly presented with the sound of a bell (CS) followed b'y a
puff of air to his eye (US), which causes him to blink (UR). After several such pairings, the subject
blinks immediately (CR) in response to the bell alone.
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related to the model of classical conditioning that we proposed in 1981 (Sutton and Barto,
1981; Barto and Sutton, 1982), which we here call the Sutton-Barto, or SB, model, and
which was strongly influenced by the work of Klopf (1972, 1982). In this paper, we
present the TD model as a substantially modified version of the SB model that solves
some of the problems with that model identified by Moore et al. (1986). We show how
the TD model performs in simulations of single-CS acquisition and extinction, trace and
delay conditioning, blocking, conditioned inhibition, second-order conditioning, and several
serial-compound conditioning paradigms. We also discuss what the theoretical basis of the
TD model suggests about what animals are doing in classical conditioning. Finally, we

briefly mention some of the limitations of the TD model.

Real-Time Models of Classical Conditioning

Whereas many models of classical conditioning (e.g., Rescorla and Wagner, 1972;
Mackintosh, 1975; Pearce and Hall, 1980) specify changes in associative strength only
as the result of a trial as a whole, the TD and SB models specify changes in associative
strengths from moment to moment within trials. We will call models with this property
real-time models (after Moore and Stickney, 1980; Blazis et al., 1986). Real-time models
have also been proposed by, e.g., Gelperin, Hopfield, and Tank (1985), Gluck and Thomp-
son (in press), Hawkins and Kandel (1984), Klopf (1986), Moore et al. (1986) Tesauro
(1986), and Wagner (1981).

Real-time models have several kinds of advantages over trial-level models. First, since
real-time models distinguish between times within a trial, they can make predictions about
the effects of varying the temporal relationships among stimuli within a trial, whereas trial-
level models can’t. The trial-level Rescorla-Wagner model, for example, does not make
predictions about the effect of the inter-stimulus interval between CS and US, even though
this is well-known to have a strong effect on conditioning. A second advantage of real-time
models is that they are more mechanistic and thus it is easier to see how they might be
implemented by physical mechanisms. In particular, they are a step closer to neural models
since their behavior can be compared more directly with electrophysiological correlates of

learning.
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Some real-time models, including the SB model, have been presented in the form of
rules for altering the connection weights of a neuron-like adaptive element, and we follow
this tradition with our description of the TD model. Although this form of presentation
suggests possible relationships to the cellular basis of learning and makes it clear how
the model can be used as a learning rule for connectionist networks, it is not essential to
the TD model as a model of conditioning behavior. Nor is the realization of the model
suggested by this adaptive-element the only way the model could be implemented in a

nervous system.

The SB Model

We first describe the SB model and then discuss several of its shortcomings. Following
our 1981 paper (Sutton and Barto, 1981) we present it as a set of rules for adjusting the
connection weights of a neuron-like element, but we use a slightly different notation. Figure
1 shows a neuron-like adaptive element with n+1 input pathways, labeled z(0),...,z(n),
and a single output pathway labeled y. For each i, 1 =0,...,n, z(f) denotes the
strength of the signal on pathway ¢ at time t; y: denotes the strength of the output
signal at step t. Associated with each input pathway z(i) is a weight w(f) that specifies
the efficacy of that pathway; w¢(t) denotes the weight’s value at time t. Pathway z(0)
is the US pathway and its weight w(0) is positive and constant over time. Patterns of
activity over the remaining input pathways represent stimuli that can be associated with
the US—the CSs.* Changes in the weights of the CS pathways over time represent
changes in the the associative strengths of the CSs with respect to the US. We denote
by z; the input vector at time ¢ consisting of the n components of the CS vector, ie.,
z¢ = (z(1),...,2¢(n)) . Similarly, w; denotes the n-component vector of weights of the
CS pathways at time t. The element output, v, is assumed to contribute to both the UR
and the CR.

* Tesauro (1986) correctly points out that the original description of the SB model suggests that the
model is applicable only when a CS is represented locally by activity on a single input pathway.
However, the model obviously also applies to the case of distributed CSs, and we wish to allow that
possiblity here. This is also true of the TD model, but in the simulations presented here, locally
represented CSs are used for simplicity.
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x(0)

) /

Figure 1. A neuron-like adaptive element used in the
SB model. There are n modifiable CS input pathways,
z(1),...,z(n), and a pathway z(0) with fixed weight w(0)
that corresponds to the US. The element output y corresponds
to both the UR and the CR.

The element output at time ¢ is a function of the weighted sum of the inputs at time

ye=f {Zwt(i)xt(i)} ) (1)
i=0

where f{-} is some S-shaped function; in our earlier simulations we assumed it was the
identity function. We assume that this input/output relationship is instantaneous because

the model does not address intrinsic response latencies, which vary across response systems.

The connection weights of the CS pathways are updated at each time step as follows:

w1 = wi + ¢yt — yi—1)Zt, (2)

where ¢ > 0 and Z; is the vector of eligibility traces, each component of which is a weighted
sum of past values of the corresponding input signal.* We compute these traces using

the following recursion:

Iy = fZi1 + (1 — B)ze-1, (3)

*

In Sutton and Barto (1981) and Barto and Sutton (1982), the model used an output trace @ in
place of y:—1 in Equation 2. However, in all the simulations described there we used only # = Ye—1,
which is the special case of a trace resulting from letting 8 = 0 in Equation 3. Because we now
believe that this special case is best for reasons made clear in the theory underlying the TD model,
we explicitly specify this case in our restatement of the SB model.
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where 0< 8 < 1.1

Equations 1, 2 and 3 constitute the SB model. We can describe the learning process
as follows: Activity on any input pathway ¢, ¢+ = 1,...,n, can immediately influence
the element’s output, y, if w(i) # 0, but also causes that pathway to become “tagged”
by the stimulus trace Z(i) as being eligible for modification in the future (for as long as
the trace is nonzero). A connection weight changes only if the pathway is eligible and
reinforcement occurs, where reinforcement is defined as a deviation of the current output
from the immediately preceeding output (for continuous time, reinforcement is the rate-of-
change of the output). Figure 2 shows the time courses of the relevant signals for a single

trial with an initially neutral CS.

u§ — 1

,_____F L

CS:)(——J__——l

i T
N

7 Yo 1

Y

Figure 2. Time courses of element variables in
the SB model for a trial in which an initially
neutral (w =0) CS is followed by the US.

In Sutton and Barto (1981) and Barto and Sutton (1982) we showed that this model is
closely related to the Rescorla-Wagner model and could similarly account for phenomena
in classical conditioning such as blocking and conditioned inhibition. Additionally, we
showed how it could account for inter-stimulus interval (ISI) effects, anticipatory CRs,
and aspects of higher-order and serial-compound conditioning. Recently, a novel prediction

of the model concerning blocking and serial-compound conditioning has been tested and

t In Sutton and Barto (1981), Z was defined as in Equation 3 except that the factor of (1 — p)
was absent. This factor, which was used in our presentation in Barto and Sutton (1982), simply
normalizes the trace in such a way as to ensure that the trace of input that is constant over time will
converge to that constant value as 't — oo.
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confirmed by Kehoe, Schreurs, and Graham (in press). That result is discussed further in

the section on serial-compound results.

Despite these successes, the SB model suffers from several major problems. In our
original presentation of the SB model, we avoided many of the problems by using a US
that was very long, which ensured that all CS traces had fallen to zero by the time of US
offset. Moore et al. (1986) have since found that if shorter USs are used, the SB model does
not generate appropriate conditioning behavior as a function of the CS-US inter-stimulus
interval (ISI). For example, if CS onset is simultaneous with or shortly after US onset, then
the SB model incorrectly predicts strong inhibitory conditioning to the CS. Even worse,
if CS offset is simultaneous with US offset, as in standard delay conditioning, then the

unmodified SB model predicts that the CS will fail to acquire a positive association at any
ISI.

Moore et al. succeeded in producing a modified version of the SB model, called the
Sutton-Barto-Desmond, or SBD, model, that largely solves these and other problems,
and also reproduces key features of response topography and CR-related neuronal firing
(Moore et al., 1986; Blazis et al., 1986). The primary modifications to the SB model
were 1) allowing the effect of the US to vary as a function of current weight values, 2)
specifying a particular lagged relationship between CSs and their corresponding signals
z(¢), and 3) making the trace decay rate B depend on CS duration. Together, these
modifications constitute a substantial increase in the complexity of the model. With the
TD model, we are attempting to solve the ISI problems of the SB model in a simpler
way. The modifications made by Moore et al. to give the SB model a more realistic
reponse topography and to relate it to neuronal firings may also be applicable to the TD
model, but this has not yet been explored. Space limitations prevent us from making a
full comparison of the TD model with the SBD model and with other competing real-time
models (e.g., Klopf, 1986, in prep.; Tesauro, 1986; Gluck and Thompson, in press).

The Temporal-Difference (TD) Model

A key desirable feature of the SB model and some other models (Gelperin, Hopfield,
Tank, 1985; Hawkins and Kandel, 1984; Klopf, 1986, in prep.; Moore et al., 1986, Tesauro,
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1986) is that reinforcement is caused by the onsets and offsets of previously conditioned
CSs. Since the US is treated exactly like a previously conditioned CS in the SB model,
the US’s reinforcing effects also occur at its onset and offset. Experimentally, however, it
seems as if simply the presence of the US is reinforcing rather than changes in its presence.
This is the basic difference between the SB model and the TD model—in the TD model,

US presence itself is directly reinforcing, not its initiation and termination.

We define the TD model by referring to the adaptive element shown in Figure 1. The

element’s output at time ¢ is

yt = re + P(we, z¢),

where r; denotes the value at time t of a signal indicating the presence and strength of
the US (i.e., r¢ is the same as w(0)z¢(0) of the SB model) and P(w,z;) is defined by

P(w,z) = {??:1 w(®)z(d), if Y, w(s)z(s) > 0; @

, otherwise.

The weights are updated according to the rule

Wl = we + c(rt + 4P (we, z¢) — P(wt,zt—l))ft, (5)

where ¢ >0, 0 <~ <1, and Z; is as defined by Equation 3.

This model is similar to the SB model and basically works in the same manner, but
it differs from thaf model in several crucial ways. First, note that the sum P plays a
role in the weight update equation similar to the role the output y plays in the SB model
(Equation 2): Changes in P over time are critical determinants of weight changes. But
here the sum P does not include a contribution from the US as the sum y does in the
SB model (Equation 1). The US directly contributes to weight changes through the term
r¢ in Equation 5. Consequently, in the TD model, the presence of the US (signaled by
a nonzero value of r;), rather than its onset and offset, acts as reinforcement. This is
accomplished while retaining the feature of the SB model whereby a CS with an existing

association generates reinforcement at its onset and offset (through the CS’s contribution
to P).

A second major feature distinguishing the TD model from the SB model concerns
the parameter . The theoretical interpretation of this parameter is discussed in a later
section. Here it suffices to point out that this parameter causes a CS with an existing
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associative strength to generate reinforcement throughout its presence and not just at
its onset and offset. In Equation 5, if P is constant over time, then to the extent that
7 is less than 1, reinforcement is still generated. The strength of this reinforcement is
proportional to the strength of the CS’s existing association, but of opposite sign. The
choice of ~ determines the relative importance of reinforcement generated by CSs with
existing associations due to their constant presence, and due to their onsets and offsets.
< is usually chosen to be near 1 (e.g., ¥ = .95 in all simulations described here), so that

the presence of a CS generates much less reinforcement than does its onset or offset.

Basic Results

In this section we present simulation results showing the behavior of the TD model in a
range of basic conditioning paradigms—single-CS acquisition and extinction, ISI curves for
trace and delay conditioning, blocking, conditioned inhibition, and the lack of extinction of
conditioned inhibitors. We regard such results as basic because they do not involve compli-
cated temporal relationships between CSs and because previous models have demonstrated
each of these abilities. Nevertheless, to our knowledge only the SBD model (Moore et al.,
1986; Blaazis, 1986) has previously demonstrated all of these abilities.

The parameter values used in all simulations were ¢ = .01 y B =.8,and v = .05,
These values were chosen so as to approximately match ISI data for the rabbit nictitating
membrane response (as discussed below), under the interpretation that each time step
corresponds to .05 seconds. When a stimulus was present, the corresponding input signal
(z or r) was set to 1, and when the stimulus was absent, the signal was set to 0. The
time interval between trials was long enough for all traces to fall to zero. Since no stimuli
were presented during the inter-trial interval, it is clear from Equation 5 that no weight
changes will occur during the bulk of this time. Thus, most of the inter-trial interval was

simulated simply by setting the traces to zero.

Figure 3 shows the behavior of the TD model in a single-CS acquisition and extinction
paradigm. The temporal relationships among stimuli during the acquisition phase of
the experiment are shown in Figure 3A. During extinction, only the CS was presented.
Over acquisition trials, the CS gains associative strength in a negatively accelerated way,
asymptotically approaching a fixed value. During extinction, associative strength is lost
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TRIALS 1-70:
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Figure 3. Simulation of Single-CS Acquisition and Ex-
tinction in the TD Model. A) Timing relationships between
stimuli during acquisition. B) The behavior of the weight cor-
responding to the CS during acquisition (trials 1-70) and ex-
tinction (trials 71-170). During extinction, the CS is presented
not followed by a US. The time intervals are given in seconds
under the interpretation that each time step corresponds to .05
seconds.

in a similar manner.

Figure 4 shows the ISI curves produced by the TD model in trace and delay condi-
tioning experiments. These curves show the final associative strength generated by the
TD model after 80 CS-US pairings as a function of the inter-stimulus interval between CS
and US. The géneral shape of these curves is independent of parameter settings, but not
important details such as how rapidly associative strength declines as the ISI increases.
Roughly speaking, § determines the rate of decline in trace conditioning, and, for fixed
B, « determines the rate of decline in delay conditioning. The parameter values given
above were selected to approximate the ISI data for rabbit NMR conditioning shown in

Figure 5.

The TD model exhibits complete blocking if first-stage training is conducted until

asymptotic associative strength is achieved and if the CS added in the second stage has
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TRACE CONDITIONING:
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Figure 4. Effect of the CS-US Inter-Stimulus Interval
in Trace and Delay Conditioning of the TD Model.
A) Timing relationships between stimuli in trace and delay
acquisition trials. B) Resultant CS weight after 80 acquisition
trials as a function of ISI.

exactly the same time course as the first CS. This is apparent from inspection of Equation
5—the weights for the two CSs experience exactly the same increments during a second-

stage trial; if the weight of the first CS no longer experiences any net change, then neither
will the weight of the added CS.

Figure 6 shows the behavior of the TD model in a conditioned inhibition (CI) training

regime. In CI, reinforced and unreinforced trials of the two types shown in Figure 6A are
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Figure 5. Effect of the CS-US ISI in Trace and
Delay Conditioning of the Rabbit Nictitating
Membrane Response (NMR). The time course of
the ISI dependency varies widely between species and
response systems. The parameter values used here in
the TD model were chosen so that the model’s ISI de-

pendency, shown in Figure 4, approximately matches
this rabbit NMR data.

intermixed. CS™ is followed by the US except in the presence of CS™. CS* is found
experimentally to become positively conditioned whereas CS™ becomes a conditioned in-
hibitor, that is, it tends to inhibit CRs. This result is also found in the simulation. In
the extinction phase of the CI experiment shown in Figure 6, both stimuli were presented
individually without the US. The result shown is also the same as that found experimen-
tally: The association to the excitor extinguiéhes, but the association to the inhibitor does
not (Zimmer-Hart and Rescorla, 1974). Moore et al. (1986) showed that the SB model
will reproduce the desired behavior if the output y is prevented from becoming negative
(this corresponds to a particular choice for f in Equation 1), and this is essentially what

we have done in the TD model by using a threshold operation in Equation 4.

Serial-Compound Results

Real-time conditioning models are interesting primarily because they make predictions
for a wide range of situations that cannot be represented by trial-level models. These

situations involve conditionable stimuli that occur together but not strictly simultaneously.
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Figure 6. Conditioned Inhibition and its Extinction
in the TD Model. A) Time traces showing the two kinds of
trials presented alternately in a conditioned inhibition exper-
iment (trials 1-80) and in a subsequent attempt to extinguish
the resultant associations (trials 81-130). B) Behavior over
trials of the weights associated with CS* and CS™. During
acquisition, the weight for CS* becomes positive, while the
weight for CS™ becomes negative. The association to CS™* s
but not to CS™, is extinguished by nonreinforcement. Both

CSs are .2 seconds in duration and the US is .1 second in
duration.

Any such compound stimulus whose components do not both begin and end at the same
time is called a serial-compound stimulus. It should be recognized that almost all learning

involves serial-compound stimuli, either because the animal distinguishes earlier and later
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portions of a stimulus that may be viewed as a single stimulus by the experimenter, or
because the animal’s behavior gives rise to a predictable sequence of situations leading
to reinforcement, as in maze running. Kehoe (1982) surveys the theoretical issues and

empirical results relevant to serial-compound conditioning.

One of the theoretical issues arising in serial-compound conditioning concerns the fa-
cilitation of remote associations. It has been found that if an empty trace interval between
the CS and the US is filled with a second CS to form a serial compound stimulus, then
conditioning to the first CS is facilitated. Figure 7B shows the behavior of the TD model
in a simulation of such an experiment, the timing details of which are shown in Figure TA.
Consistent with the experimental results, the model shows facilitation of both the rate of

conditioning and the asymptotic level of conditioning of the first CS due of the presence
of the second CS.

CSA————J l
csB ' J___——_——L————— A
us — : 1
'4—— .2 sec -—>:<—~.2 sec —-—>:4———>:
.1 sec
T 1
1.3 T 7]

CSB PRESENT

CSB ABSENT

0 80

TRIALS

Figure 7. Facilitation of a Remote Association by an
Intervening Stimulus in the TD Model. A) Temporal re-
lationships among stimuli within a trial. B) The behavior over
trials of CSA’s weight when CSA is presented in a serial com-
pound, as in A, and when presented in an identical temporal ’
relationship to the US, only without the presence of CSB.
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The stimulus context effects such as blocking and conditioned inhibition that the
Rescorla.—Wagner model is so successful at reproducing involve effects on the condition-
ing of one CS due to the presence of others. However, since it is a trial-level model, the
Rescorla-Wagner model does not take into account the temporal relationships between the
CSs, which are known to be capable of producing dramatic behavioral consequences. One
of the best-known early demonstrations of this is the Egger-Miller (1962) experiment that
involved two overlapping CSs in a delay configuration as shown in Figure 8A. Although
CSB is in a better temporal relationship with the US, the presence of CSA reduces condi-
tioning to CSB substantially as compared to controls in which CSA is absent. Figure 8B

shows the same result being generated by the TD model in a simulation of this experiment.

N

csB : A
I<— .2 sec —>:4—.2 sec ——b:d—--—b:
.1 sec
Ler " CSA ABSENT
w B
CSB CSA PRESENT
Oor

TRIALS

Figure 8. The Egger-Miller or Primacy Effect in the
TD Model. A) Temporal relationships among stimuli within
a trial. B) The behavior over trials of CSB’s weight when CSB
is presented with and without CSA.

In Sutton and Barto (1981), we presented simulation results with the SB model for an
experiment similar to the Egger-Miller experiment discussed above. The experiment we
simulated differed from the Egger-Miller experiment in that CSB was given prior training
until it was fully associated with the US. When CSA was subsequently introduced, the

pre-established association to CSB decreased to zero as training continued. Although
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we did not realize it at the time, this is a novel and surprising prediction of the SB
model. Why should a well-trained CS that continues to be paired with the US in a good
temporal relationship lose associative strength just because a new CS is introduced with
no initial association and in a poor temporal relationship? This is a situation in which
one might expect the original CS to block and limit association to the new CS. However,
the SB model predicts a decrement in the other direction. Recently, Kehoe, Schreurs, and
Graham (in press) have tested and confirmed the prediction that CSB will lose associative
strength under these conditions. They also note that alternative theories do not make this
prediction and have considerable difficulty in explaining this result. The behavior of the
TD model under these conditions is shown in Figure 9. This behavior is in slightly better
accord with the data than is the SB model’s behavior, in that the association to CSB is

reduced after the introduction of CSA, but not completely eliminated.

I

9]
n
>

csB —— | I A
os — ; T -
‘4— 2 seC -—>:<——.2 sec ——’:4—-—>:
.1 sec
1.6 [ CSA ABSENT
w
CSB B
 CSA PRESENT

oL .

TRIALS

Figure 9. Temporal Primacy Overriding Blocking in
the TD Model. A) Temporal relationships between stimuli.
B) The behavior over trials of CSB’s weight when CSB is
presented with and without CSA. The only difference between
this simulation and that shown in Figure 8 was that here CSB
started out fully conditioned—CSB’s weight was initially set
to 1.653, the final level reached when CSB was presented
alone for 80 trials, as in the “CSA-absent” case in Figure 8.
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Figure 10 shows the behavior of the TD model in a second-order conditioning experi-
ment. In the first phase (not shown in the figure), CSB is pretrained with the US. In the
second phase, CSA is paired with CSB in the sequential arangement shown in Figure 10A,
in the absense of the US. Experimentally, CSA is found to acquire associative strength even
though it is never paired with the US. In the TD model, CSA first acquires a substantial

association and then this association and the original one to CSB are extinguished. This

is the same pattern seen experimentally.

CSA ——l I

; A
CSB —— '_——l____
'4— 4 SeC — ' 4— 4 S6C —
1.6 (
CSB
w B
CSA
.0 B 1 1
0 50

TRIALS

Figure 10. Second-Order Conditioning of the TD
Model. A) Temporal relationships between stimuli. B)
The behavior of the weights associated with CSA and CSB
over trials. The second stimulus, CSB, has an initial weight
of 1.653 at the beginning of the simulation.

Figure 11 shows the ISI curve for the TD model in second-order conditioning. It
plots the associative strength after 100 trials as a function of the CSA—CSB ISL. This
IST curve differs significantly from the CS-US ISI curve shown in Figure 4 primarily in
that here simultaneous presentation results in the formation of a large negative association
instead of a small positive one. Recall that the TD model treats the reinforcement due to
USs and previously conditioned CSs differently: US signals directly cause reinforcement
Whereas changes in the signals of previously conditioned CSs cause reinforcement. Thus, in

simultaneous presentation, a US’s reinforcement is delivered thoughout the presentation,
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whereas a previously conditioned CS delivers reinforcement only at its onset, and negative
reinforcement at its offset, so that a simultaneously paired CS will be much more affected

by the negative reinforcement than by the positive reinforcement.

CSA ——l, |.
csB — - I— A
54——- 4 sec ——>: Ed— 4 sec —b:
- ISl >
T T T 1 1
7T b

1 1 1 1 1

-.3 0 4 1 1.5

CSA-CSB ISI (sec)

Figure 11. Effect of the CSA-CSB ISI on Second-Order Con-
ditioning of TD Model. A) Temporal relationships between stim-
uli. B) Resultant value of CSA’s weight after 10 trials as a function
of CSA-CSB ISL

Experimentally, second-order conditioning is observed to occur with both simultaneous
and sequential CSA—CSB pairings. To explain this observation in terms of the TD model
we must appeal to indirect associations, which are outside the scope of the model per se.
That is, the model clearly predicts that no direct CSA — US association will develop, but
does not preclude the development of both CSA — CSB and CSB — US associations, which
together could have the same effect. This explanation of second-order conditioning is in
fact partially confirmed experimentally. One observed difference between simultaneous
and sequential second-order conditioning is that the association to CSA is eliminated
by extinguishing CSB in simultaneous second-order conditioning, but not in sequential
second-order conditioning (Rescorla, 1980). This suggests that simultaneois second-order

conditioning in fact does not result in a direct CSA — US association.
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Theoretical Basis of the TD Model

In addition to providing an account of the range of classical conditioning phenomena
described above, the TD model has a theoretical basis that suggests an account of the
functionality of these phenomena. Sutton (1987) has developed a class of methods for
adaptive prediction called temporal-difference (TD) methods and has shown that they have
certain advantages over other prediction methods for problems having a certain structure.
The advantages of TD methods include reductions in memory requirements, a more even
distribution of computation over time, and better generalization from past experience to
new situations. If classical conditioning involves prediction, as many believe it does, then
TD methods are likely candidates for the underlying learning procedure. Here we provide
a brief introduction to the theory as it relates to the TD model.

At each time step t, the subject receives a pattern of CSs represented by the stimulus
vector z;, from which it forms a prediction P(w,z;), using its current weight vector w.
But what does P(w,z) predict? Clearly, P(w,z¢) should tell the subject something
about the values of the US signal r in the near future. For example, P(w,z:) might
predict something like

N
E {Z "t+k}’
k=1

where N is the number of steps remaining in the current trial. The sum is a natural way to
have the ideal prediction vary with the intensity, duration, and number of USs occurring
on the trial, and the expected value provides a principled way to deal with statistical

variation from trial to trial.

However, the particular sum given above, in which all the r¢+k Vvalues in the rest of
the trial are given equal weight, is problematic for two reasons. First, trials and trial
boundaries are generally in the mind of the experimenter and unknown to the subject.
Second, experimentally the association formed to a CS depends strongly on the time
elapsing between it and the US—the more closely the US follows the CS, the stronger the
association it will support. This last observation suggests that subjects are predicting a
Sum in which greater weight is given to ek Vvalues for smaller values of k. Although
there are many ways of varying the weighting with time, the TD model is based on an
exponential weighting in which the weight of each revks k> 1,is 4% 1 for 0 < 7<1.
That is, the TD model is based on the hypothesis that the subject attempts to adjust w
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so that, at each time t:
o0
P(w,z;) =~ E {qurﬂ_k.,.l}. (6)
k=0

The parameter 4 is called the discount rate because is determines the rate at which later

values of r are discounted.

Although the theorems so far obtained for TD methods (Sutton, 1987) do not apply to
predicting the quantity given by Equation 6, TD theory nevertheless provides a method-
ology for constructing a TD learning method specialized for predicting this quantity. The
distinguishing feature of TD methods is that the error term they use is the difference
between temporally successive predictions. P(w,z;—1) and P(w,z;) are temporally suc-
cessive predictions, but it is not appropriate to use their difference directly as an error
because they are predictions of two different quantities, P(w,z¢—1) of E {> % 'y"rt_H,} ,
and P(w,z:) of E{> rop ~*rirk+1} . However, these two predictions are closely related
as follows:

o0
P(w,z¢) = E {qurt + k}
k=0
o0
=E {rt + Z’Tkrt-i-k}

k=1

[oo]
mre+qE {Z'Ykrt+k+1}

k=0
~ e+ YP(w, z¢).
Thus, r¢ 4+ v7P(w,z:) is a prediction of the same quantity predicted by P(w,z¢—1), but it
is available one time step later and is based on slightly better information—on the newly-
available actual value of r; and on the new stimulus vector z;. It is thus the difference
between these two predictions, that is, (r¢ + vP(w,zt)) — P(w,z¢-1), that is used as a

reinforcement or error in the TD model’s update rule (Equation 5).

The TD model proposed here is not the first model of classical conditioning to be based
on changes or temporal differences in net associative strength. This mechanism is a key
part of the SB model, and also of the models proposed by Hawkins and Kandel (1984),
Gelperin, Hopfield and Tank (1985), Klopf (1986, in prep.), Moore et al. (1986), and
Tesauro (1986). What is different about the TD model is that the precise way temporal
differences are used is based on a formal, engineering theory of prediction, coupled with 2
specific proposal for the quantity being predicted.
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Limitations and Conclusion

Neither the SB model nor the TD model are complete models of classical conditioning.
Among the major classes of phenomena that are beyond the scope of these models and
which have been treated by other models are configuration and patterning phenomena
(e.g., Kehoe, 1986, and Granger and Schlimmer, 1986), attentional and stimulus selec-
tion effects, learning to learn, and learned salience/associability changes (e.g., Moore and
Stickney, 1980; Schmajuk and Moore, 1986; Kehoe, 1986), sensory preconditioning and
other effects of indirect associations (e.g., Schmajuk and Moore, 1986), CR topography
(e.g., Moore et al., 1986; Frey and Sears, 1978), and stimulus preprocessing issues (e.g.,
Gelperin, Hopfield, and Tank, 1985). Some of these phenomena may be addressable with
connectionist mechanisms such as backpropagation (Rumelhart, Hinton, and Williams,
1985) learning-rate adjustment rules (e.g., Frey and Sears, 1978; Sutton, 1986; Barto and
Sutton, 1981, Appendix C), and recurrent networks (e.g., Sutton and Barto, 1981a; Sutton
and Pinette, 1985).

Although animal learning is complex and subtle, with different processes operating at
different levels and time scales, its regularities are far more striking than its variations.
Although one theory that explains all animal learning remains a goal, most progress in this
area has been made by focussing on identifiable component processes of animal learning.
Against this background, the TD model actually represents a substantial integration, since
its behavior subsumes nearly all the behavior of the trial-level Rescorla-Wagner model
but additionally generates predictions and explanations for within-trial phenomena. The
simulations of the TD model described in this paper, together with the theoretical basis
of the TD model, suggest that these phenomena might be regarded as consequences of an

adaptive process for predicting a discounted sum of future values of the US signal.
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