
On the Significance of
Markov Decision Processes

Richard S. Sutton

Department of Computer Science
University of Massachusetts, Amherst, MA USA

http://www.cs.umass.edu/~rich

Abstract. Formulating the problem facing an intelligent agent as a
Markov decision process (MDP) is increasingly common in artificial in-
telligence, reinforcement learning, artificial life, and artificial neural net-
works. In this short paper we examine some of the reasons for the appeal
of this framework. Foremost among these are its generality, simplicity,
and emphasis on goal-directed interaction between the agent and its en-
vironment. MDPs may be becoming a common focal point for different
approaches to understanding the mind. Finally, we speculate that this
focus may be an enduring one insofar as many of the efforts to extend the
MDP framework end up bringing a wider class of problems back within
it.

Sometimes the establishment of a problem is a major step in the development
of a field, more important than discovery of solution methods. For example, the
problem of supervised learning has played a central role as it has developed
through pattern recognition, statistics, machine learning and artificial neural
networks. Regulation of linear systems has practically defined the field of control
theory for decades. To understand what has happened in these and other fields
it is essential to track the origins, development, and range of acceptance of
particular problem classes. Major points of change are marked sometimes by a
new solution to an existing problem, but just as often by the promulgation and
recognition of the significance of a new problem. Now may be one such time
of transition in the study of mental processes, with Markov decision processes
being the newly accepted problem.

Markov decision processes (MDPs) originated in the study of stochastic op-
timal control (Bellman, 1957) and have remained the key problem in that area
ever since. In the 1980s and 1990s, incompletely known MDPs were gradually
recognized as a natural problem formulation for reinforcement learning (e.g.,
Witten, 1977; Watkins, 1989; Sutton and Barto, 1998). Recognizing the com-
mon problem led to the discovery of a wealth of common algorithmic ideas and
theoretical analyses. MDPs have also come to be widely studied within AI as a
new, particularly suitable kind of planning problem, e.g., as in decision-theoretic
planning (e.g., Dean et al., 1995), and in conjunction with structured Bayes nets
(e.g., Boutilier et al., 1995). In robotics, artificial life, and evolutionary methods
it is less common to use the language and mathematics of MDPs, but again
the problems considered are well expressed in MDP terms. Recognition of this



common problem is likely to lead to greater understanding and cross fertilization
among these fields.

MDPs provide a simple, precise, general, and relatively neutral way of talking
about a learning or planning agent interacting with its environment to achieve
a goal. As such, MDPs are starting to provide a bridge to biological efforts to
understand the mind. Analyses in MDP-like terms can be made in neuroscience
(e.g., Schultz, et al., 1997; Houk et al., 1995) and in psychology (e.g., Sutton and
Barto, 1990; Barto et al., 1990). Of course, the modern drive for an interdisci-
plinary understanding of mind is larger than the interest in MDPs; the interest
in MDPs is a product of the search for an interdisciplinary understanding. But
MDPs are an important conceptual tool contributing to a common understand-
ing of intelligence in animals and machines.

1 The MDP Framework

A Markov decision process comprises an agent and its environment, interacting
as in Figure 1. At each of a sequence of discrete time steps, t = 1, 2, 3, . . ., the
agent perceives the state of the environment, st, and selects an action, at. In
response to the action, the environment changes to a new state, st+1 and emits
a scalar reward, rt+1 ∈ <. The dynamics of the environment are stationary
and Markov, but are otherwise unconstrained. In finite MDPs the states and
actions are chosen from finite sets. In this case the environment is characterized
by arbitrary probabilities and expected rewards, P a

ss′ and Ra
ss′ , for each possible

transition from a state, s, to a next state, s′, given an action, a.
At each time step, the agent implements a mapping from states to probabil-

ities of selecting each possible action. This mapping is called the agent’s policy ,
denoted πt, where πt(s, a) is the probability that at = a if st = s. The agent’s
goal is to maximize the total amount of reward it receives over the long run.
More formally, in the simplest case, the agent should choose each action at so
as to maximize the expected discounted return:

V π(s) = E
{
rt+1 + γrt+2 + γ2rt+3 + · · · | st = s, π

}
, (1)

AGENT

ENVIRONMENT

Action
atst

Reward
rt

rt+1
st+1

State

Fig. 1. The agent-environment interaction in Markov decision processes.



where γ, 0 ≤ γ < 1, is a discount-rate parameter akin to an interest rate in
economics. V π(s) is called the value of state s under policy π, and the function
V π is called a state-value function. An optimal policy, denoted π∗, is a policy
whose values are greater than or equal to that of all other policies at all states.

MDPs were originally studied under the assumption that the dynamics of
the environment—P a

ss′ and Ra
ss′—is completely known. The issue in this case

is just the relative efficiency of various ways of computing optimal policies. In
reinforcement learning the same problem has been studied under the assumption
that the dynamics is completely unknown. A wide variety of intermediate cases
have also been studied in reinforcement learning and optimal control. Other
extensions include various kinds of approximation of optimal solutions, non-
Markov dynamics, and undiscounted goals.

The MDP framework is abstract and very flexible, allowing it be applied
to many different problems and in many different ways. For example, the time
steps need not refer to fixed intervals of real time; they can refer to arbitrary
successive stages of decision making and acting. The actions can be low-level
controls such as the voltages applied to the motors of a robot arm, or high-level
decisions such as whether or not to have lunch or to go to graduate school.
Similarly, the states can take a wide variety of forms. They can be completely
determined by low-level sensations, such as direct sensor readings, or they can be
more high-level and abstract, such as symbolic descriptions of objects in a room.
Some of what makes up a state could be based on memory of past sensations or
even be entirely mental or subjective. For example, an agent could be in “the
state” of not being sure where an object is, or of having just been surprised in
some clearly defined sense. Similarly, some actions might be totally mental or
computational. For example, some actions might control what an agent chooses
to think about, or where it focuses its attention. In general, actions can be any
decisions we want to learn how to make, and the state can be anything that
might be useful in making them.

It is revealing to contrast the MDP framework with other problem formu-
lations. In adaptive control, the environment (“plant”) is taken to be a linear
or nonlinear system. The critical difference from MDPs is that the objective is
to track a given desired trajectory. In addition, it is assumed that errors can
be determined at each time and smoothly reduced without greatly degrading
performance at other times. These differences make adaptive control suitable
for a wide class of regulation problems, but not as a model of an animal or
artificial agent as a whole. In the context of an overall agent we need to allow
more general environment dynamics and more general goals. Adaptive control
may be well suited to guiding a robot arm along a given trajectory, but not for
choosing the trajectory, or for deciding whether to reach for one object rather
than another.

The MDP framework differs from control theoretic and other older frame-
works primarily in that it is more general. This makes the MDP framework
more widely applicable, but harder to solve exactly. Today’s increased interest
in autonomous agents (requiring greater generality) and greater computational



resources (enabling search for better approximations) shifts the tradeoff in favor
of the MDP framework.

2 Implications

The MDP framework with completely known dynamics has recently been stud-
ied within artificial intelligence (AI) as a planning problem. This formulation of
planning is more general than that previously considered in AI, which has classi-
cally assumed deterministic state-transitions and a set of goal states all equally
desirable and all paths to which were equally desirable. AI planning thus re-
duced to finding a single action sequence taking the agent from a start state to a
goal state. The sequence of actions could be executed open-loop, that is, without
sensing, because the environment was deterministic (and completely known) and
thus sensing added no new information. In the last decade or two AI has come
to realize that this conception of planning and execution was too limited, that
execution has to be sensitive to unforeseen events and that planning has to take
into account their probabilities of occurrence. This seems inevitably to lead to
plans that are more like policies (“universal plans”) than they are like action
sequences. Today a significant segment of AI planning research has embraced
the view that all behavior should be closed loop, that stochastic or incompletely
foreseen events should be considered normal rather than the exception. This
growing segment of the AI community is also using the MDP framework (e.g.,
Dean et al., 1995; Barto, Bradtke and Singh, 1995).

I should emphasize at this point that using the MDP framework does not
mean that AI researchers, or reinforcement learning researchers, or others, are
reverting to, or doing no more than, the prior work using MDPs. The new re-
search, where it is significant, always brings in new issues and new challenges
that were not the focus of prior research in MDPs. For example, AI planning re-
search using MDPs may consider much larger and more richly structured state
spaces. Other important extensions are approximation methods, for example,
anytime planning issues (Dean, Kaelbling, Kirman, & Nicholson, 1995), incom-
plete dynamics knowledge (as in reinforcement learning), and sampling methods
(e.g., Tesauro and Galperin, 1997).

The most important implication of MDPs for planning methods is the impor-
tance that it suggests should be placed on the concepts of policies and value func-
tions as long-term memory structures that accumulate planning results. Much
of the planning literature in both AI and control assumes planning is a one-shot
computation in which a planning problem is presented and completely solved be-
fore taking action. In an MDP framework, planning is typically too complex to
expect it ever to be solved completely; certainly one does not want to hold up ac-
tion waiting for a complete solution. Instead one seeks planning algorithms that
form good approximate plans (policies) quickly and then gradually improves
their quality the more time passes. This is the heart of MDP-based planning
methods such in dynamic programming and reinforcement learning. The results
of planning accumulate in the improving policy function and, even more so, in



the approximate value function.

! V

evaluation

improvement

V "V!

!"greedy(V)

*V!*

Fig. 2. In generalized policy iteration, a general schema for solving MDPs, approximate
policy and value functions continually interact until settling at their optimal values.

In our recent book (Sutton & Barto, 1998), Andy Barto and I suggest that
a wide range of methods for solving MDPs can be understood as a recursive
ratcheting interplay between the approximate policy and value functions. We
call the interplay Generalized Policy Iteration (GPI) after a related dynamic
programming method, “policy iteration.” The overall idea of GPI is suggested
by Figure 2. At any moment in time the agent maintains both a policy, π, and a
value function, V . The policy influences the value function via an “evaluation”
process that modifies the value function to more accurately predict the rewards
actually received under the policy, that is, to approximate V π as given by (1).
Simultaneously, the value function influences the policy to improve in a local,
greedy fashion based on V . For example, the policy may be moved toward the
greedy policy that deterministically selects the action, a, in each state, s, which
maximizes

∑
s′ P

a
ss′ [R

a
ss′ + γV (s′)].

The policy and value function influence each other but, as they change, the
targets that they provide for each other also change. The two provide moving
targets for each other, as suggested by the curved lines in the top of Figure 2,
causing a joint evolution of both functions toward a solution that satisfies both
processes, as suggested by the bottom of figure. When a policy and value function
are found that are undisturbed by either process, then they are guaranteed to
be the optimal policy and its value function, π∗ and V π∗

. Moreover, in many
cases one can guarantee steady improvement to near this stable point.

Another way of expressing the important role of value and policy functions
in incremental planning is suggested by Figure 3. Here these functions are seen
as one of three fundamental data structures interrelated by planning, acting and
learning processes. The policy determines actions and thus experience, experi-
ence feeds into learning processes for improving the agent’s model of its world,



planning

value/policy

experiencemodel

model
learning

acting

direct
RL

Fig. 3. The MDP framework suggests a continual incremental cycle of interaction and
improvement among learning, planning and acting processes.

and the model in turn feeds into planning processes which improve the value and
policy functions, completing the cycle. Experience may also influence the value
and policy functions direct through direct reinforcement-learning methods.

3 Extensions and Reductions

Part of what makes the MDP framework appealing is that, even when it needs
to be extended, the extensions are often done in such a way as to reduce the
extended problem back to an MDP. The most prominent example of this is the
extension of MDPs to the non-Markov case, in which the state is not fully ob-
servable on each time step. The classical approach to partially-observable MDPs
(POMDPs) is to estimate the probability with which the environment is in each
of its possible states at each time. It turns out that this probability distribution
can itself be treated as the state of the whole POMDP process, and then all the
classical MDP methods can be applied, albeit in a larger and more complex state
space. Others have proposed simply adding memories of earlier observations to
the state representation (e.g., McCallum, 1995) and then proceeding with the
same methods as approximations. In some cases, convergence results can still be
obtained for such ad hoc approaches (e.g., Singh et al., 1994, 1995).

Another important but simple extension is that from finite MDPs to general
MDPs with continuous state and action variables. In this case, the state space
can be arbitrarily large, even infinite. It is no longer possible to represent policy
and value function exhaustively, in tables. Instead, they must be represented
by parameterized function approximators such as artificial neural networks. Not
all methods for the finite/tabular case extend reliably to the use of function
approximators, but many do (e.g., see Sutton, 1996; Santamaria et al., 1996).
The ability to use function approximators in this way is largely responsible for
most of the modern successes of reinforcement learning (e.g., Tesauro, 1995;



Crites and Barto, 1996; Van Roy et al., 1996). Again, the extension to a larger
and more difficult case is handled by a little additional machinery, but remaining
within the same overall framework.

Finally, it has also been proposed that even hierarchical and modular ap-
proaches to decision-making and action generation can be incorporated within
the nominally low-level MDP framework (Singh, 1992; Sutton, 1995; Precup &
Sutton, 1998). The idea here is to reason about whole complexes of action—
whole subpolicies—as if they were a single action. For example, one might have
low-level actions to activate individual muscles, and also subpolicies for reaching,
picking up objects, making a phone call, driving to work, or flying to London. In
recent work, Precup and I have shown that, in principle, all of these can be im-
mediately incorporated into the MDP framework, including Bellman equations
and many of the solution methods, with essentially no changes.

An example is shown in Figure 4. In this gridworld, the primitive actions
are steps up, down, right, and left, which usually cause the agent to move to
the corresponding cell (but a third of the time they cause it to move to one
of the other three neighbors). Two subpolicies have been previously learned for
each room that bring the agent efficiently to each hallway state between rooms.
Figure 5 shows what happens during planning (via the value iteration algorithm
of dynamic programming) when the subpolicies are used as abstract actions in
parallel with the primitive actions. In this planning problem, the agent is told
that reward can be obtained only at the goal state indicated by the single disk
in the first panel of the figure. The value function is 1 in this state and zero
elsewhere on this, the first iteration. On the next two iterations, the region of
accurate valuation spreads out slowly, by one neighboring cell per iteration. In
normal value iteration, this process would continue, cell by cell, until the whole
state space was correctly valued. In this example it would take approximately 18
iterations. Instead, starting with the fourth iteration we see the correct valuations
suddenly jumping back and being filled in a room at a time rather than a state at
a time. This is due to the inclusion of the subpolicies for room-to-room abstract
actions, and their associated models, in the planning process. The system is
able to plan about moving from room-to-room over an indefinite sequence of
actions in exactly the same way as it plans about moving from state-to-state
in one time step. The result is much faster planning and determination of an
appropriate policy.

4 Conclusion

The MDP framework is general and simple, with an elegant and compact theory.
It seems to capture something essential about using cause-and-effect to achieve
goals. Even as we consider more complex cases, we are able to usefully bring
them back to the base case of MDPs. MDPs are widely used in reinforcement
learning, but they may also be relevant much more widely. The concepts of policy
and value function, Bellman equation and generalized policy iteration, may be
useful and intuitively relevant throughout cognitive science.



o

HALLWAYS

o

8 multi-step options

up

down

rightleft

(to each room's 2 hallways)

G

4 stochastic 
primitive actions

Fail 33% 
of the time 

G

Fig. 4. An environment with cell-to-cell actions and learned room-to-room abstract
actions (subpolicies).

Iteration #1Initial values Iteration #2

Iteration #3 Iteration #4 Iteration #5

Primitive
and

hallway
options
O=A∪H

Fig. 5. Value iteration using abstract actions. After the third iteration, room-to-room
planning dominates and quickly finds the optimal value function and policy to the goal
state indicated in the first panel.



Barto, A. G., Bradtke, S. J., and Singh, S. P. (1995). Learning to act using
real-time dynamic programming. Artificial Intelligence, 72:81–138.

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1990). Learning and se-
quential decision making. In Gabriel, M. and Moore, J., editors, Learning
and Computational Neuroscience: Foundations of Adaptive Networks,
pages 539–602. MIT Press, Cambridge, MA.

Bellman, R. E. (1957). A Markov decision process. Journal of Mathematical
Mech., 6:679–684.

Boutilier, C., Dearden, R., and Goldszmidt, M. (1995). Exploiting structure
in policy construction. In Proceedings of the Fourteenth International
Joint Conference on Artificial Intelligence.

Crites, R. H. and Barto, A. G. (1996). Improving elevator performance using
reinforcement learning. In D. S. Touretzky, M. C. Mozer, M. E. H., ed-
itor, Advances in Neural Information Processing Systems: Proceedings
of the 1995 Conference, pages 1017–1023, Cambridge, MA. MIT Press.

Dean, T. L., Kaelbling, L. P., Kirman, J., and Nicholson, A. (1995). Plan-
ning under time constraints in stochastic domains. Artificial Intelligence,
76(1-2):35–74.

Houk, J. C., Adams, J. L., and Barto, A. G. (1995). A model of how the
basal ganglia generates and uses neural signals that predict reinforce-
ment. In Houk, J. C., Davis, J. L., and Beiser, D. G., editors, Models
of Information Processing in the Basal Ganglia, pages 249–270. MIT
Press, Cambridge, MA.

McCallum, A. K. (1995). Reinforcement Learning with Selective Perception
and Hidden State. PhD thesis, University of Rochester, Rochester.

Precup, D. and Sutton, R. S. (in preparation). Multi-time models for tem-
porally abstract planning.

Santamaria, J. C., Sutton, R. S., and Ram, A. (1996). Experiments with
reinforcement learning in problems with continuous state and action
spaces. Technical Report UM-CS-1996-088, Department of Computer
Science, University of Massachusetts, Amherst, MA 01003.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of
prediction and reward. Science, 275:1593–1598.

Singh, S. P. (1992). Transfer of learning by composing solutions of elemental
sequential tasks. Machine Learning, 8:323–339.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1994). Learning without state-
estimation in partially observable Markovian decision problems. In Co-
hen, W. W. and Hirsch, H., editors, Proceedings of the Eleventh Interna-
tional Conference on Machine Learning, pages 284–292, San Francisco,
CA. Morgan Kaufmann.

Singh, S. P., Jaakkola, T., and Jordan, M. I. (1995). Reinforcement learing
with soft state aggregation. In G. Tesauro, D. Touretzky, T. L., editor,
Advances in Neural Information Processing Systems: Proceedings of the
1994 Conference, pages 359–368, Cambridge, MA. MIT Press.

Sutton, R. S. (1995). TD models: Modeling the world at a mixture of time



scales. In Prieditis, A. and Russell, S., editors, Proceedings of the Twelfth
International Conference on Machine Learning, pages 531–539, San Fran-
cisco, CA. Morgan Kaufmann.

Sutton, R. S. (1996). Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In Touretzky, D. S., Mozer, M. C.,
and Hasselmo, M. E., editors, Advances in Neural Information Pro-
cessing Systems: Proceedings of the 1995 Conference, pages 1038–1044,
Cambridge, MA. MIT Press.

Sutton, R. S. and Barto, A. G. (1990). Time-derivative models of Pavlovian
reinforcement. In Gabriel, M. and Moore, J., editors, Learning and Com-
putational Neuroscience: Foundations of Adaptive Networks, pages 497–
537. MIT Press, Cambridge, MA.

Sutton, R. S. and Barto, A. G. (1998). Introduction to Reinforcement Learn-
ing. MIT Press/Bradford Books, Cambridge, MA.

Tesauro, G. J. (1995). Temporal difference learning and TD-Gammon. Com-
munications of the ACM, 38:58–68.

Tesauro, G. J. and Galperin, G. R. (1997). On-line policy improvement using
monte-carlo search. In Advances in Neural Information Processing Sys-
tems: Proceedings of the 1996 Conference, Cambridge, MA. MIT Press.

Van Roy, B., Bertsekas, D. P., Lee, Y., and Tsitsiklis, J. N. (1996). A neuro-
dynamic programming approach to retailer inventory management. Tech-
nical Report LIDS-P-?, Laboratory for Information and Decision Sys-
tems, Massachusetts Institute of Technology.

Watkins, C. J. C. H. (1989). Learning from Delayed Rewards. PhD thesis,
Cambridge University, Cambridge, England.

Witten, I. H. (1977). Exploring, modelling and controlling discrete sequential
environments. International Journal of Man-Machine Studies, 9:715–
735.


