
Appeared in Proceedings of the Seventh Yale Workshop on Adaptive and Learning Systems, pp. 161–166, 1992.

Gain Adaptation Beats Least Squares?

Richard S. Sutton
GTE Laboratories Incorporated

Waltham, MA 02254
sutton@gte.com

Abstract

I present computational results suggesting that gain-
adaptation algorithms based in part on connection-
ist learning methods may improve over least squares
and other classical parameter-estimation methods for
stochastic time-varying linear systems. The new
algorithms are evaluated with respect to classical
methods along three dimensions: asymptotic error,
computational complexity, and required prior knowl-
edge about the system. The new algorithms are all
of the same order of complexity as LMS methods,
O(n), where n is the dimensionality of the system,
whereas least-squares methods and the Kalman fil-
ter are O(n2). The new methods also improve over
the Kalman filter in that they do not require a com-
plete statistical model of how the system varies over
time. In a simple computational experiment, the new
methods are shown to produce asymptotic error lev-
els near that of the optimal Kalman filter and signif-
icantly below those of least-squares and LMS meth-
ods. The new methods may perform better even than
the Kalman filter if there is any error in the filter’s
model of how the system varies over time.

Introduction

Approximation of linear and nonlinear functions from
examples is a central problem in many fields, including
adaptive control and estimation, statistics, neural net-
works and machine learning. It is natural then to expect
cross-fertilization, in which ideas developed in one field
may also contribute to methods used in another. One topic
of recent interest in connectionist learning is the automatic
selection of learning-rate or gain parameters during learn-
ing (Jacobs, 1988; Lippmann & Lee, 1990; Sutton, 1992;
Gluck, Glauthier & Sutton, 1992; cf. Kesten, 1958). Such
dynamic-learning-rate (DLR) methods have been shown
to speed convergence on a variety of learning tasks, par-
ticularly those with many irrelevant input features and
in which the task is non-stationary (the correct solution
changes over time). In this paper I present new linear
parameter estimation algorithms that combine ideas from
DLR methods with ideas from Kalman filtering and least-
squares methods.

We will consider the classical problem of incrementally
estimating the parameter vector θ(t) of the linear scalar
system

y(t) = θ(t)T φ(t) + η(t) (1)

from observations of y(t) and φ(t), t = 0, 1, 2, . . ., where
η(t) is white noise and θ(t) is slowly varying over time. The
observation noise η(t) is mean-zero gaussian, with variance
R. The parameter vector θ(t) drifts over time according
to a simple random walk

θ(t + 1) = θ(t) + d(t) (2)

where d(t), the drift, is a mean-zero, gaussian random

vector with covariance matrix Q = E
{
d(t)d(t)T

}
. We

assume that η(t), d(t), and φ(t) are all independently cho-
sen random variables. Popular estimation methods for this
problem include the Kalman filter, least squares, and LMS
(projection) methods.

We will consider three ways of evaluating algorithms:
asymptotic error, computational complexity, and required
prior knowledge of the system. The Kalman filter is in-
deed optimal in terms of asymptotic error, but requires
accurate knowledge of Q, which is usually not available in
practice. The closely related least-squares methods gener-
ally do not assume such knowledge, but neither do they
perform as well as the Kalman filter. In addition, both
of these methods are O(n2) in computational complexity,
where n is the number of input signals (the dimensionality
of φ(t) and θ(t)). Their complexity alone rules out their
use on large learning problems, where n may be thousands
or tens of thousands. The LMS methods are only O(n) in
computational complexity, but perform significantly worse
than both the Kalman filter and least-squares methods.

The three DLR methods I present here are also only
O(n) in computational complexity, but in our computa-
tional experiments they performed much better than both
the LMS methods and least squares, as summarized in
Figure 3. The best of the DLR methods (K1 and K2) in
fact performed very nearly as well as the Kalman filter,
despite their reduced complexity, and despite their lack of
the special knowledge required by the Kalman filter.

The next section is a detailed specification of the new
algorithms and the classical algorithms used in this study.
The third section describes the specifics of the computa-
tional experiment and presents its results.



The Algorithms

This study considered seven algorithms: the Kalman
filter, a least-squares method with covariance modification,
the least-mean-square (LMS) algorithm, normalized LMS
(NLMS), and three DLR algorithms called K1, K2, and
IDBD. K1 and K2 are new to this paper whereas IDBD
was introduced in (Sutton, 1992). This section completely
describes the algorithms. They are all of the form

θ̂(t + 1) = θ̂(t) + K(t)
[
y(t)− θ̂(t)T φ(t)

]
(3)

whereθ̂(0) = θ(0), and K(t) is a gain vector that differs
from algorithm to algorithm.

The Classical Algorithms

The LMS (projection) algorithm uses

K(t) =
µφ(t)

R̂ + Ê {φ(t)T φ(t)}
(4)

where µ > 0 is a scalar constant, R̂ is an estimate of

R = E
{
η2(t)

}
, and Ê

{
φ(t)T φ(t)

}
is an estimate of the

expected value of φ(t)T φ(t) (a scalar constant). In this

study, the LMS algorithm used Ê
{
φ(t)T φ(t)

}
= n, where

n is the dimensionality of φ(t), and all the algorithms used

R̂ = 1. These estimates are exactly correct for the system
used in the computational experiment.

The normalized LMS (NLMS) algorithm uses

K(t) =
µφ(t)

R̂ + φ(t)T φ(t)
(5)

where 2 > µ > 0. This algorithm is normally slightly more
efficient than LMS (see Goodwin & Sin, 1984)

We turn now to the least-squares and Kalman-filter
algorithms. Given the form of the system time variation,
(2), the appropriate least-squares method is least squares
with covariance modification (e.g., see Goodwin & Sin,
1984). This method uses

K(t) =
P (t)φ(t)

R̂ + φ(t)T P (t)φ(t)
(6)

where P (t) is an n× n matrix computed recursively by

P (t + 1) = P (t)− P (t)φ(t)φ(t)T P (t)

R + φ(t)T P (t)φ(t)
+ Q̂ (7)

where P (0) = 0 and Q̂ is an estimate of the drift covariance

matrix Q = E
{
d(t)d(t)T

}
. The algorithm I refer to as LS

uses Q̂ = λI, for λ > 0. This choice treats all input
signals symmetrically, and reflects no prior knowledge of
correlations among the drift variables.

If Q̂ = Q and R̂ = R, then the algorithm given above
is the Kalman filter (see, e.g., Goodwin & Sin, 1984). In

this case the estimates θ̂(t) can be shown to be optimal in
the sense that

θ̂(t) = E {θ(t) | Y(t− 1)}

where Y(t−1) = (y(t−1), y(t−2), . . . , y(0), φ(t−1), φ(t−
2), . . . , φ(0), θ(0)) is the history of all observations preced-
ing time t plus initial conditions. Also in this case it can be
shown that P (t) is the estimation-error covariance matrix:

P (t) = E
{
[θ(t)− θ̂(t)][θ(t)− θ̂(t)]T | Y(t− 1)

}
(8)

However, in practice Q is never known exactly, and an
approximation must be used. In this study, we will con-
sider a family of Kalman-filter algorithms, parameterized

by ρ > 0, which ranges from Q̂ = Q at the ρ = 0 extreme,

and Q̂ = I at the ρ = 1 extreme:

Q̂ = (1− ρ)Q + ρI (9)

I refer to this in what follows as the Kalman algorithm.

The DLR Algorithms

If n is the dimension of the vectors θ(t) and φ(t), then
any algorithm based on (3) requires memory and compu-
tation that is at least of O(n). The LMS and NLMS algo-
rithms are O(n), whereas the Kalman and LS algorithms
are O(n2) in both computation and memory. Clearly, no
algorithm can be O(n) that stores a full n×n matrix such
as P (t). However, we need not go as far as the LMS and

NLMS algorithms, which have no memory other than θ̂(t).
The idea in algorithms K1 and K2 is to approximate P (t)
as a diagonal matrix, using memory only for the n diagonal
entries. K1 and K2 use

K(t) =
P̂ (t)φ(t)

R̂ + φ(t)T P̂ (t)φ(t)
(10)

where P̂ (t) is a diagonal matrix with diagonal entries
p̂ii(t).

Algorithm K1 adapts the p̂ii(t) by gradient descent in a
corresponding set of parameters βi(t), i = 1, . . . , n, where
p̂ii(t) is related to βi(t) by

p̂ii(t) = eβi(t+1) (11)

K1 performs gradient descent in βi(t) rather than directly
in p̂ii(t) because then fixed-size steps (in βi(t)) produce
geometric steps in p̂ii(t) (e.g., up or down by 10%), and
because p̂ii(t) is then assured of always being positive. Al-
gorithm K1 approximates the gradient descent

βi(t + 1) = βi(t)−
1

2
µ

∂δ2(t)

∂βi
(12)

where δ(t) is the error, δ(t) = y(t)−θ̂(t)T φ(t), and µ > 0 is
a constant, the meta-step-size parameter. Algorithm K1’s
update equations were derived from (12) as shown in the
appendix. They are

βi(t + 1) = βi(t) + µδ(t)φi(t)hi(t) (13)

where
βi(0) = log R̂ (14)

and where hi(t), i = 1, . . . , n is another set of modifiable
parameters computed by

hi(t + 1) =
[
hi(t) + ki(t)δ(t)

][
1− ki(t)φi(t)

]+

(15)



where ki(t) is the ith component of K(t) (see (10)) and
[x]+ is x if x > 0, else 0. Algorithm K1 thus requires mem-
ory for 2n additional numbers (n for βi(t) and n for hi(t))

beyond the memory for the original n numbers for θ̂(t).
This may seem excessive, but of course it is far less than
required by the LS and Kalman methods for storing the
n× n matrix P (t). I doubt that there is any way to effec-
tively approximate the gradient descent (12) while storing
fewer than 2n additional numbers, but the next algorithm,
K2, shows that there are other ways of approximating P (t)
that require storing only n additional numbers.

The K2 algorithm approximates pii(t) using βi(t) as
K1 does, but it adapts the βi(t) in a totally different way.
Note that P (t) can be related to the expected squared
error by

E
{
δ2(t)

}
= E

{[
y(t)− φ(t)T θ̂(t)

]2
}

= E

{[
φ(t)T θ(t) + η(t)− φ(t)T θ̂(t)

]2
}

= E

{[
φ(t)T [θ(t)− θ̂(t)] + η(t)

]2
}

= E

{[
φ(t)T ε(t) + η(t)

]2
}

(where ε(t) = θ(t)− θ̂(t))

= E

{[
φ(t)T ε(t)

]2

+ η(t)2 + 2η(t)φ(t)T ε(t)

}
≈ E

{
φ(t)T ε(t)ε(t)T φ(t)

}
+ R + 0

= φ(t)T E
{
ε(t)ε(t)T

}
φ(t) + R

= R + φ(t)T P (t)φ(t)

and for a diagonal P (t) with diagonal entries pii(t),

= R +
∑

i

pii(t)φ
2
i (t)

In other words, the pii(t) are the coefficients of the best
linear prediction of δ2(t) from φ2(t). An approximation
of these coefficients can be formed by using any incremen-
tal regression method. The K2 algorithm uses an NLMS
method to do this. That is, it uses (10), (11), and (14),
and updates the βi(t) by

βi(t+1) = βi(t)+
µφ2

i (t)

1 +
∑

j
φ4

j (t)

[
δ2(t)−R̂−

∑
i

p̂ii(t)φ
2
i (t)

]
(16)

The K2 algorithm is strikingly similar in concept to
that developed by Sanger, Matheus, and Sutton for a dif-
ferent purpose (Sanger, 1991; Sutton & Matheus, 1991;
Sanger, Sutton & Matheus, 1992). Like K2, their method
used the coefficients of a regression of the squared error
onto the squared inputs to identify relevant inputs. In
their method, however, the inputs identified as relevant in
this way were not given higher learning rates, but rather
were favored for being combined multiplicatively to pro-
duce higher order terms in a polynomial approximation of
a nonlinear system.

Finally, the IDBD algorithm (Sutton, 1992) is the im-
mediate ancester of the K1 algorithm. In short, K1 is to
NLMS as IDBD is to LMS. The IDBD algorithm is defined
by

ki(t) = eβi(t+1)φi(t) (17)

with βi(t) defined by (13), with

βi(0) = log
1

n
(18)

and

hi(t + 1) = hi(t)
[
1− ki(t)φi(t)

]+

+ ki(t)δ(t) (20)

The derivation of (13) and (20) from the gradient descent
equation (12) is given in (Sutton, 1992). It is similar to
that for K1 given in the appendix.

The Computational Experiment

A simple computational experiment was performed
to assess the asymptotic performance of the seven al-
gorithms. The dimension of the system was n = 20.
The input signals φi(t) were independent gaussian ran-
dom variables with mean zero and unit variance (i.e.,

E
{
φ(t)φ(t)T

}
= I). The observation noise was also mean-

zero gaussian with unit variance (R = 1). The first five
components of the drift vector d(t) were mean-zero gaus-
sian with unit variance (uncorrelated), while the remain-
ing 15 components were always zero (the drift covariance

matrix Q = E
{
d(t)d(t)T

}
was all 0 except for the first

5 diagonal entries, which were 1). This means that only
the first 5 components of θ changed over time, and thus
asymptotically only the first 5 input signals were relevant.
The other 15 inputs signals could and should be ignored
for optimal tracking. All random variables (φ(t), η(t), and
d(t)) were chosen independently. The initial parameter
vector was θ(0) = (0, . . . , 0)T .

On this problem it suffices to perform a single long
run for each algorithm and measure its asymptotic track-
ing performance. In this experiment, each algorithm was
run for 20,000 time steps to get past any transients, and
then for another 10,000 time steps. The square root of the

mean-squared error (RMSE) between y(t) and θ̂(t)T φ(t)
over the 10,000 time steps was used as the measure of
the performance of the algorithm. The seed of the ran-
dom number generator was reset at the beginning of each
run, so that each algorithm experienced the exact same
sequence of y(t) and φ(t).

The algorithms were run at each of a range of values
of their free parameter (µ, λ, or ρ). The results are plot-
ted for each algorithm individually in separate panels of
figure 1. Figure 2 combines the results from all seven al-
gorithms by appropriately rescaling their free parameters
into one range. For algorithms LMS, NLMS, K1, K2, and
IDBD, results are shown for most of the feasible range of
µ. For values slightly higher than those shown, these algo-
rithms became unstable. The standard errors in all cases
are smaller than the symbols marking the data points, and
thus almost all perceptible differences are significant.



µ

As
ym

pt
ot

ic 
RM

SE

0

5

10

15

20

25

30

.0 .5 1.0 1.5 2.0

LMS

NLMS

µ

As
ym

pt
ot

ic 
RM

SE

0

2

4

6

8

10

12

.000 .0005 .001 .0015

µ

As
ym

pt
ot

ic 
RM

SE

0

2

4

6

8

10

12

.00 .005 .01 .015 .02 .025 .03

µ

As
ym

pt
ot

ic 
RM

SE

0

2

4

6

8

10

12

.000 .002 .004 .006 .008

LMS NLMS
IDBD

K2 K1

!

As
ym

pt
ot

ic
RM

SE

0

5

10

0 1 2

"

As
ym

pt
ot

ic
RM

SE

0

5

10

0.01 1 100

LS Kalman

Figure 1: Detailed performance data on all algorithms as a function of their free parameter. Plotted on the
vertical axis of each graph is the square root of the mean squared error averaged over the last 10,000 time
steps of a long run. Each data point represents a different run using a different value for the algorithm’s free
parameter (µ, λ, or ρ).



µ/!/"

As
ym

pt
ot

ic 
RM

SE

0

5

10

15

20

25

30

0 0.2 0.4 0.6 0.8 1

LMS

NLMS

Kalman

LS

IDBD

K2

K1

Figure 2: Performance comparison of all algorithms,
combining all the data from figure 1 in one graph.
Each algorithm’s free parameter (µ, λ, or ρ) was
rescaled such that the values for which data was ob-
tained lay between 0 and 1.

All the algorithms (except Kalman) are only weakly de-
pendent upon the value of their free parameter when it is
near its best value. It is thus reasonable to summarize the
performance of the algorithms by taking their performance
at their optimal parameter values, as is done in figure 3.
The relative performance of the classical methods is consis-
tent with expectations. The Kalman filter performed best,
much better than the least-squares method (LS), which
was much better that NLMS, which in turn was slightly
better than LMS. The three DLR methods, however, all
performed significantly better than least squares, and ap-
proached the performance of the Kalman filter. Moreover,
inspection of figures 1 and 2 reveals that the Kalman al-
gorithm performed better than the DLR algorithms only
within a very narrow range of its free parameter ρ. If the

Kalman algorithm’s estimate Q̂ was even slightly inaccu-
rate, then K1, K2, and even IDBD performed better than
the Kalman algorithm. This is only one experiment, and
further work is needed, but these results do suggest that
in practice the DLR methods may perform better than the
LS and Kalman algorithms.

How could it be that the DLR algorithms outperform
least-squares and Kalman filter methods? The DLR algo-
rithms do not require or take advantage of any special prior
knowledge of Q. In addition, the computational complex-
ity of the new methods is at least an order of n less (see
table 1 for a summary of the computational complexity of
the algorithms). These limitations should put the DLR
methods at a significant disadvantage relative to LS and
Kalman methods. Because the DLR methods are O(n),
they can use only a crude, O(n) model of the system’s
time variation, but unlike LS and Kalman, they adapt
that model to the actual system. The LS and Kalman
algorithms on the other hand use a fixed model of the
system’s time variation. If that model is exactly correct,
then the Kalman filter is optimal, but if the model is even
slightly in error, the Kalman and LS algorithms have no
special status and can be beat even by O(n) methods.

Be
st

 R
M

SE

0

2

4

6

8

1 0

1 2

LMS NLMS LS Kalman K1 K2 IDBD

Figure 3: Summary performance comparison of all
algorithms. The height of each column is the per-
formance of the corresponding algorithm at the best
value of its free parameter.

This perspective suggests that it may be possible to
design an O(n2) method that is adaptive, that would ap-
proach the performance of the optimal Kalman filter and
outperform all other methods. This is an interesting pos-
sibility for future research. We note, however, that for
many problems such a method would be ruled out simply
because of its O(n2) complexity.

Acknowledgements

The author wishes to thank Chris Matheus, Ron
Williams, Oliver Selfridge, Chris Atkeson, and Judy
Franklin for helpful discussions of these ideas, and addi-
tionally Hamid Benbrahim, Chris Matheus, Judy Franklin,
Oliver Selfridge, and Marty Hiller for reading and com-
menting on an earlier draft of the paper.

Computational Complexity

Algorithm Memory Adds & Mults

LMS n 4n

NLMS n 6n

K2 2n 16n

IDBD 3n 13n

K1 3n 17n

LS 1
2
n2 + n 2.5n2 + 8.5n

Kalman 1
2
n2 + n 2.5n2 + 8.5n

TABLE 1
Approximate computational complexity of the algorithms



References

Gluck, M.A., Glauthier, P.T., & Sutton, R.S. (1992) Adaptation
of cue-specific learning rates in adaptive networks: Computational
and psychological perspectives. Proceedings of the Fourteenth An-
nual Conference of the Cognitive Science Society.

Goodwin, G.C. & Sin, K.S. (1984) Adaptive Filtering Prediction
and Control. Englewood Cliffs, NJ: Prentice-Hall, 1984.

Jacobs, R.A. (1988) Increased rates of convergence through learning
rate adaptation. Neural Networks 1, 295–307.

Kesten, H. (1958) Accelerated stochastic approximation. Annals of
Mathematical Statistics 29, 41–59.

Lee, Y. & Lippmann, R.P. (1990) Practical characteristics of neural
network and conventional pattern classifiers on artificial and speech
problems. In Advances in Neural Information Processing Systems
2, D.S. Touretzky, Ed., 168–177, Morgan Kaufmann.

Sanger T.D. (1991) Basis-function trees as a generalization of local
variable selection methods for function approximation. In: Ad-
vances in Neural Information Processing Systems 3, Lippmann
R.P., Moody J.E., Touretzky D.S., Eds., 700–706, Morgan Kauf-
mann.

Sanger, T.D., Sutton R.S., Matheus C.J. (1992) Iterative construc-
tion of sparse polynomial approximations. In Advances in Neural
Information Processing Systems 4, Morgan Kaufmann.

Sutton, R.S. (1992) Adapting bias by gradient descent: An incre-
mental version of delta-bar-delta. Proceedings of the Tenth Na-
tional Conference on Artificial Intelligence.

Sutton R.S., Matheus C.J. (1991) Learning polynomial functions by
feature construction. Proc. Eighth Intl. Workshop on Machine
Learning, 208–212, Morgan Kaufmann.

Williams, R.J. & Zipser, D. (1989) Experimental analysis of the

real-time recurrent learning algorithm. Connection Science 1, 87–

111.

Appendix: Derivation of K1

This appendix presents a derivation of the K1 algo-
rithm, (13) and (15), from (12). First we define some
useful intermediate terms and derivatives:

∂δ2(t)

∂θ̂i(t)
= 2δ(t)

∂δ(t)

∂θ̂i(t)
= 2δ(t)

∂

∂θ̂i(t)

[
y(t)− θ̂(t)T φ(t)

]
= −2δ(t)

∑
j

∂θ̂j(t)

∂θ̂i(t)
φj(t) = −2δ(t)φi(t) (A1)

∂δ(t)

∂βi
=

∂

∂βi

[
y(t)− θ̂(t)T φ(t)

]
= −

∑
j

∂θ̂j(t)

∂βi
φj(t)

≈ −∂θ̂i(t)

∂βi
φi(t) (A2)

The approximation above is reasonable in so far as the pri-
mary effect of changing βi should be on the ith component

of θ̂. That is, we assume

∂θ̂j(t)

∂βi
≈ 0 for i 6= j (A3)

In these equations, the partial derivitive with respect to
βi without a time index should be interpretted as the
derivative with respect to an infinitesimal change in βi

at all time steps. A similar technique is used in gradient-
descent analyses of recurrent connectionist networks (c.f.,
e.g., Williams & Zipser, 1989). Some further intermediate
computations will be needed:

D(t)
def
= R̂ + φ(t)T P̂ (t)φ(t) = R̂ +

∑
j

eβj(t+1)φ2
j (t) (A4)

ki(t)
def
= eβi(t+1)φi(t)D

−1(t) (A5)

∂D(t)

∂βi
=

∑
j

∂eβj(t+1)

∂βi
φ2

j (t) ≈ eβi(t+1)φ2
i (t) (A6)

∂D−1(t)

∂βi
= −D−2(t)

∂D(t)

∂βi
≈ −D−1(t)ki(t)φi(t) (A7)

∂ki(t)

∂βi
=

∂

∂βi

[
eβi(t+1)φi(t)D

−1(t)
]

=
[
∂eβi(t+1)

∂βi
φi(t)D

−1(t) + eβi(t+1)φi(t)
∂D−1(t)

∂βi

]
=

[
ki(t) + eβi(t+1)φi(t)D

−1(t)ki(t)φi(t)
]

= ki(t)
[
1− ki(t)φi(t)

]
(A8)

Now we are ready to expand (12):

βi(t + 1) ≈ βi(t)−
1

2
µ

∂δ2(t)

∂βi

= βi(t)−
1

2
µ

∑
j

∂δ2(t)

∂θ̂j(t)

∂θ̂j(t)

∂βi

≈ βi(t)−
1

2
µ

∂δ2(t)

∂θ̂i(t)

∂θ̂i(t)

∂βi

= βi(t) + µδ(t)φi(t)hi(t) (A9)

using (A1) and (A3), and where hi(t) is an approximation

to ∂θ̂i(t)
∂βi

, derived as follows

hi(t + 1) ≈ ∂θ̂i(t + 1)

∂βi

=
∂

∂βi

[
θ̂i(t) + ki(t)δ(t)

]
≈ hi(t) + ki(t)

∂δ(t)

∂βi
+ δ(t)

∂ki(t)

∂βi

≈ hi(t)− ki(t)hi(t)φi(t) + δ(t)ki(t)
[
1− ki(t)φi(t)

]
= hi(t)

[
1− ki(t)φi(t)

]
+ δ(t)ki(t)

[
1− ki(t)φi(t)

]
=

[
hi(t) + δ(t)ki(t)

][
1− ki(t)φi(t)

]
(A10)

using (3), (A2), and (A8). After adding a positive-
bounding operation, this is the original update rule for
hi(t), (15), while the derived update (A9) for βi(t) is the
same as (13).

Q.E.D.

This is a re-typeset version of the original publication. Some line and
page breaks were changed slightly, and minor corrections were made to
equations (8), (15), (17) and (A10). The title in the first reference was
corrected. [8/15/95]


