Advances in Neural Information Processing Systems 8, pp. 1038-1044, MIT Press, 1996.

Generalization in Reinforcement
Learning: Successful Examples Using
Sparse Coarse Coding

Richard S. Sutton
University of Massachusetts
Ambherst, MA 01003 USA

rich@cs.umass.edu

Abstract

On large problems, reinforcement learning systems must use parame-
terized function approximators such as neural networks in order to gen-
eralize between similar situations and actions. In these cases there are
no strong theoretical results on the accuracy of convergence, and com-
putational results have been mixed. In particular, Boyan and Moore
reported at last year’s meeting a series of negative results in attempting
to apply dynamic programming together with function approximation
to simple control problems with continuous state spaces. In this paper,
we present positive results for all the control tasks they attempted, and
for one that is significantly larger. The most important differences are
that we used sparse-coarse-coded function approximators (CMACsS)
whereas they used mostly global function approximators, and that we
learned online whereas they learned offline. Boyan and Moore and
others have suggested that the problems they encountered could be
solved by using actual outcomes (“rollouts”), as in classical Monte
Carlo methods, and as in the TD(\) algorithm when A = 1. However,
in our experiments this always resulted in substantially poorer perfor-
mance. We conclude that reinforcement learning can work robustly
in conjunction with function approximators, and that there is little
justification at present for avoiding the case of general A.

1 Reinforcement Learning and Function Approximation

Reinforcement learning is a broad class of optimal control methods based on estimating
value functions from experience, simulation, or search (Barto, Bradtke & Singh, 1995;
Sutton, 1988; Watkins, 1989). Many of these methods, e.g., dynamic programming
and temporal-difference learning, build their estimates in part on the basis of other

estimates. This may be worrisome because, in practice, the estimates never become
exact; on large problems, parameterized function approximators such as neural net-
works must be used. Because the estimates are imperfect, and because they in turn
are used as the targets for other estimates, it seems possible that the ultimate result
might be very poor estimates, or even divergence. Indeed some such methods have
been shown to be unstable in theory (Baird, 1995; Gordon, 1995; Tsitsiklis & Van Roy,
1994) and in practice (Boyan & Moore, 1995). On the other hand, other methods have
been proven stable in theory (Sutton, 1988; Dayan, 1992) and very effective in practice
(Lin, 1991; Tesauro, 1992; Zhang & Dietterich, 1995; Crites & Barto, 1996). What are
the key requirements of a method or task in order to obtain good performance? The
experiments in this paper are part of narrowing the answer to this question.

The reinforcement learning methods we use are variations of the sarsa algorithm (Rum-
mery & Niranjan, 1994; Singh & Sutton, 1996). This method is the same as the TD())
algorithm (Sutton, 1988), except applied to state-action pairs instead of states, and
where the predictions are used as the basis for selecting actions. The learning agent
estimates action-values, Q™ (s, a), defined as the expected future reward starting in
state s, taking action a, and thereafter following policy w. These are estimated for
all states and actions, and for the policy currently being followed by the agent. The
policy is chosen dependent on the current estimates in such a way that they jointly
improve, ideally approaching an optimal policy and the optimal action-values. In our
experiments, actions were selected according to what we call the e-greedy policy. Most
of the time, the action selected when in state s was the action for which the estimate
Q(s,a) was the largest (with ties broken randomly). However, a small fraction, e, of the
time, the action was instead selected randomly uniformly from the action set (which
was always discrete and finite). There are two variations of the sarsa algorithm, one
using conventional accumulate traces and one using replace traces (Singh & Sutton,
1996). This and other details of the algorithm we used are given in Figure 1.

To apply the sarsa algorithm to tasks with a continuous state space, we combined
it with a sparse, coarse-coded function approximator known as the CMAC (Albus,
1980; Miller, Gordon & Kraft, 1990; Watkins, 1989; Lin & Kim, 1991; Dean et al.,
1992; Tham, 1994). A CMAC uses multiple overlapping tilings of the state space to
produce a feature representation for a final linear mapping where all the learning takes
place. See Figure 2. The overall effect is much like a network with fixed radial basis
functions, except that it is particularly efficient computationally (in other respects one
would expect RBF networks and similar methods (see Sutton & Whitehead, 1993) to
work just as well). It is important to note that the tilings need not be simple grids.
For example, to avoid the “curse of dimensionality,” a common trick is to ignore some
dimensions in some tilings, i.e., to use hyperplanar slices instead of boxes. A second
major trick is “hashing”—a consistent random collapsing of a large set of tiles into
a much smaller set. Through hashing, memory requirements are often reduced by
large factors with little loss of performance. This is possible because high resolution is
needed in only a small fraction of the state space. Hashing frees us from the curse of
dimensionality in the sense that memory requirements need not be exponential in the
number of dimensions, but need merely match the real demands of the task.

2 Good Convergence on Control Problems

We applied the sarsa and CMAC combination to the three continuous-state control
problems studied by Boyan and Moore (1995): 2D gridworld, puddle world, and
mountain car. Whereas they used a model of the task dynamics and applied dynamic
programming backups offline to a fixed set of states, we learned online, without a model,
and backed up whatever states were encountered during complete trials. Unlike Boyan

1. Imitially: wq(f) := %, eo(f) :=0, Va € Actions, Vf € CMAC-tiles.

2. Start of Trial: s := random-state();
F := features(s);
a := e-greedy-policy(F).

3. Eligibility Traces: ey(f) := Aep(f), Vb, Vf;
3a. Accumulate algorithm: e, (f) :=e.(f) + 1, Vf € F.
3b. Replace algorithm: ea(f):=1,e(f):=0,Vf € F, Vb +#a.

4. Environment Step:
Take action a; observe resultant reward, r, and next state, s’.

5. Choose Next Action:
F’ := features(s'), unless s’ is the terminal state, then F’ := {J;
a' = e-greedy-policy(F").

6. Learn: wy(f) :=wp(f) + T[r+ X rep War — 2 e p Walen(f), Vb,V f.

7. Loop: a:=4d; s:=¢'; F:= F’; if ' is the terminal state, go to 2; else go to 3.

Figure 1: The sarsa algorithm for finite-horizon (trial based) tasks. The function e-
greedy-policy(F') returns, with probability €, a random action or, with probability 1 —e,
computes > ;cpw, for each action a and returns the action for which the sum is
largest, resolving any ties randomly. The function features(s) returns the set of CMAC
tiles corresponding to the state s. The number of tiles returned is the constant c. Qg,
a, and X\ are scalar parameters.

~——— Tiling #1

T~

Tiling #2

Dimension #2

4

Dimension #1

Figure 2: CMACs involve multiple overlapping tilings of the state space. Here we show
two 5 x 5 regular tilings offset and overlaid over a continuous, two-dimensional state
space. Any state, such as that shown by the dot, is in exactly one tile of each tiling. A
state’s tiles are used to represent it in the sarsa algorithm described above. The tilings
need not be regular grids such as shown here. In particular, they are often hyperplanar
slices, the number of which grows sub-exponentially with dimensionality of the space.
CMACs have been widely used in conjunction with reinforcement learning systems
(e.g., Watkins, 1989; Lin & Kim, 1991; Dean, Basye & Shewchuk, 1992; Tham, 1994).

and Moore, we found robust good performance on all tasks. We report here results for
the puddle world and the mountain car, the more difficult of the tasks they considered.

Training consisted of a series of trials, each starting from a randomly selected non-
goal state and continuing until the goal region was reached. On each step a penalty
(negative reward) of —1 was incurred. In the puddle-world task, an additional penalty
was incurred when the state was within the “puddle” regions. The details are given in
the appendix. The 3D plots below show the estimated cost-to-goal of each state, i.e.,
max, Q(e, a). In the puddle-world task, the CMACs consisted of 5 tilings, each 5 x 5,
as in Figure 2. In the mountain-car task we used 10 tilings, each 9 x 9.

Puddle World

Learned State Values

Goal

=
%
i

(s
i

L3
F

Pt
}:L..
e

7
e
SZIL 22y

',

il

o

oty

S
5

=
4,

S

2=

P
LRI
Aot g

i

i
AL
DL
L

Y 0
0
0 1 Trial 100
Figure 3: The puddle task and the cost-to-goal function learned during one run.
Mountain
Car Goal Step 428
7
y 4 il
6\ 2 % B
b il
ST PSS o8
s AT L
B S o R
& LY QA W &2
O3, ,/0/7
N
0 °
46

5

)

S
5

AR
Rl
Bl
s

Figure 4: The mountain-car task and the cost-to-goal function learned during one run.
The engine is too weak to accelerate directly up the slope; to reach the goal, the car
must first move away from it. The first plot shows the value function learned before
the goal was reached even once.

We also experimented with a larger and more difficult task not attempted by Boyan
and Moore. The acrobot is a two-link under-actuated robot (Figure 5) roughly analo-
gous to a gymnast swinging on a highbar (Dejong & Spong, 1994; Spong & Vidyasagar,
1989). The first joint (corresponding to the gymnast’s hands on the bar) cannot exert

torque, but the second joint (corresponding to the gymnast bending at the waist) can.
The object is to swing the endpoint (the feet) above the bar by an amount equal to
one of the links. As in the mountain-car task, there are three actions, positive torque,
negative torque, and no torque, and reward is —1 on all steps. (See the appendix.)

1000
The Acrobot Acrobot Learning Curves

Goal: Raise tip above line Median of

10 Runs Typical

Steps/Trial Single Run
(Iog Scale) Smoothed
appies Average of
applied 10 Runs
here /
/é 100+

1 100 200 300 400 500
Trials

Figure 5: The Acrobot and its learning curves.

3 The Effect of)\

A key question in reinforcement learning is whether it is better to learn on the basis of
actual outcomes, as in Monte Carlo methods and as in TD(A) with A = 1, or to learn
on the basis of interim estimates, as in TD(A) with A < 1. Theoretically, the former has
asymptotic advantages when function approximators are used (Dayan, 1992; Bertsekas,
1995), but empirically the latter is thought to achieve better learning rates (Sutton,
1988). However, hitherto this question has not been put to an empirical test using
function approximators. Figures 6 shows the results of such a test.

Mountain Car Puddle World

250
7004

Cost/Trial
Averaged over

first 40 trials

200 and 30 runs

Steps/Trial
Averaged over
first 20 trials \ ,
and 30 runs /=8

600+

r=3

500

Replace T Accumulate Replace

0 02 04 06 08 1 1. 02 04 06 08 1 1.2 0 02 04 06 08 1 12
a a a

Figure 6: The effects of A and « in the Mountain-Car and Puddle-World tasks.

Figure 7 summarizes this data, and that from two other systematic studies with differ-
ent tasks, to present an overall picture of the effect of A. In all cases performance is an
inverted-U shaped function of A, and performance degrades rapidly as A approaches 1,
where the worst performance is obtained. The fact that performance improves as A is
increased from 0 argues for the use of eligibility traces and against 1-step methods such
as TD(0) and 1-step Q-learning. The fact that performance improves rapidly as \ is
reduced below 1 argues against the use of Monte Carlo or “rollout” methods. Despite
the theoretical asymptotic advantages of these methods, they are appear to be inferior
in practice.

Acknowledgments

The author gratefully acknowledges the assistance of Justin Boyan, Andrew Moore, Satinder
Singh, and Peter Dayan in evaluating these results.

Mountain Car Random Walk

700

1 °
}
650 |
! 6
! =
6004 Accumulateg Accumulate:' 0.4 Root
2
Steps/Trial ss0- _ SMeand
quare
500 - Error
450
Replace |
400 = T T T T T

T T T T T T
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1

A A

Puddle World Cart and Pole

240 300
230
2204
210
Cost/Trial 2]
190
180
-
170
160
150 L

--ro4

250

[200 Failures per
100,000 steps

F 150

tol
I

>

o

o

(=1

3

£

Y

o

Replace

19

F 100

T T T T T T T 50

Figure 7: Performance versus A, at best «, for four different tasks. The left panels
summarize data from Figure 6. The upper right panel concerns a 21-state Markov
chain, the objective being to predict, for each state, the probability of terminating in
one terminal state as opposed to the other (Singh & Sutton, 1996). The lower left
panel concerns the pole balancing task studied by Barto, Sutton and Anderson (1983).
This is previously unpublished data from an earlier study (Sutton, 1984).

References

Albus, J. S. (1981) Brain, Behavior, and Robotics, chapter 6, pages 139-179. Byte Books.

Baird, L. C. (1995) Residual Algorithms: Reinforcement Learning with Function Approxima-
tion. Proc. ML95. Morgan Kaufman, San Francisco, CA.

Barto, A. G., Bradtke, S. J., & Singh, S. P. (1995) Real-time learning and control using
asynchronous dynamic programming. Artificial Intelligence.

Barto, A. G., Sutton, R. S., & Anderson, C. W. (1983) Neuronlike elements that can solve
difficult learning control problems. Trans. IEEE SMC, 13, 835-846.

Bertsekas, D. P. (1995) A counterexample to temporal differences learning. Neural Compu-
tation, 7, 270-279.

Boyan, J. A. & Moore, A. W. (1995) Generalization in reinforcement learning: Safely approx-
imating the value function. NIPS-7. San Mateo, CA: Morgan Kaufmann.

Crites, R. H. & Barto, A. G. (1996) Improving elevator performance using reinforcement
learning. NIPS-8. Cambridge, MA: MIT Press.

Dayan, P. (1992) The convergence of TD(X) for general A. Machine Learning, 8, 341-362.

Dean, T., Basye, K. & Shewchuk, J. (1992) Reinforcement learning for planning and control. In
S. Minton, Machine Learning Methods for Planning and Scheduling. Morgan Kaufmann.

DeJong, G. & Spong, M. W. (1994) Swinging up the acrobot: An example of intelligent
control. In Proceedings of the American Control Conference, pages 2158—2162.

Gordon, G. (1995) Stable function approximation in dynamic programming. Proc. ML95.

Lin, L. J. (1992) Self-improving reactive agents based on reinforcement learning, planning
and teaching. Machine Learning, 8(3/4), 293-321.

Lin, C-S. & Kim, H. (1991) CMAC-based adaptive critic self-learning control. IEEFE Trans.
Neural Networks, 2, 530-533.

Miller, W. T., Glanz, F. H., & Kraft, L. G. (1990) CMAC: An associative neural network
alternative to backpropagation. Proc. of the IEEE, 78, 1561-1567.

Rummery, G. A. & Niranjan, M. (1994) On-line Q-learning using connectionist systems.
Technical Report CUED /F-INFENG/TR 166, Cambridge University Engineering Dept.

Singh, S. P. & Sutton, R. S. (1996) Reinforcement learning with replacing eligibility traces.
Machine Learning.

Spong, M. W. & Vidyasagar, M. (1989) Robot Dynamics and Control. New York: Wiley.

Sutton, R. S. (1984) Temporal Credit Assignment in Reinforcement Learning. PhD thesis,
University of Massachusetts, Amherst, MA.

Sutton, R. S. (1988) Learning to predict by the methods of temporal differences. Machine
Learning, 3, 9-44.

Sutton, R. S. & Whitehead, S. D. (1993) Online learning with random representations. Proc.
ML93, pages 314-321. Morgan Kaufmann.

Tham, C. K. (1994) Modular On-Line Function Approzimation for Scaling up Reinforcement
Learning. PhD thesis, Cambridge Univ., Cambridge, England.

Tesauro, G. J. (1992) Practical issues in temporal difference learning. Machine Learning,
8(3/4), 257-277.

Tsitsiklis, J. N. & Van Roy, B. (1994) Feature-based methods for large-scale dynamic pro-
gramming. Techical Report LIDS-P2277, MIT, Cambridge, MA 02139.

Watkins, C. J. C. H. (1989) Learning from Delayed Rewards. PhD thesis, Cambridge Univ.

Zhang, W. & Dietterich, T. G., (1995) A reinforcement learning approach to job-shop schedul-
ing. Proc. IJCAI95.

Appendix: Details of the Experiments

In the puddle world, there were four actions, up, down, right, and left, which moved approxi-
mately 0.05 in these directions unless the movement would cause the agent to leave the limits
of the space. A random gaussian noise with standard deviation 0.01 was also added to the
motion along both dimensions. The costs (negative rewards) on this task were —1 for each
time step plus additional penalties if either or both of the two oval “puddles” were entered.
These penalties were -400 times the distance into the puddle (distance to the nearest edge).
The puddles were 0.1 in radius and were located at center points (.1, .75) to (.45, .75) and
(.45, .4) to (.45, .8). The initial state of each trial was selected randomly uniformly from the
non-goal states. For the run in Figure 3, « = 0.5, A = 0.9, ¢ =5, ¢ = 0.1, and Qo = 0. For
Figure 6, Qo = —20.

Details of the mountain-car task are given in Singh & Sutton (1996). For the run in Figure 4,
a=0.5,A=0.9,c=10, e =0, and Qo = 0. For Figure 6, c =5 and Qo = —100.

In the acrobot task, the CMACs used 48 tilings. Each of the four dimensions were divided
into 6 intervals. 12 tilings depended in the usual way on all 4 dimensions. 12 other tilings
depended only on 3 dimensions (3 tilings for each of the four sets of 3 dimensions). 12 others
depended only on two dimensions (2 tilings for each of the 6 sets of two dimensions. And
finally 12 tilings depended each on only one dimension (3 tilings for each dimension). This
resulted in a total of 12-6* + 126 + 126 + 12 6 = 18,648 tiles. The equations of motion
were:

0, = _dl_l(d2§2 + ¢1)

. 2\ d

Oy = | mally + I — 2 (7’ + 2y — <Z52)
d1 d1

dy = malZy + ma(l} + 125 + 2llea cos 02) + I + 1)
dy = m2(132 + lLile2 cosb2) + Iz
b1 = —malileabssinbs — 2maly 20201 5in0s + (maley 4+ maly)gcos(01 — m/2) + ¢o
¢p2 = maleagcos(01 + 02 — 7/2)
where 7 € {+1,—1,0} was the torque applied at the second joint, and A = 0.05 was the
time increment. Actions were chosen after every four of the state updates given by the above

equations, corresponding to 5 Hz. The angular velocities were bounded by 6; € [—4r, 47] and

6, € [=97,97]. Finally, the remaining constants were ml = m2 = 1 (masses of the links),
l1 = l> =1 (lengths of links), lc1 = lc2 = 0.5 (lengths to center of mass of links), Iy = I, = 1
(moments of inertia of links), and g = 9.8 (gravity). The parameters were o = 0.2, A = 0.9,
c =48, ¢ =0, Qo = 0. The starting state on each trial was 6, = 02 = 0.

