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Abstract

Many theorists have emphasized the role of an ‘“internal model of the world”’ in
directing intelligent adaptive behavior. An internal model can be used to internally
simulate the consequences of possible actions in order to choose among them
without the necessity of overtly performing them. Animal learning theorists have
taken latent learning experiments as demonstrations that animals can learn and use
such internal models. In this paper, we describe an adaptive network of neuronlike
components that constructs and uses an internal model, and we demonstrate this
ability by describing a computer simulation of its behavior in a simplified analog
of a latent learning task. The task has been made as simple as possible while still
retaining those features that make behavior in latent learning tasks difficult to
account for by connectionistic models. The network illustrates a principle by which
connectionistic-like learning rules can give rise to behavior apparently requiring
the formation and use of internal models. As such, it may help form a bridge
between brain theory and connectionistic models on the one hand, and cognitive
and information processing models on the other.

INTERNAL MODELS FOR SEARCH AND SIMULATION

Many theorists of the mind have emphasized the role of an *‘internal model of
the world’’ in directing intelligent adaptive behavior (e.g., Arbib, 1972; Craik,
1943; Gregory, 1969; Johnson-Laird, 1980; MacKay, 1963; Piaget, 1954). The
use of this expression has not been entirely uniform. For some, an internal model
is a general knowledge store capable of answering any sort of question about
the world. For others, an internal model is much more limited in that it can
answer only a single question: ‘*What should be done next?’” In the first case
another part of the mind can ask the internal model many questions before taking
action, whereas in the second the internal model generates a recommendation
for action only in response to the immediate situation. The first could conceivably
answer the question ‘‘How heavy is that brick?’’ by giving its weight in pounds,
whereas the second could only provide the appropriate motor commands to
compensate for its weight while lifting the brick. The kind of internal model
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with which we are concerned in this paper is of a generality intermediate between
these two extremes. By an internal model we mean any part of an adaptive
system that can provide expectations or predictions about what would happen
in particular actual or hypothetical situations. Further, this paper is concerned
specifically with those cases in which the model is used to simulate mentally the
consequences of various actions in order to choose among them without having
to try them overtly.

Kenneth Craik (1943) was one of the first to state clearly the view of thought
as an internal simulation of the world, allowmg many courses of action to be
hypothetically attempted and evaluated:

If the organism carries a ‘‘small-scale model’’ of external reality and of its own
possible actions within its head, it is able to try out various alternatives, conclude
which is the best of them, react to future situations before they arise, utilize the
knowledge of past events in dealing with the present and future, and in every way
to react in a much fuller, safer, and more competent manner to the emergencies
that face it [p. 61].

Aspects of this theory of thought, however, are much older than Craik’s work.
Donald Campbell (1959) traces a very similar theory of *‘creative thought’’ back
to the writings of Alexander Bain (1855/1874), Ernst Mach (1896), and Poincaré
(1908, 1913).

Campbell emphasizes that the interaction with both the world and the internal
model can involve trial and error:

At this level [the level of creative thought] there is a substitute exploration of a
substitute representation of the environment, the ‘‘solution’’ being selected from
the multifarious exploratory thought-trials according to a criterion substituting for
an external state of affairs. In so far as the three substitutions are accurate, the
solutions when put into overt locomotion are adaptive, leading to behavior which
lacks blind floundering [pp. 212-213].

Unfortunately, the idea of *‘trial and error’’ in search has frequently been mis-
taken for that of random or blind search. A search by trial and error can be a
highly structured and heuristically guided one. By trial and error search we mean
any search undertaken under the guidance of a certain kind of feedback process
in which options are tried and then evaluated and retracted or changed if in error.
Any ‘‘hypothesize and test’’ search, or any search using backtracking, would
qualify as a search using trial and error in this sense.

Internal trial and error as a model of thought and reasoning turns out to be
a view that is held extremely widely among theorists of the mind. Such a
modeling/simulation view plays an important role in the theories of Dennett
(1978) in philosophy; Simon (1969) in artificial intelligence; Sommerhoff (1975)
and Arbib (1972) in brain theory; Dawkins (1976) in biology; and Galanter and
Gerstenhaber (1956) and Miller, Galanter, and Pribram (1960) in psychology.
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Figure | summarizes the essential features of this view of thought as used in this
paper: An organism constructs an internal model of the world that allows pre-
diction of the observable behavior of the world as a function of possible actions
by the organism. The internal model is used to select behavior in an interactive
manner similar to the interaction of the entire organism with the external envi-
ronment. Trial and error search for the action that achieves the best result from
the external environment is replaced by covert, internal trial and error search for
the hypothetical action that secures the best anticipated result from the internal
model. The internal model must be either faster, easier, or safer to interact with
than the external environment in order for it to be useful.

This paper takes a few first steps toward formalizing this model-based theory
of thought. The animal learning theory literature has been found to be extremely
useful in obtaining a more concrete idea of what it means to create and use an
internal model of the world. Animal learning theorists have concentrated on
devising experiments that we can view as revealing indirect effects of an internal
model on behavior. They have called the phenomena their experiments revealed
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FIG. 1. An adaptive system based on the idea of internal simulation. The system interacts with
its model in the same way that it interacts with the real world.
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such things as reasoning, latent learning, and insight. The centerpiece of this
paper is the presentation of an adaptive network that constructs and uses an
internal model to solve a task similar to one in the animal learning theory
literature. The intent was to find as simple a network and task as possible while
still being able to demonstrate behavior that animal learning theorists would
consider ‘‘reasoning,’”’ or model requiring. The network is constructed from
adaptive neuronlike elements that have been extensively discussed elsewhere
(Barto & Sutton, 1981a, 1981b, 1981c; Barto, Sutton, & Brouwer, 1981; Sutton
& Barto, 1981), and whose design has been strongly influenced by the work of
Klopf (1972, 1981). Both the adaptive network and the task environment were
simulated by computer, and the results are presented here.

MAZE PROBLEMS AND INTERNAL MODELS

Figure 2 is a floor plan of an early form of a classic maze problem for rats
(Tolman & Honzik, 1930). Its solution is considered to involve spatial reasoning
capabilities. In short, the rats were familiar with all three paths to the goal and
preferred them in order of increasing path length: A over B, and B over C. When
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FIG. 2. A maze used to test insight in rats. The rats are familiar with all three paths to the goal
box and prefer them in order of decreasing length: A over B, B over C. If they have *‘insight,’’ then
after taking A to discover the block, they next try path C rather than B.
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FIG.3. A simple T-maze task with distinguishable detachable goal boxes used to test latent learning
and reasoning in rats. The rat cannot see or backtrack through the one-way doors indicated by dashed
lines. This task is conceptually very similar to the one posed to the simulated adaptive network
presented in this paper.

a block was introduced in a corridor common to both A and B, as shown in Fig.
2, the rats tried A, discovered the block, and then predominantly chose path C,
the longest of the paths, next. Inasmuch as their normal preference when A is
blocked was B, the path of intermediate length, this result indicated that the rats
used some sort of spatial map, or model of the maze that informed them that
path B was also blocked. This experiment was seen as a positive test of insight
or reasoning in the rat.

A much simpler experiment of the same intent uses a one-choice T-maze with
detachable distinguishable goal boxes (Fig. 3). Because this problem is very
similar to the one we have posed to the simulated adaptive network, we describe
it in greater detail. There are three phases to the experiment: In the exploration
phase, the subject is repeatedly placed at the entrance to the maze. When the
subject reaches one of the goal boxes, it is removed from the apparatus. There
is no food or other reinforcer anywhere in the maze. Backtracking is not allowed.
In the association phase, the goal boxes are separated from the T-maze and
carried to another room. There the subject is fed in the red goal box that was
on its right and given a painful electric shock in the green goal box that was on
its left. In the testing phase the goal boxes are replaced and the subject is then
returned to the start of the T-maze.

The key question is: Which way will the subject turn on the first post-training
trial? Most rats will turn right. Note that neither the action of turning right nor
the action of turning left is ever temporally associated with reward or punishment
in this experiment. In order to solve this task, the subject has to combine two
separately learned facts about the world: (1) that turning right in the T-maze will
bring it to the red goal box and turning left will bring it to the green goal box;
and (2) that the red goal box is a place where it may be fed, and the green box
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a place where it may be shocked. It is this combination that is thought of as the
reasoning process, a sort oi transitivity of prediction or primitive modus ponens.

Viewing the solution of this T-maze problem as an instance of the use of an
internal model, in this case a spatial map, suggests two aspects of the idea of
simulation by internal model that may account for the popularity and apparent
promise of the idea. First, the sort of reasoning by predictive transitivity men-
tioned previously is precisely the sort of reasoning that is achieved by a simu-
lation. To simulate a complex system by computer, we provide the step-by-step
transition dynamics of the system, and the simulation scheme repeatedly applies
these dynamics to update the state of the simulated model. In just this way a
simulation can combine ‘‘right turn predicts (arrivai at) red goal box’’ and ‘‘red
goal box predicts food’’ to infer that food can be attained by turning right. Such
a capability for propagating predictions is an important component of the ability
to generate the consequences of proposed actions.

The second important aspect of the idea of simulation by internal mode! that
appears in this simple T-maze example is that it provides a framework forlearning
about the environment even in the absence of rewarding or punishing events.
From a simple reinforcement learning point of view, we are at a loss to explain
the learning that the rats do about the maze in the first part of the experiment
in which they receive no reward or punishment. The idea of constructing an
internal model gives us another point of view from which this learning is much
more understandable: They learn in order to form an accurate predictive model.
Reinforcement, being a one-dimensional measure, can provide very little infor-
mation compared to the torrent of sensory information. It has become generally
recognized that intelligent artificial adaptive systems also must use this additional
information to solve complex learning problems (see the discussion of the
“‘credit-assignment problem’’ in Minsky, 1961). Much of the promise of the
idea of an internal model may be that this concept explicitly encourages and
provides a way of understanding learning in the absence of reward or punishment.
This type of learning involves the construction of an accurate predictive model,
a process that is normally independent of reinforcement. Once the model is
formed, internal trial and etror through simulation provides a framework for
using the information from the environment.

THE SIMULATED TASK ENVIRONMENT

Because both the experimental subjects and their environment were simulated
by computer, we were able to simplify the experimental design even further than
was done in the T-maze experiment. The ground plan of the simulated environ-
ment is shown in Fig. 4. The lower area is used in a manner analogous to the
T-maze, the two regions on the right and left being analogous to the red and
green goal boxes at the ends of the T-maze. The two enclosed regions shown
in the upper part of Fig. 4 are analogous to these same goal boxes when they
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FIG. 4. Ground plan of the simulated environment. The lower area is used in 2 manner analogous
to the T-maze in Figure 3, the two regions on the right and left being analogous to red and green
goal boxes at the ends of the T-maze. The upper two enclosed regions are analogous to those same
goal boxes when they have been moved to another room for association with food and shock in the
absence of the T-maze. The initial position of the network is indicated by the asterisk at A.

have been moved to another room for association with food and shock in the
absence of the T-maze. That these are actually separate regions is of no impor-
tance here: The adaptive network controlling the simulated subjects has only
three sensory input lines, one for sensing being within a'green region, one for
sensing being within a red region, and one for sensing rewarding stimulation.
In terms of this limited sensory vocabulary, all regions of the same color are
indistinguishable. This is clearly an enormous simplification of the perceptual
process.

The network has only two graded actions: moving to the right, and moving
to the left. These are meant to be extreme simplifications of, and yet analogous
to the right-turn and left-turn actions of the T-maze task. In the exploration phase
of the simulation experiment, each network is placed at A, between the two large
colored regions (Fig. 4), and allowed to wander back and forth randomly. (We
use the terminology of actual placement and movement, though this is all sim-
ulated numerically in the computer run of the model.) The barriers at B and C
obstruct its movement, thereby preventing it from moving too far away. This
insures that it eventually gains experience moving to and from both regions.
Thus, all trajectories are along a straight horizontal line between the two barriers.
The two upper goal box areas shown in the upper part of Fig. 4 are used in the
association phase. For the testing phase, the network is returned to location A
between the lower two regions to see which region is entered first. "

We next describe the adaptive network and then proceed through each phase
of the simulation experiment, discussing the experimental manipulations and
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network changes in detail. For reference, Appendix A contains a summary of
the details of the three phases of the simulation experiment, and Appendix B
contains a detailed specification of the simulated adaptive network model.

THE SIMULATED ADAPTIVE NETWORK

Figure 5 is a block diagram of the adaptive network design. The network is
divided into two major components: an action-selecting mechanism and an in-
ternal model of the environment. The action-selection mechanism uses the actual
environment and the model of the environment in exactly the same way—both
provide feedback to evaluate actions attempted by the action-selecting mecha-
nism. The evaluations by the model and by the environment of the most recently
selected action are added to yield the evaluation input to the action-selecting
component. Importantly, the feedback loop through the internal model is much
faster than the feedback loop through the environment, and thus proposed actions
can be evaluated by the model so quickly that the rejected alternatives have very
little influence on the environment and the organism’s overt behavior. This is
accomplished in the simulated example system by letting the motion of the
network depend not only on the instantaneous action selected, but also on past
values, in an exponentially weighted manner. The result is that even though both
the action selection and the overt action are changed and updated every time
step of the simulation, the environment is slightly ‘‘viscous”’ relative to the
network dynamics and has a kind of inertia that must be overcome before overt
action aligns with the current action selection. A decisive overt movement occurs
only when the system has converged onto a particular choice of action. Main-
taining a particular action as the one selected for a significant period of time
(about four time steps in the simulated system) causes that action to become
expressed in overt movement.

The Action-Selecting Component

The division of the adaptive network into the action-selecting and internal model
components makes its construction from adaptive elements relatively simple. All
that is needed for the action selector is a bank of action elements that correlate
their output, or action, with increases or decreases in the evaluation or rein-
forcement input to this subsystem (Fig. 6). We will need one element whose
action represents the tendency to turn right and one whose action represents the
tendency to turn left. The environment will then resolve any conflict between
these two by responding to the difference in the tendencies (this is explained in
detail in Appendix A). The action levels are originally chosen randomly, but if
a correlation is found between action level and subsequent evaluation, the choice
of action is biased to make positively correlated actions more likely to be selected
and negatively correlated actions less likely. Mathematically, the momentary



AN ADAPTIVE NETWORK 225

ENVIRONMENT <:

INPUT

(RED.
GREEN
RENRRD)

PREDICTIVE

,':::1> MODEL OF THE <:k:::::

ENVIRONMENT

RCTUAL +

RERARD ACTION

(RIGHT,

RCTION LEFT)
SELECTING
MECHANISM

FIG. 5. Block diagram of the adaptive network and its connection to the environment. The action
selecting mechanism has its choices evaluated via two feedback loops; one through the environment,
and one through an internal model of the environment. If the model is faster than the environment,
then the feedback loop through the model will control overt behavior.

action choice of each element is the sum of a random component and a bias or
accumulated correlation component:

A(t) = F(v(r) + B/(n) for all actions

where
1 ifx>1

F(x) =§ x fosx<1 (1)
0 ifx <O

and where A1) is the strength with which the ith action is selected at time ¢; v(1)
is a random variable, normally distributed with mean O; B(r) is the bias weight
for the ith action at time ¢, an accumulated measure of the correlation observed
between the ith action and reward changes (see following).

To correlate actions with subsequent evaluation changes, each element main-
tains a short-term memory, known as its eligibility (following Klopf, 1972), of
the extent to which it has been active. When an evaluation change occurs,
element biases are modified according to the extent of their eligibility. Mathe-
matically, the correlation bias weights are accumulated as follows:

B(1) = B{t — 1) + C'[E(®) — E¢t — D]'A(t) for all actions i
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FIG. 6 Detail of the action-selector component of the simulated network blocked out in Figure 5.
The elements correlate their output, or actioh, with increases or decreases in the evaluation input.

where B(#) is the bias toward the ith action at time #; C is the learning rate
parameter for the bias weights; E(f) is the feedback evaluation or reinforcement
at time r; A(#) is the eligibility of the ith action, an exponentially decreasing
weighted trace of values of A; before time 7 [in the simplest case A(¢) is merely
A — 1]

At the start of the simulation experiment, the bias for each action is zero,
favoring neither right nor left actions. During the exploration phase, the simulated
experimental subjects move back and forth randomly between the lower large
red and green regions of the environment (Fig. 4) without reinforcement of any
sort. Because reinforcement does not occur, nothing is predictive of reinforce-
ment, and reinforcement is never predicted by the internal model component.
Without reinforcement or its prediction, the action evaluation is always zero,
and there can be no correlations between action and changes in evaluation during
the exploration phase. Consequently, the bias weights remain zero during the
exploration phase. Once the testing phase has been reached, an internal model
will have been constructed such that a correlation will exist through the internal
model even in the absence of any external stimulation. This will result in the
action selector converging on a preference for one of the actions (this is discussed
in more detail later).

The sort of trial and error learning system presented in the foregoing is well
known from the work on Harth’s ALOPEX system for mapping receptive fields
(Harth, 1976; Harth & Tzanakou, 1974) and from the learning automata literature
inspired by Tsetlin’s work (Tsetlin, 1973). In a less simplified system than the
network described here, it would be highly desirable to modify this action-
selecting mechanism so that it is able to use sensory information in selecting
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actions. This would allow it to learn to perform different actions in different
situations without starting its search all over again each time the situation
changed. Instead, it could remember for each situation what actions were most
successful in previous experiences. Trial and error learning mechanisms can be
made sensitive to context in a fairly straightforward manner (Barto, Sutton, &
Brouwer, 1981; Klopf, 1972, 1981; Mendel & McLaren, 1970; Michie & Cham-
bers, 1968). However, it is not clear whether the actual current input, or the
predicted input, or some combination of the two should be used as the context
for the action selector. This problem with the current design is closely related
to several others that emerge when sequences of actions need to be internally
simulated in order to evaluate possible next actions. An additional mechanism,
such as a method for clearly separating actual from anticipated situations, is
probably necessary to handle these cases. This example system is only a first
step toward an adaptive network capable of creating and searching general in-
ternal models, and we do not consider these possibilities further. The artificial
intelligence literature on planning (Sacerdoti, 1977) would be highly relevant
to future extensions of this adaptive network mechanism.

The Internal Model Component

The construction of the internal model of the network’s world is a system iden-
tification task, and the solution adopted here follows Kohonen’s suggestion
(Kohonen, 1977) for doing system identification using a trainable associative
memory (Amari, 1977; Anderson, Silverstein, Ritz, & Jones, 1977; Cooper,
1974; Kohonen, 1977, Longuet-Higgins, Willshaw, & Buneman, 1970; Nakano,
1972; Palm, 1980; Wigstrom, 1973; Willshaw, Boneman, & Longuet-Higgins,
1969; Wood, 1978). Kohonen’s general idea was to train the associative memory
with sample input to the system to be identified as the recall key, and to use the

UNKNOWN

////"*' SYSTEM |— T
saupLe TRAINING

INPUT INPUT

PROBE |ASSOCIATIVE] pEcALL

FIG.7. Kohonen’s (1977) suggestion for doing input-output system’s identification with a standard
learning associative memory. The associative memory is trained by presenting paired samples of the
input and output of the unknown system.
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resultant output of the unknown system as the training pattern to be recalled
(Fig. 7). If the unknown system has no memory (that is, it simply implements
a function from input to output), then the associative memory will form a best
least squares linear approximation of the unknown function.

If the unknown system is the environment for an adaptive system, then this
process will yield nearly the appropriate sort of model. Figure 8 is a slightly
more detailed block diagram of the associative memory-based machinery in the
simulated adaptive network for model construction and use. The associative
memory here differs from the standard associative memories in being predictive:
It produces as its recollection a prediction of what the next key will be. (In this
sense it is similar to some of the early models of temporal associative memories;
for example, Longuet-Higgins, 1968a, 1968b; Longuet-Higgins et al., 1970.)

Figure 9 shows a detailed wiring diagram of the model construction and
readout machinery. This component consists of a bank of elements, each re-
sponsible for the prediction of a certain feature of the environmental stimulation,
available in this case on the separate input lines for red, green, and reward

ENVIRONMENT <:.____,_

ENVIRONNENTRL
INPUT

<~

TRRININS INPUT

PREDICTIVE m(’r
ASSOCIATIVE
MEMORY INPUT

RECALL

ACTION
PREDICTION OF
ENVIRONNENTAL
INPUT

" pREDICTION!!
OF REWARD

ACTION
SELECTOR

FIG. 8. A more detailed block diagram of the adaptive network (cf. Figure 5) showing the central
role of a predictive associative memory.
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FIG. 9. A more detailed wiring diagram of the model construction and readout mechanism (see
text for explanation). The size of the striped disks at the fiber intersections indicates the magnitudes
of the weight associated with that connection. The sign of the weight is indicated by the slanting
of the stripes (and, in later figures, by explicit plus or minus signs), where slanting up to the right
indicates a positive weight and slanting up to the left a negative weight.

stimulation. As a basis for making these predictions, each element is provided
with the current action selection from the action-selector component and the most
recent predictions of stimulation from the other predictor elements in this com-
ponent. The fact that predictions of stimulation are used to make further pre-
dictions results in the recurrent architecture of this network.

Each predictor element has a weight associated with each of its five inputs
from the action selector and recurrently from the predictor module. For example,
W greenrigne 18 the upper left-hand weight pointed out in Fig. 9 from the right-
moving action A, to the predictor for green. The size of the striped disk indicates
the magnitude of the weight in this and later figures. Stripes slanting upward to
the left indicate a negative weight and stripes slanting upward to the rightindicate
a positive weight; in Figs. 10-14 the sign of each weight is also indicated
explicitly by a plus or minus sign next to the weight. The output P(¢) of these
elements is the weighted sum of their inputs from the action selector and re-
currently from the predictor elements, plus their special training input directly
from the environment:

P(t) = FIZW/MA() + Z W, P — 1) + I()]

! k
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for all predictor elements i, where the sums are over all actions j and all predictor
elements k; the function F() is given by Equation (1); and /,(¢) is the value of
the red, green, or reward input from the environment at time ¢.

A connection or synapse W, from action or predictor j to predictor i is said
to be eligible at time ¢ if its input fiber, the jth input to the predictor module,
has been active in the recent past. A connection ean have its weight changed
only when it is eligible. If a predictor element experiences a change in its level
of output activation, then the eligible synapses are changed in the same direction
as that change in activation. Because the eligible connections are those that were
active slightly earlier, the result will be such that if the same input situation
occurred again, the change in activity would occur earlier. In other words, these
adaptive elements signal their predictions by responding as they would if the
predicted stimulation were already present. For example, if the input information
indicates that an element is about to receive strong excitatory stimulation, then
the element becomes highly active immediately. This property, combined with
the recurrent network architecture, results in the ability to chain predictive as-
sociations of as great a depth as there are features to predict (e. g,, A predicts
B, B predicts C, etc.). For the present purposes, this is the only crycial property
of these predictor elements. Appendix B contains a complete specification of
their operation in this network and Sutton and Barto (1981) and Barto and Sutton
(1981c) extensively discuss their behavior as individual elements.

Although sufficient for the simple example system presented here, these pre-
dictor elements may not be ideal for the purposes of constructing and using an
internal model. Without going any further into the details of this element or the
alternatives, we can note that these elements require the rec frrent connections
from each to itself to be made ineffective (zero and nonplastic) for effective
operation in the architecture chosen for this network. This is easily arranged,
as it is in the simulated example system, but it is not an elegant solution,
suggesting that there may be other hidden difficulties. This problem may suggest
directions to proceed in deriving elements better suited to this purpose.

SIMULATION RESULTS

Two hundred instantiations of this network, each with a different ‘‘seed’’ for
the pseudorandom number generator, were run through the main experiment.
The following subsections describe each phase of the experiment, and the general
behavior of the networks during that phase. In addition, the state of a particular
network is followed through each phase (Figs. 10-14) to illustrate why these
networks exhibit each behavior.

The Exploration Phase

During the random wanderings of each simulated adaptive creature in the ex-
ploration phase, the internal model component is forming a model to predict the
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FIG. 10. The state of the network near the end of the exploration phase for one of the simulated
experimental subjects. See text for explanation.

red and green stimulation changes it experiences when it occasionally wanders
into or out of one of the two colored regions. Figure 10 shows the state of the
network near the end of the exploration phase for one of the simulated experi-
mental subjects. The four relatively large connections from the actions to the
green and red predictors of the predictor module indicate that the net has learned
that right-moving actions predict increases in red stimulation and decreases in
green stimulation, whereas left-moving actions predict increases in green stim-
ulation and decreases in red stimulation.

The particular snapshot of the network activity in Fig. 10 shows how this
knowledge is accumulated. The right-moving action has been selected more than
the left-moving action in the last few time steps, as indicated by the greater
eligibility of the connections from this action to the predictor elements, and in
fact the subject has moved right during the most recent time step. This rightward
movement has just brought the subject into the red region (this is indicated by
the high activity in the red input while its trace of activity—indicated by the size
of the box—is still zero). The resultant sensory input stimulates the red predictor
clement, causing an increase in its activity (indicated by the circle centered on
this element being larger than the square), and this causes an increase in the
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FIG. 11.  The network state just after the reward is provided. See text for explanation.

eligible connections. The most eligible connections, as we have already seen,
are those from the right-moving action. The net result is to further strengthen
the pattern of learned associations that we already see present in these connec-
tions.

The Association Phase

After 1000 time steps of the exploration phase, each subject is moved to the red
goal box, left there for two time steps, and then provided with full reward
stimulation. Figure 11 shows the network state just after the reward is provided.
Note the large positive connection from the red predictor to the reward predictor.
The net has concluded that a prediction, or actual occurrence, of red predicts
reward, as the red predictor element was highly active just prior to the increase

nN-Zmoémnnm
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in reward stimulation. The eligibilities of the connections from the red predictor
are indicated by the large circles at these connections. Next, each subject is
moved to the green goal box, left there for two time steps, and then the reward
stimulation is removed. By a completely analogous process, the green prediction
becomes a predictor of loss of reward, and the corresponding connection becomes
negative (Fig. 12).

The Testing Phase

In the testing phase, each subject is returned to the initial location between the
lower large red and green regions. As soon as the subject enters one of these
regions the trial is over and the simulation is stopped. Of 200 subjects, 141—over
70%—entered the red region first, statistically a highly significant result (p <
.005). A second experiment was also performed in which the lower red and
green regions and their barriers were removed during the training phase, but

PREDICTOR MOMULE

CELL VARIRBLES:
COLOR - RACTIVITY =%
CIRCLE - ACTIVITY +
BOX - TRACE OF RACT
syNAPTIC vARIABLES: (BB
DISK -~ EFFICACY
CIRCLE -~ ELIGIBILITY
BOX — INEFFECTIVE
4
"
GREEN |14
&l Rrep
#
* [RewARD == O
> Z LEFT

w-—Zzmymmnnm

i
e A 14
c/})] r. L RIGHT

TION=SELECTING MODULE

FIG. 12. The network state after the reward has been removed while the subject was in the green
box. Prediction of green has become a predictor of loss of reward, as indicated by the negative
connection between the predictor elements for green and reward.
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FIG. 13. The state of the network of one of the subjects of the primary experiment several time
steps into the testing phase but before either region has been entered. See text for explanation.

which was otherwise identical to the first experiment. The testing phase was
halted after 300 time steps and the position of the subject was recorded. Each
of the 100 subjects had moved far to the right, many times beyond the original
location of the red region, at the end of that time. This indicates that the statistical
nature of the primary result is due to random movements bringing some of the
subjects within the green region, and thus ending the trial, before they have had
enough experience with their internal models to be directed to the right.
Figure 13 shows the state of the network of one of the subjects of the primary
experiment several time steps into the testing phase but before either region has
been entered. Notice that the bias weight for moving right (toward the red region)
has become positive, whereas the bias weight for moving left (toward the green
region) has become negative. The successive snapshots of network state in Figs.
13 and 14 provide an example of how this comes about during the testing phase.
In Fig. 13 we see the action-selecting module happening to choose the instan-
taneous action causing movement right. This selection results in an increase in
the activity of the red predictor element, because moving right was found to be
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a predictor of red stimulation in the exploration phase. At the next time step
(Fig. 14), we see the prediction of red stimulation cycling around to activate the
reward-predicting element via the excitatory connection established during the
association phase. Thus, as a consequence of the action selector’s momentary
choice of the right action, the predictor module, acting as an internal model, has
generated the prediction of increased reward. Because the right action was se-
lected at the previous time step, its bias weight is eligible (indicated by the large
circle at its bias connection in Fig. 14) when the prediction of increased reward
arrives. Thus, this bias weight is increased, and the network is further biased
towards moving right. If on the other hand, the action selector had momentarily
chosen the left action, green stimulation would have been predicted. This inturn
would have predicted a decrease in reward stimulation, and the selection of the
left action would have been punished.

PREDICTOR MODULE
_‘:%k )‘*‘

% N £

GREEN
RED
REWARD
LEFT
RIGHT

FIG. 14. The state of the network one time step after Figure i3. See text for explanation.
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Recall that these momentary selections of right or left actions will not in
general be accompanied by actual right or left movement. The environment
responds to the actions selected in a relatively slow inertial manner: Several
action selections in the same direction are usually necessary to cause actual
motion in that direction. Both overt and covert actions are updated every time
step of the simulation. The only difference is that the overt action, the *‘physical’’
movement, depends not only on the current covert action selection but also on
past selections, weighted according to recency. Thus a consistently selected
covert action becomes the overt action, while rapid fluctuations in covert action
selection are averaged out. In this way the process of covert, internal trial and
error via the predictive internal model can occur with relatively little overt action
by the subject. No other delaying or decision-making machinery is necessary to
make the transition from covert thought trials to overt movement. In fact, the
action-selecting component (referring to Fig. 5) is completely oblivious to
whether it is receiving feedback from the external environment or from its internal
model. From the action-selecting component’s point of view, the acquisition of
an internal model merely means that the feedback for its action selections returns
more rapidly, significantly easing its problem of controlling that feedback.

Superstitious Learning

During the association phase, reward is provided and then taken away fromeach
subject while it is in the red and green goal boxes respectively. During thistime,
whatever action the network happened to select just before the reward stimulation
is changed will be strongly reinforced or punished by that change. For example,
the subject whose network state is shown in Fig. 12 happened to associate the
left action with reinforcement, as shown by the larger bias weight for the left
action than for the right action. One might expect that the effect of these reward
changes would be dependent on whatever action was randomly chosen just before
the reward changes and that the effect on later behavior would thus be, on the
average, symmetrical with respect to right- and left-moving actions. To ensure
that this was the case, a third experiment was performed that was identical to
the first in all respects except that the action bias weights were set to zero just
prior to the testing phase. This insured that there would be no initial bias either
to the right or the left. Of the 100 subjects in this third experiment, just over
70% entered the red area first, confirming that the decision to move right can
be made during the testing phase based completely on information stored in the
internal model of the predictor module.

THE REPRESENTATION PROBLEM

This system was constructed to be the simplest possible complete system capable
of constructing and using an internal model. As such a minimal example, it only
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begins to address some of the critical issues involved. The simulated network
was provided with a representation of the environment specially tailored to the
task it was to solve. It had unique input lines for red and green stimulation, and
the environment consisted only of areas that were entirely green, or entirely red,
or neither. The relationships to be learned between actions and resultant stim-
ulation, and between stimulations, were very simple ones in terms of the available
action and stimulation representations. Mathematically, a network such as the
one used here can only learn linear relationships between its representation of
action, stimulation, and subsequent stimulation. To the extent that the actual
relationships depart from linearity, such a network would be unable to form an
accurate model.

One strategy for solving this difficulty is to retain the linear learning rules but
to attempt to evolve continuously a representation compatible with that linearity.
In general this is a difficult unsolved problem. Input features, output commands,
and internal representations of environmental state (in the example system, en-
vironmental state was not necessary in forming a predictive model) all would
need to be developed. This problem is closely related to the representation
problem of artificial intelligence. Unfortunately, however, most of the work on
this problem in artificial intelligence is unhelpful in that it merely attempts to
find a good representation for a particular task rather than techniques forevolving
representations in a more general setting. Genuinely relevant work includes the
feature extraction work in pattern recognition (Bledsoe & Browning, 1959; Klopt
& Gose, 1969; Selfridge, 1955; Uhr & Vossler, 1961), Samuel’s checker player
(Samuel, 1959), and the work on nonlinear associative memories (Poggio, 1975;
and Barto, Anderson, & Sutton, in preparation). A fundamental heuristic central
to much of this representation development work is to direct the search for better
representations according to which representation elements have already proved
most useful.

Although the network used here was given a sufficient representation ab initio,
and has no capabilities for representation development, it does serve as a basis
for considering what simultaneous environmental interaction and representation
development may involve. In particular, we assume that there must be some
property of the environmental interaction that indicates when and in what way
the current representation needs to be changed. If this sort of example allows
us to observe these properties in a simple case, then we will have made progress
toward making an adaptive network appropriately sensitive to them.

DISCUSSION

The network presented here embodies a method for adaptive control based on
systems identification (model construction) that is very general: (1) use repeated
experiments with the input—output behavior of the system to be controlled to
construct a model that yields similar behavior; and (2) to select each control
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action, first interact with the model, in an input—output or black-box manner,
to determine which action is optimal in terms of the model. The essential aspect
of the model is that it is a behavioral model: Its successful use depends only on
its input—output validity. The model can be interacted with to achieve an optimal
response just as the external world is interacted with in the absence of a model.
These perspectives on the nature and use of a model were summarized pictorially
in Fig. 1. It should be noted that appropriate general techniques for this sort of
interaction with an environment or model are not currently well understood. This
is an area of current active investigation by our research group.

Although we emphasize an input—output view of the internal model, this is
not a return to the pre-state-space ways of thinking characteristic of the work
of the 1950s. Such an internal model will in general include states (even though
the model in the simulated example system did not). However, we do wish to
emphasize that for this use of the model only the input-output aspects are
important.

Another important feature of the network presented here is the method used
for coordinating interaction with the real environment and interaction with the
model of that environment. Consider the approach taken in most artificial in-
telligence systems for problem solving or reasoning about actions, such as SRI’s
famous robot SHAKY (see Raphael, 1976). SHAKY operates in three identifiable
modes. In one, he visually scans the environment and constructs an internal
model of it, aided by a priori knowledge and assumptions. In another mode, he
uses his model of the environment and his current goals to perform a sophisticated
search through the space of possible paths and actions. This search takes the
form of an internal simulation with backtracking of many of the possible action
paths. Finally, in the third mode, SHAKY shuts off his internal model and visual
apparatus and executes *‘ballistically’” his precomputed next action or series of
actions. When the action is complete, or some unusual event occurs, SHAKY
returns to one of the other modes. A lot of work in artificial intelligence has
concentrated on the model search step of the foregoing scenario, without going
any further toward coordinating the model interaction and the interaction with
the real environment. By contrast, the example adaptive network presented here
performs all three functions—model acquisition, model interaction (search), and
real time environmental interaction—simulitaneously. If this example adaptive
network is of interest, it is not because of its search capabilities, which are
limited and primitive, but because it is a first step toward integrating thelearning,
search, and use of internal models of the world. The fact that this integration
was possible with little specialized machinery—both adaptive elements used
have been studied for more primitive purposes, and their interconnection pattern
is not a highly restricted one—is a promising sign.

As mentioned earlier, the example network has been so constructed that the
action-selecting component (Fig. 5) is completely oblivious to whether it is
interacting with the real world or the internal model. The effect of acquiring an
internal model is merely that whatever it is with which the action selector is
interacting begins to respond more rapidly to contemplated actions and thus
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becomes easier to control. When an internal model is viewed from this per-
spective, it becomes clear that there is an even simpler case of the use of an
internal model. In the parlance of animal learning theory, a secondary reinforcer
is an originally neutral event that has taken on reinforcing properties by virtue
of being predictive of a primary reinforcer (Hilgard & Bower, 1975). To a
network receiving this secondary as well as primary reinforcement, the devel-
opment of the secondary reinforcer means that reinforcement for its actions
arrives sooner following the actions than it did previously. The model consists
of the rapid simulation of the tendency of the primary reinforcer to follow the
secondary reinforcer. This results in an effective environment for internal action-
selecting elements that is more amenable to learning techniques. In this way
secondary reinforcement can be seen as a very simple case of the construction
and use of an internal model.

CONCLUSION

Although the task and network presented here are very simple ones, and there
are admittedly some questions as to the direct extensibility of some of the learning
algorithms, this little system remains an important demonstration for two reasons.
First, what has been sacrificed in the complexity of this demonstration has been
to some extent made up in ‘‘horizontal’’ completeness: The network not only
has a simple internal model, it also acquires, interrogates, and acts on the basis
of that model and performs all three of these functions simultaneously and in
an integrated fashion. Second, the system shows how the important ideas of an
internal model and internal simulation can be realized in a network or connec-
tionistic form. As such, it can help to form a bridge between cognitive and
information-processing models on the one hand, and brain theory and connec-
tionistic models on the other.
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APPENDIX A
DETAILS OF THE SIMULATION EXPERIMENTS

A.1 Computation of Movement

At each time step the simulated adaptive network provides an instantaneous
action vector [A,(2), A,()], the first component of which gives the network a
tendency to turn right, the second to turn left. The computation of this vector
is detailed in Appendix B. A record [S.(¢), S,(r)] is kept of the extent to which
each action has been instantancously selected recently:
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S0 = a8t — 1)+ (1 = a)AL
S, =aS,t— 1)+ (1 — a)yAln

Movement is determined by which of these traces is largest:
Motion (£) = B-[Sx(r) — S, (D],

where positive motion means motion to the right, and negative motion means
motion to the left. In all the simulation experiments o was set at 0.8 and 3 was
set at 50.0 where the distance between the barriers at B and C is about 125.
If the motion computed. in the foregoing causes the network to run into a
barrier, the actual motion is halted at the point of contact. In addition, barrier
collision neutralizes the inertial tendency to continue motion in that direction.
Specifically, the inertial traces S, and S, are set to their average upon collision
with a barrier. The inertia was also neutralized by setting both of these traces
to zero each time a subject was *‘picked up’’ and moved as part of an experiment.

A.2 Experiment |

Experiment 1 used 200 subjects, each run individually through the following
three phases.

A.2.1 Exploration Phase

Each subject was released between the lower large colored regions (point A
in Fig. 4). If the center of its body passed into a colored region, the corresponding
sensory input line was set to a value of approximately 0.5. All motion was
computed as described previously. After 1000 time steps the association phase
began.

A.2.2 Association Phase

Each subject was moved to the enclosed red region of Fig. 4. The red input
line was activated in the same way it was activated during the exploration phase
when the subject was within the lower red region. After two time steps the
reward input line was also set to 0.5. After one time step of this stimulation
pattern, each subject was transferred to the enclosed green box shown in Fig.
4. The input pattern there was [, = 0.0, 1., = 0.5, and [, , = 0.5. After
two time steps of this, the reward input line was set to zero again for one time
step, and then the testing phase began. The following table summarizes the

stimulation regime during the association phase.

Absolute Time Duration 1. I een | -
1000-1001 2 0.5 0.0 0.0
1002 1 0.5 0.0 0.5
1003-1004 2 0.0 0.5 0.5
1005 1 0.0 0.5 0.0
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A.2.3 The Testing Phase

In the testing phase of the primary experiment each subject was returned to
location A of Fig. 4 and released, just as in the exploration phase. The testing
phase ended when either of the two colored regions was entered. Of the 200
subjects, 141 entered the red region first and 59 entered the green region first.
This result is statistically significant at at least the p = .005 level.

A.3 Experiment ||

The second experiment was identical to the first during the exploration and
association phases. Its testing phase differed in that the lower red and green
regions and the barriers inside them were removed. After 300 time steps the
testing phase ended and the position of the subject was recorded. All 100 subjects
had moved very far to the right after the 300 time steps, the nearest being about
twice as far off the page as the distance from A to the right edge of the page
in Fig. 4.

A.4 Experiment il

The third experiment was identical to the first, except that the bias weights WAC,
and WAC, (also called B, in the text) were set to zero at the beginning of the
testing phase. This ensured the networks had no initial tendency to move either
right or left at the beginning of the testing phase. Of the 100 subjects, 71 entered
the red area first, a result statistically significant at at least the p = .005 level.

APPENDIX B
DETAILS OF THE SIMULATED ADAPTIVE NETWORK

STIMULI is the set {RED, GREEN, REWARD}
ACTIONS is the set {RIGHT, LEFT}
This is a discrete time model (i.e.,t = 0,1, 2, .. .).

B.1 Components .

A PREDICTOR-MODULE, consisting of 3 PREDICTOR-ELEMENTS (cor-
responding to the 3 stimuli), a3 X 3 matrix of PREDICTOR-TO-PREDICTOR-
CONNECTIONS, and a 3 X 2 matrix of ACTOR-TO-PREDICTOR-CON-
NECTIONS.

An ACTION-SELECTING-MODULE, consisting of 2 ACTOR-ELEMENTS
and a 2-element vector of CONSTANT-TO-ACTOR-CONNECTIONS.

A vector of 3 INPUT-LINES, corresponding to the three STIMULLI.

A vector of two QUTPUT-LINES, corresponding to the 2 ACTIONS.
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B.2 Descriptive Variables

B.2.1 Input Variables

I1(nel0, 1], forallse STIMULLI, is the input to the network at time ¢. These
indicate the color of the region that the subject is in (if any) and the presence

or absence of reward.
B.2.2 Output Variables

A e[0,1], forallaace ACTIONS, is the activity level at time ¢ of the
ACTOR-ELEMENT for action a, indicating the instantaneous selection of move-
ment to the right or left.

B.2.3 State Variables

P € [0, 1], for all s € STIMULL, is the activity level at time ¢ of the
PREDICTOR-ELEMENT for stimulus s. This indicates a combination of pre-
diction of stimulation and actual stimulation.

WPP,, (1) € R, for all 51, s2 € STIMULL, is the efficacy of the PREDICTOR-
TO-PREDICTOR-CONNECTION to the PREDICTOR-ELEMENT for stimulus
s1 from the PREDICTOR-ELEMENT for stimulus s2.

WPA_(t) € R, for all s e STIMULI, a € ACTIONS, is the efficacy at time ¢ of
the ACTOR-TO-PREDICTOR-CONNECTION to the PREDICTOR-ELEMENT
for stimulus s from the ACTOR-ELEMENT for action a.

. WAC (1) € R, for all a € ACTIONS, is the efficacy at time ¢ of the CONSTANT-
TO-ACTOR-CONNECTION to the ACTOR-ELEMENT for action a. These
weights were called the bias weights and denoted B rather than WAC in the text.
Aty e [0, 1}, for all a e ACTIONS, is the trace at time ¢ of A (r), the activity
of the ACTOR-ELEMENT for action a.

A' () el0, 1], forallae ACTIONS, is another trace at time ¢ of A,(?).

P (1) € {0, 1], for all s € STIMULL, is the trace at time ¢ of P (f), the activity
of the PREDICTOR-ELEMENT for stimulus s.

B.2.4 Parameters

CPP, ,€R +, for all s, s2 € STIMULL, is the learning rate parameter for
the PREDICTOR-TO PREDICTOR-CONNECTION from the PREDICTOR-
ELEMENT for stimulus s2 to the PREDICTOR-ELEMENT for stimulus s1.
CPA (1) € R +, for all 5 € STIMULI, a € ACTIONS, is the learning rate
parameter for the ACTOR-TO-PREDICTOR-CONNECTION from the ACTOR-
ELEMENT for action a to the PREDICTOR-ELEMENT for stimulus s.

C € R +, is the learning rate parameter for the CONSTANT-TO-ACTOR-
CONNECTION to the ACTOR-ELEMENT for action a.

a, € [0, 1] is the trace decay parameter for the trace of activity in the PREDIC-
TOR-ELEMENTS.

a, € [0, 1] is the trace decay parameter for the trace of activity in the ACTOR-
ELEMENTS that is used to change the ACTOR-TO-PREDICTOR-CONNEC-
TION efficacies.
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a,’ € [0, 1] is the trace decay parameter for the trace of activity in the ACTOR-
ELEMENTS that is used to change the CONSTANT-TO-ACTOR-CONNEC-
TION efficacies.

B.3 Equations of Interaction

B.3.1 Equations of Primary Network Operation

A (D = F{A' () — A’ (1)}
A = FlA', (1) — A" (1}

where

A (1) = WAC, () + NOISE  if WAC, + NOISE > 0
a 0

else

for all @ € ACTIONS; F() given by Equation 1; and NOISE a normally distributed
random variable with mean 0.2 and standard deviation 0.4.

P(t) = FlI(t) + WPA@)-A(t) + WPP()-P(t — 1)]
(using vector and matrix notation)
B.3.2 Equations for Change of Connection Efficacies
WPP, , (t + 1) = WPP_ (1) + CPP, , - {P () — P, (0} - Pt — 1)

WPA, (t + 1) = WPA_ () + CPA,, - {P(t) — P(n)} - A’ (1)

s.a

WAC(t + 1) = WAC,() + C  {P(® — P} * A1)

where
P+ 1)=0o,P@)+ (1.0 — o) - P(t)
A+ 1) = aAM + (1.0 — o) A0

Al + 1) =oa,4A0 + (1.0 - a)A®)

For all a € ACTIONS and s, sl1, s2 € STIMULI.

B.4 Parameter Settings

CPPs, s,: s\ % RED GREEN REWARD
REWARD 0.5 0.5 0.0
GREEN 0.5 0.0 1.5

RED 0.0 0.5 1.5
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CPA_ N RED GREEN REWARD
RIGHT 0.2 0.2 0.0
LEFT 0.2 0.2 0.0

C =05

o, = 0.0

o 0.0



