
Open Theoretical Questions

in Reinforcement Learning

Richard S. Sutton

AT&T Labs, Florham Park, NJ 07932, USA,
sutton@research.att.com, www.cs.umass.edu/~rich

Reinforcement learning (RL) concerns the problem of a learning
agent interacting with its environment to achieve a goal. Instead of
being given examples of desired behavior, the learning agent must
discover by trial and error how to behave in order to get the most
reward. The environment is a Markov decision process (MDP) with
state set, S, and action set, A. The agent and the environment in-
teract in a sequence of discrete steps, t = 0, 1, 2, . . . The state and
action at one time step, st ∈ S and at ∈ A, determine the probabil-
ity distribution for the state at the next time step, st+1 ∈ S, and,
jointly, the distribution for the next reward, rt+1 ∈ <. The agent’s
objective is to chose each at to maximize the subsequent return:

Rt =
∞∑

k=0

γkrt+1+k,

where the discount rate, 0 ≤ γ ≤ 1, determines the relative weighting
of immediate and delayed rewards. In some environments, the inter-
action consists of a sequence of episodes, each starting in a given
state and ending upon arrival in a terminal state, terminating the
series above. In other cases the interaction is continual, without in-
terruption, and the sum may have an infinite number of terms (in
which case we usually assume γ < 1). Infinite horizon cases with
γ = 1 are also possible though less common (e.g., see Mahadevan,
1996).

The agent’s action choices are a stochastic function of the state,
called a policy , π : S 7→ Pr(A). The value of a state given a policy
is the expected return starting from that state following the policy:

V π(s) = E{Rt | st = s, π},

and the best that can be done in a state is its optimal value:

V ∗(s) = max
π

V π(s).

There is always at least one optimal policy , π∗, that achieves this
maximum at all states s ∈ S. Paralleling the two state-value func-
tions defined above are two action-value functions, Qπ(s, a) = E{Rt | st = s, at = a, π}
and Q∗(s, a) = maxπ Qπ(s, a). From Q∗ one can determine an opti-
mal deterministic policy, π∗(s) = arg maxa Q∗(s, a). For this reason,
many RL algorithms focus on approximating Q∗. For example, one-
step tabular Q-learning (Watkins, 1989) maintains a table of esti-
mates Q(s, a) for each pair of state and action. Whenever a is taken
in s, Q(s, a) is updated based on the resulting next state s′, and
reward r:

Q(s, a)← (1− αsa)Q(s, a) + αsa[r + max
a′

Q(s′, a′)], (1)

where αsa > 0 is a time-dependent step-size parameter. Under min-
imal technical conditions, Q converges asymptotically to Q∗, from
which an optimal policy can be determined as described above (Watkins
and Dayan, 1992).

Modern RL encompasses a wide range of problems and algo-
rithms, of which the above is only the simplest case. For exam-
ple, all the large applications of RL use not tables but parameter-
ized function approximators such as neural networks (e.g., Tesauro,
1995; Crites and Barto, 1996; Singh and Bertsekas, 1997). It is also
commonplace to consider planning—the computation of an optimal
policy given a model of the environment—as well as learning (e.g.,
Moore and Atkeson, 1993; Singh, 1993). RL can also be used when
the state is not completely observable (e.g., Loch and Singh, 1998).
The methods that are effectively used in practice go far beyond what
can be proven reliable or efficient. In this sense, the open theoretical
questions in RL are legion. Here I highlight four that seem partic-
ularly important, pressing, or opportune. The first three are basic
questions in RL that have remained open despite some attention
by skilled mathematicians. Solving these is probably not just a sim-
ple matter of applying existing results; some new mathematics may
be needed. The fourth open question concerns recent progress in ex-
tending the theory of uniform convergence and VC dimension to RL.
For additional general background on RL, I recommend our recent
textbook (Sutton and Barto, 1998).

1 Control with Function Approximation

An important subproblem within many RL algorithms is that of ap-
proximating Qπ or V π for the policy π used to generate the training
experience. This is called the prediction problem to distinguish it
from the control problem of RL as a whole (finding Q∗ or π∗). For
the prediction problem, the use of generalizing function approxima-
tors such as neural networks is relatively well understood. In the
strongest result in this area, the TD(λ) algorithm with linear func-
tion approximation has been proven asymptotically convergent to
within a bounded expansion of the minimum possible error (Tsit-
siklis and Van Roy, 1997). In contrast, the extension of Q-learning
to linear function approximation has been shown to be unstable (di-
vergent) in the prediction case (Baird, 1995). This pair of results
has focused attention on Sarsa(λ), the extension of TD(λ) to form a
control algorithm.

Empirically, linear Sarsa(λ) seems to perform well despite (in
many cases) never converging in the conventional sense. The param-
eters of the linear function can be shown to have no fixed point in
expected value. Yet neither do they diverge; they seem to “chatter”
in the neighborhood of a good policy (Bertsekas and Tsitsiklis, 1996).
This kind of solution can be completely satisfactory in practice, but
can it be characterized theoretically? What can be assured about
the quality of the chattering solution? New mathematical tools seem
necessary. Linear Sarsa(λ) is thus both critical to the success of the
RL enterprise and greatly in need of new learning theory.

2 Monte Carlo Control

An important dimension along which RL methods differ is their de-
gree of bootstrapping . For example, one-step Q-learning bootstraps
its estimate for Q(s, a) upon its estimates for Q(s′, a′) (see Eq. 1),
that is, it builds its estimates upon themselves. Non-bootstrapping
methods, also known as Monte Carlo methods, use only actual returns—
no estimates—as their basis for updating other estimates. The λ in
methods such as TD(λ), Q(λ), and Sarsa(λ) refers to this dimen-
sion, with λ = 0 (as in TD(0)) representing the most extreme form

of bootstrapping, and λ = 1 representing no bootstrapping (Monte
Carlo methods).

In most respects, the theory of Monte Carlo methods is better
developed than that of bootstrapping methods. Without the self ref-
erence of bootstrapping, Monte Carlo methods are easier to analyze
and closer to classical methods. In linear prediction, for example,
Monte Carlo methods have the best asymptotic convergence guar-
antees. For the control case, however, results exist only for extreme
bootstrapping methods, notably tabular Q(0) and tabular Sarsa(0).
For any value of λ > 0 there are no convergence results for the
control case. This lacunae is particularly glaring and galling for
the simplest Monte Carlo algorithm, Monte Carlo ES (Sutton and
Barto, 1998). This tabular method maintains Q(s, a) as the average
of all completed returns (we assume an episodic interaction) that
started with taking action a in state s. Actions are selected greedily,
π(s) = arg maxa Q(s, a), while exploration is assured by assuming
exploring starts (ES)—that is, that episodes start in randomly se-
lected state–action pairs with all pairs having a positive probability
of being selected. It is hard to imagine any RL method simpler or
more likely to converge than this, yet there remain no proof of asymp-
totic convergence to Q∗. While this simplest case remains open we
are unlikely to make progress on any control method for λ > 0.

3 Efficiency of Bootstrapping

Perhaps the single most important new idea in the field of RL is that
of temporal-difference (TD) learning with bootstrapping. Bootstrap-
ping TD methods have been shown empirically to learn substantially
more efficiently than Monte Carlo methods. For example, Figure 1
presents a collection of empirical results in which λ was varied from
0 (pure bootstrapping) to 1 (no bootstrapping, Monte Carlo). In
all cases, performance at 0 was better than performance at 1, and
the best performance was at an intermediate value of λ. Similar re-
sults have been shown analytically (Singh and Dayan, 1998), but
again only for particular tasks and initial settings. Thus, we have
a range of results that suggest that bootstrapping TD methods are
generally more efficient than Monte Carlo methods, but no defini-
tive proof. While it remains unclear exactly what should or could be

proved here, it is clear that this is a key open question at the heart
of current and future RL.

accumulating
traces

0.2

0.3

0.4

0.5

0 0.2 0.4 0.6 0.8 1

!

RANDOM WALK

50

100

150

200

250

300

Failures per
100,000 steps

0 0.2 0.4 0.6 0.8 1

!

CART AND POLE

400

450

500

550

600

650

700

 Steps per
episode

0 0.2 0.4 0.6 0.8 1

!

MOUNTAIN CAR

replacing
traces

150

160

170

180

190

200

210

220

230

240

Cost per
episode

0 0.2 0.4 0.6 0.8 1

!

PUDDLE WORLD

replacing
traces

accumulating
traces

replacing
traces

accumulating
traces

RMS error

Fig. 1. The effect of λ on RL performance. In all cases, the better the performance,
the lower the curve. The two left panels are applications to simple continuous-state
control tasks using the Sarsa(λ) algorithm and tile coding, with either replacing or
accumulating traces (Sutton, 1996). The upper-right panel is for policy evaluation on
a random walk task using TD(λ) (Singh and Sutton, 1996). The lower right panel is
unpublished data for a pole-balancing task from an earlier study (Sutton, 1984).

4 A VC Dimension for RL

So far we have discussed open theoretical questions at the heart of
RL that are distant from those usually considered in computational
learning theory (COLT). This should not be surprising; new prob-
lems are likely to call for new theory. But it is also worthwhile to try
to apply existing theoretical ideas to new problems. Recently, some

progress has been made in this direction by Kearns, Mansour and Ng
(in prep.) that seems to open up a whole range of new possibilities
for applying COLT ideas to RL.

Recall the classic COLT problem defined by a hypothesis space
H of functions from X to Y together with a probability distribution
P on X × Y . Given a training set of x, y pairs chosen according to
P , the objective is to find a function ĥ ∈ H that minimizes the gen-
eralization error. A basic result establishes the number of examples
(on the order of the VC dimension of H) necessary to assure with
high probability that the generalization error is approximately the
same as the training error.

Kearns, Mansour and Ng consider a closely related planning
problem in RL. Corresponding to the set of possible functions H,
they consider a set of possible policies Π. For example, Π could be
all the greedy policies formed by approximating an action-value func-
tion with a neural network of a certain size. Corresponding to the
probability distribution P on X×Y , Kearns et al. use a generative or
sample model of the MDP. Given any state s and action a, the model
generates samples of the next state s′ and the expected value of the
next reward r, given s and a. They also allow the possibility that
the environment is a partially observable (PO) MDP, in which case
the model also generates a sample observation o, which alone is used
by policies to select actions. Corresponding to the classical objective
of finding an ĥ ∈ H that minimizes generalization error, they seek a
policy π̂ ∈ Π that maximizes performance on the (PO)MDP. Perfor-
mance here is defined as the value, V π̂(s0), of some designated state
state, s0 (or, equivalently, on a designated distribution of starting
states).

But what corresponds in the RL case to the training set of ex-
ample x, y pairs? A key property of the conventional training set
is that one such set can be reused to evaluate the accuracy of any
hypothesis. But in the RL case different policies give rise to different
action choices and thus to different parts of the state space being
encountered. How can we construct a training set with a reuse prop-
erty comparable to the supervised case? Kearns et al.’s answer is
the trajectory tree, a tree of sample transitions starting at the start
state and branching down along all possible action choices. For each
action they obtain one sample next state and the expected reward

from the generative model. They then recurse from these states, con-
sidering for each all possible actions and one sample outcome. They
continue in this way for a sufficient depth, or horizon, H, such that
γH is sufficiently small with respect to the target regret, ε. If there
are two possible actions, then one such tree is of size 2H , which
is independent of the number of states in the (PO)MDP. The reuse
property comes about because a single tree specifies a length H sam-
ple trajectory for any policy by working down the tree following the
actions taken by that policy. A tree corresponds to a single example
in the classic supervised problem, and a set of trees corresponds to
s training set of examples.

With the trajectory tree construction, Kearns et al. are able to
extend basic results of uniform convergence. The conventional defi-
nition of VC dimension cannot be directly applied to policy sets Π,
but by going back to the original definitions they establish a natural
extension of it. They prove that with (on order of) this number of
trajectory trees, with probability δ, one can be assured of finding a
policy whose value is within ε of the best policy in Π.

Kearns, Mansour and Ng’s work breaks fertile new ground in the
theory of RL, but it is far from finishing the story. Their work could
be extended in many different directions just as uniform convergence
theory for the supervised case has been elaborated. For example, one
could establish the VC dimension on some policy classes of practi-
cal import, or extend boosting ideas to the RL case. Alternatively,
one could propose replacements for the supervised training examples
other than trajectory trees. Kearns et al. consider how trajectories
from random policies can be used for this purpose, and there are
doubtless other possibilities as well.

Acknowledgments

The author is grateful for substantial assistance in formulating these
ideas from Satinder Singh, Michael Kearns, and Yoav Freund.

References

Baird, L. C. (1995). Residual algorithms: Reinforcement learning
with function approximation. In Proceedings of the Twelfth In-

ternational Conference on Machine Learning, pp. 30–37. Mor-
gan Kaufmann, San Francisco.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynamic Pro-
gramming. Athena Scientific, Belmont, MA.

Crites, R. H., and Barto, A. G. (1996). Improving elevator perfor-
mance using reinforcement learning. In Advances in Neural In-
formation Processing Systems: Proceedings of the 1995 Confer-
ence, pp. 1017–1023. MIT Press, Cambridge, MA.

Kearns, M., Mansour, Y., Ng, A. Y. (in prep.). Sparse sampling
methods for planning and learning in large and partially ob-
servable Markov decision processes.

Loch J., and Singh S. (1998). Using eligibility traces to find the best
memoryless policy in partially observable Markov decision pro-
cesses. In Proceedings of the Fifteenth International Conference
on Machine Learning. Morgan Kaufmann, San Francisco.

Mahadevan, S. (1996). Average reward reinforcement learning: Foun-
dations, algorithms, and empirical results. Machine Learning,
22:159–196.

Moore, A. W., and Atkeson, C. G. (1993). Prioritized sweeping: Re-
inforcement learning with less data and less real time. Machine
Learning, 13:103–130.

Singh, S. P. (1993). Learning to Solve Markovian Decision Processes.
Ph.D. thesis, University of Massachusetts, Amherst. Appeared
as CMPSCI Technical Report 93-77.

Singh, S. P., and Bertsekas, D. (1997). Reinforcement learning for
dynamic channel allocation in cellular telephone systems. In
Advances in Neural Information Processing Systems: Proceed-
ings of the 1996 Conference, pp. 974–980. MIT Press, Cam-
bridge, MA.

Singh S., and Dayan P. (1998). Analytical mean squared error curves
for temporal difference learning. Machine Learning.

Singh, S. P., and Sutton, R. S. (1996). Reinforcement learning with
replacing eligibility traces. Machine Learning, 22:123–158.

Sutton, R. S. (1984). Temporal Credit Assignment in Reinforcement
Learning. Ph.D. thesis, University of Massachusetts, Amherst.

Sutton, R. S. (1996). Generalization in reinforcement learning: Suc-
cessful examples using sparse coarse coding. In Advances in
Neural Information Processing Systems: Proceedings of the 1995
Conference, pp. 1038–1044. MIT Press, Cambridge, MA.

Sutton, R. S., and Barto, A. G. (1998). Reinforcement Learning: An
Introduction. MIT Press, Cambridge, MA.

Tesauro, G. J. (1995). Temporal difference learning and TD-Gammon.
Communications of the ACM, 38:58–68.

Tsitsiklis, J. N., and Van Roy, B. (1997). An analysis of temporal-
difference learning with function approximation. IEEE Trans-
actions on Automatic Control, 42:674–690.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. Ph.D. the-
sis, Cambridge University.

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning. Machine
Learning, 8:279–292.

