Appeared in Proceedings Ninth Conference on Machine Learning, 353-357, 1991 Morgan-Kaufmann

Planning by Incremental Dynamic Programming

Richard S. Sutton
GTE Laboratories Incorporated
Waltham, MA 02254

sutton@gte.com

Abstract

This paper presents the basic results and
ideas of dynamic programming as they re-
late most directly to the concerns of plan-
ning in Al. These form the theoretical basis
for the incremental planning methods used
in the integrated architecture Dyna. These
incremental planning methods are based on
continually updating an evaluation function
and the situation-action mapping of a reac-
tive system. Actions are generated by the
reactive system and thus involve minimal de-
lay, while the incremental planning process
guarantees that the actions and evaluation
function will eventually be optimal—mno mat-
ter how extensive a search is required. These
methods are well suited to stochastic tasks
and to tasks in which a complete and accu-
rate model is not available. For tasks too
large to implement the situation-action map-
ping as a table, supervised-learning methods
must be used, and their capabilities remain a
significant limitation of the approach.

1 INTRODUCTION

Planning has classically been viewed as something that
wntervenes between situation and action: as each situ-
ation is encountered, an appropriate action in response
to it is planned, and only when planning is complete
is an action actually taken. However, this approach
creates a basic problem—any time spent planning is
time by which the action is delayed. It has appeared
at times that response could be fast only if planning
was shallow and weak.

Faced with this dilemma, several researchers have ex-
plored the radical idea that planning might not play
a central role in decision making. Agre and Chapman
(1987; Agre, 1988) proposed that almost all human
behavior is routine, that most of the time people sim-
ply know what to do without planning. They and

A) Situation Action
Reactive
Policy

Reactive
Policy

Figure 1: Simplistic Comparison of Architectures: A)
Conventional Planning, B) Reactive Systems, C) Plan-
ning Compiled into Reactions (the approach taken in
Dyna).

B) Situation Action

C) Situation Action

others (Schoppers, 1987; Rosenschein and Kaelbling,
1986) developed the notion of a reactive system, a sys-
tem in which no planning intervenes between situation
and action, but instead the action taken is computed
rapidly as a function of the situation. Other work has
attempted to take an intermediate ground and manage
the tradeoff flexibly at runtime (e.g., Dean & Boddy,
1988)

The Dyna integrated architecture (Sutton, 1990) com-
bines reactive systems and planning in a simple way.
Actions are generated by a reactive system, but the
mapping implemented by that system is continually
adjusted by a planning process, as suggested by Fig-
ure lc. Planning and reaction proceed independently
and conceptually in parallel; the reactive system never
waits for the planner and the planner is not restricted
to planning about the current situation.



This approach to planning can be viewed as an appli-
cation and extension of dynamic programming (DP).
DP is a broad class of techniques developed in opera-
tions research for solving sequential decision problems
such as routing and scheduling (e.g., Bertsekas, 1987).
These methods are in many ways very similar to Al
search methods, but they differ in that they allocate
memory to the entire state space instead of only to a
tree of possibilities starting at the current state. In-
cremental DP methods improve over conventional Al
planners in that they are readily applicable to stochas-
tic problems and in that they are incremental.

Incremental DP methods can be viewed as similar to
“speed-up learning” or “plan-then-compile” architec-
tures (e.g., Mitchell, 1990; Laird & Rosenbloom, 1990).
In a sense, incremental DP methods represent this idea
carried to an extreme: all planning is done by com-
piling minimal (one-ply) searches; there is no other
planning process.

In this paper we present the basic ideas of dynamic
programming and incremental dynamic programming
as they relate most directly to the concerns of plan-
ning in AI. We do not present any completely new
results, but rather we present existing results in a
way that is more complete and more focussed on
planning than has been done previously. The orig-
inal sources of the ideas and results include Bellman
(1957), Samuel (1959), Holland (1986), Werbos (1987),
Watkins (1989), Bertsekas & Tsitsiklis (1989), Korf
(1990), Barto et al. (1990), Whitehead (1989; White-
head & Ballard, in press), and Sutton (1988, 1990).
The presentation here is in two sections. The first sec-
tion treats a conceptually very simple case that should
be familiar to Al practitioners; here the basic idea
and results of incremental dynamic programming as
a fully incremental form of planning are introduced.
In the second section these ideas are generalized and
extended to the stochastic case and to a class of prob-
lems more like those likely to arise in practice.

In general, strong formal results can be obtained only
for the case in which each world state is recognized in-
dividually and the policy and evaluation functions are
implemented as tables. This is the only case treated in
this paper. Dyna-like systems that go beyond the tab-
ular case have been investigated by Lin (1991), Moore
(1990), Riolo (1991), and Watkins (1989).

2 THE COST-TO-GOAL TASK

To begin, let us consider a particularly simple case. At
each of a sequence of discrete timesteps, ¢ =0,1,2,.. .,
a problem-solving agent observes its world to be in
a state s € S and then sends an action ¢ € A, to
the world (Figure 2). Each action incurs a cost ¢;q €
RT, and the agent’s objective is to select actions so
as to drive the world to a goal state ¢ € G C S with
minimum cumulative cost. For the moment we assume

Agent
Situation/ A _
State Reward Action
World

Figure 2: The Agent—Environment Interaction. The
agent’s object is to minimize (maximize) its cumula-
tive cost (reward) over time.

that the world is deterministic and that it is possible
to reach the goal from all states.

Heuristic search and dynamic programming are both
based on assigning a numerical value, V(s), to each
state. In this problem the natural measure of value 1s
the minimum cost-to-go from that state to a goal state.
These values can be uniquely defined by a recursive
relationship: the minimal cost-to-go for a state must
equal the cost for the best action plus the minimal
cost-to-go for the state that results:
Vi(s) = HE111411 esq + V(suce(s,a)) VseS—G (1)
a€A,
where succ(s, a) denotes the successor state to s given
the selection of action a, and where

V(s)=0. Vsed (2)

The equation (2) defines the values of the goal states,
which form the terminal nodes of a search tree, and (1)
specifies how these are backed up to define the values of
all other states. Once the values of the immediate suc-
cessors to the root state s are known, the best action
is that which minimizes the righthand side of (1).

In practice the computation specified by (1) and (2)
is far too complex to carry out on any but the small-
est of problems. It involves backing up every interior
node in the tree, from the starting state to the termi-
nals. To avoid this, most conventional search proce-
dures approximate this computation by searching only
a subtree—for example, by searching only to a limited
depth. At the frontier of this subtree the values are es-
timated heuristically using an approximate value func-
tion h(s) = V(s). These approximate values are then
backed up just as the true ones were before. That 1s,
(1) is replaced by

Vis)= HE111411 Csa 4 V(suee(s, a)), (3)
for all states s on the interior of the subtree, and (2)
is replaced by

V(s) = h(s), (4)

for all states s on the frontier.



Although search processes like (3) and (4) are very
widely used, they are very wasteful if the same or sim-
ilar search problems recur. The whole point of the
search is to propagate approximate values h from the
leaf nodes up to produce better approximate values V,
but after each search the backed-up values are simply
discarded. If instead these were retained as the heuris-
tic value function for the next search, then that search
would in effect continue from where the previous one
left off. In this case one would have not two approxi-
mate value functions, V and h, but only one, V, which
is continually improved by backing up its own values.
There are a number of variations on this idea.

The simplest case is that in which the state space 1s
finite and the approximate value of each state can be
accessed individually, as if it was an entry in a large
table. In this tabular case, the natural operation for
improving the approximate value function V(s) at a
state s € S — GG is simply (3) converted from an equa-
tion to an assignment:

V(s) = HE111411 Csa 4 V(suce(s, a)), (5)
where, for s € G, V(s) = V{(s) = 0. This operator is
essentially a one-ply search from state s followed by
the replacement of the approximate value V(s) with
its backed-up value.!

The central i1dea explored in this paper is that of re-
peatedly applying improvement operators like (5) to

one state after another such that V becomes a better
and better approximation to V. First note that if this
process stops, if (5) no longer causes the value of any

state to change, then (1) holds for V, and therefore
V = V. Furthermore, for the tabular case, it has been
proven that V converges to V given only that all states
continue to be updated by (5) (Bertsekas & Tsitsiklis,
1989).

Following Bertsekas and Tsitsiklis, we call this way
of computing V' asynchronous value iteration (AVI),
because 1t is essentially an asynchronous version of a
classic dynamic programming method known as value
iteration. In conventional value iteration, the improve-
ment operator 1s applied not to one state after another,
but to all of them simultaneously, in one big, synchro-
nized, parallel step. That step is then repeated until
convergence.

From the point of view of AI, AVI is simply an in-
cremental search or planning method. For example,
search control in AVT arises as the issue of which states
should be updated with what frequencies. The con-
vergence result requires only that all states be visited
occasionally, leaving wide latitude for the use of heuris-
tics to control the search.

!Similar operators could be defined for larger, deeper
searches, but for the tabular case that is probably not bet-
ter than multiple one-ply searches.

In practice, the state spaces are often too large to im-
plement V' as a table or to visit all states over and over
again as are required for this result. Nevertheless, the
result shows that if there were time and space enough,
then convergence would occur onto the optimal value
function and the optimal behavior. Note that this is
not true of ordinary heuristic search, which produces
an approximate result whenever the search tree can-
not be exhaustively searched during one response time.
Incremental planning methods based on (5) are essen-
tially a way of trading memory for search. By devoting
memory to the approximation 1% they accumulate indi-
vidual searches into an overall, continuously improving
result that can be far better than any feasible single
search. The advantages of this strategy become most
significant for non-deterministic tasks.

3 STOCHASTIC AND
CONTINUING TASKS

The previous section presented the basic ideas of re-
laxation planning in terms of a simple special case. In
this section, we generalize those 1deas and present new
procedures and results for a more general and broadly
applicable case. In this section we allow the effects of
the agent’s actions on the world to be probabilistic as
well as deterministic, and we allow for a more general
class of agent objectives.

The cost-to-goal problem developed in the previous
section is delightfully simple, but limited. One diffi-
culty is that the notion of a goal state is too absolute
and binary for many problems that involve more than
one objective. Multiple objectives can sometimes be
incorporated into per-step costs, but then they must
be in a special, secondary relationship to the primary
objective of reaching a goal state. A second difficulty
with the cost-to-goal formulation is that it explicitly
ignores what happens after reaching a goal state. In
general, this is satisfactory only if what happens is
independent of which goal state was reached. If the
overall problem does not divide up naturally into in-
dependent problem-solving episodes (such as repeated
plays of a game), then it can be difficult to use the
cost-to-goal formulation.

Both of these difficulties with the cost-to-goal formu-
lation are due to its use of special goal states that
are different from ordinary states. One might well ask
why special goal states are necessary given that the
formulation already includes costs on state transitions.
Why not make the objective simply the optimization
of these costs, and do without goal states? We next
propose a new problem formulation based on this idea.

First, we generalize the idea of per-transition costs, to
per-transition outcomes, called rewards. Rewards can
be either desirable (positive) or undesirable (negative),
where the latter are essentially the same as costs. The



agent’s objective is to choose actions so as to maximize
the total reward received from the world (cf. Russell,
1989). For example, a robot meant to find and collect
soda cans might be given a positive reward for deposit-
ing a can in the recycling bin, a negative reward for
colliding with anything or if its battery runs too low,
and zero reward at all other times. In a navigation
problem, positive reward might be given upon arriv-
ing at the goal location, and perhaps slightly negative
reward on transitions to states other than the goal, to
discourage longer than necessary paths. In a chess-
playing problem, reward might be made +1 for a win,
-1 for a loss, and 0 for a draw and for all non-terminal
positions.

At each of a sequence of discrete time steps, t =
0,1,2,... a problem-solving agent observes its world
to be in a state s; € S and sends an action a; € A, to
the world (Figure 2). After each action, the agent re-
ceives from the world a reward r;41 € R and the next
state, s;41. The expected value of riyq is R(st, at),
and the probability that s;11 = #, for any = € S| is
P(st, 2, az).

Informally, the agent’s objective is to maximize the to-
tal reward it receives from the world. Intuitively, we
would like to say that each action a; is chosen to max-
imize the sum of all future reward, r¢41 + 7142+ 7143+
---. However, because there are no goal states to ter-
minate this sum, it 1s likely to be infinite or divergent.
One way of solving this problem is to introduce dis-
counting of rewards. The basic idea is that a unit of
reward, like a unit of money, is worth more now than
it will be later. Whereas a unit of reward arriving
immediately has full value; a unit of reward arriving
one time step later is discounted and worth only ~,
0 < v < 1, a unit arriving two steps later is discounted
twice and worth only 7%, and so on. In selecting ay,
the agent is then concerned with the discounted sum
of future reward, riy1 + yripe + 'yer_g + 73734_4 4+
This quantity is called the return. The agent’s objec-
tive 1s to choose each action a; so as to maximize the
expected return:?

(o]
E{Z’Ykrwkﬂ} (7)
k=0

On navigation problems, discounting has the effect
of encouraging short paths without an explicit cost
for each step, as shorter paths will mean a less de-
layed, and therefore less discounted, terminal reward.
In game-playing, discounting causes the agent to seek
quick wins and slow losses. The discounted formu-
lation is widely used in studies of sequential decision
making and reinforcement learning, in part because it
1s mathematically convenient, and in part because it
realistically represents the true goals in many tasks.

2Tt remains to show that there is such a way of choos-
ing actions that maximizes the return at all states; this is
shown by, e.g., Bertsekas (1987).

The wvalue of a state, V(s), can be defined as the best
expected return attainable starting from that state,
i.e., the expected return given optimal behavior. These
values satisfy the recursive relationship

Vi(s) = max R(s,a)+yV(suce(s,a)), VseS (8)
agA,

where succ(s,a) denotes the deterministic successor

state to s given the selection of action a. Note the

similarity of this relationship to (1) for the cost-to-

goal problem. For the general case of probabilistic

state transitions, the key recursive relationship 1s

V(s) = max R(s,a)—i—'yZP(s,x,a)V(x). Vse S
a€A,
rES

. (9)
As in the cost-to-goal task, once the values of all the
states are known, it is straightforward to determine the
optimal actions. For any state s, the optimal action 1s
that which attains the maximum in (9).

As in the cost-to-goal task, the improvement operator

for an arbitrary V &~ V can be defined by turning the
equation expressing the recursive relationship (9) into
an assignment:

V(s) := max R(s,a)+~ Z P(s,x,a)V(x). VseS

rES
(11)
As in the cost-to-goal task, if this operator is repeated
applied to all states, in any order in which none are

permanently left out, then V will converge to V' (Bert-
sekas & Tsitsiklis, 1989; Watkins, 1989).

4 CONCLUSION

No completely new results have been presented in this
paper, but rather we have collected and analyzed exist-
ing results from DP as a novel approach to incremen-
tal planning. For the tabular case, these results assure
convergence onto the optimal behavior of a flexible in-
cremental planning technique for general, stochastic
problems. These results form the theoretical founda-
tion for the Dyna architecture, and have not previ-
ously been presented from this perspective. Moreover,
in this paper we have focussed on DP as the theoret-
ical foundation for planning methods rather than as
the theoretical foundation for reinforcement learning

methods (see Watkins, 1989; Barto et al., 1990).

Incremental planning is advantageous in problem-
solving tasks in which the same or similar problems re-
cur. When encountering a familiar problem, an agent
would like to take advantage of previous search, not
start all over again. This is particularly important
when fast response 1s required, as then little or no
search can be done at the time. It should also be im-
portant whenever the agent has a changing model of
the world, as that can be expected to give rise to a
repetitive sequence of similar problems.



One lesson that can be taken from the work of Agre
and Chapman (1987; Agre, 1988) is an emphasis on
the repetitive nature of problem solving in everyday
life. Most of the time people confront familiar prob-
lems and apply familiar solutions. Rarely do people
explicitly stop and plan out their behavior. This ar-
gues against “one-shot” planning of the sort classi-
cally studied in AI, but not against incremental plan-
ning. It may not be that people rarely problem-solve,
but rather that they problem-solve a little bit all the
time—mnever starting from scratch but always making
full use of their prior problem-solving experience.

Acknowledgements

The author gratefully thanks Andy Barto, Ron
Williams, Steve Whitehead and Chris Watkins for nu-
merous discussions and insights that have strength-
ened and clarified the presentation in this paper. 1
also thank Bernard Silver, Glenn Iba and the review-
ers for constructive comments on an earlier draft.

References

Agre, P. E. (1988) The Dynamic Structure of Everyday
Life. PhD thesis, MIT Technical Report AI-TR-1085.

Agre, P. E.;, & Chapman, D. (1987) Pengi: An im-
plementation of a theory of activity. Proceedings of

AAAI-87, 268-272.
Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H.

(1990a) Learning and sequential decision mak-
ing. In Learning and Computational Neuroscience,
M. Gabriel and J.W. Moore (Eds.), pp. 539-602, MIT

Press.

Bellman, R. E. (1957) Dynamic Programming. Prince-
ton University Press, Princeton, NJ.

Bertsekas, D. P. (1987) Dynamic Programming: De-
terministic and Stochastic Models, Prentice-Hall.

Bertsekas, D. P. & Tsitsiklis, J. N. (1989) Parallel
Distributed Processing: Numerical Methods, Prentice-

Hall.

Dean, T., & Boddy, M. (1988) An analysis of time-
dependent planning. Proceedings AAAI-88, 49-54.

Holland, J. H. (1986). Escaping brittleness: The possi-
bilities of general-purpose learning algorithms applied
to parallel rule-based systems. In R. S. Michalski,
J. G. Carbonell & T. M. Mitchell (Eds.), Machine
learning: An artificial intelligence approach, Volume
II, Los Altos, CA: Morgan Kaufmann.

Korf, R. E. (1990) Real-Time Heuristic Search. Arti-
ficial Intelligence 42: 189-211.

Laird, J. E., & Rosenbloom, P. S. (1990) Integrating
planning, execution, and learning in Soar for external

environments. AAAT-90, 1022-1029.

Lin, L.-J. (1991) Self-improving reactive agents: Case
studies of reinforcement learning frameworks. In: Pro-
ceedings of the International Conference on the Simu-
lation of Adaptive Behavior, MIT Press.

Mitchell, T. M. (1990) Becoming increasingly reactive.
AAAT-90, 1051-1058.

Moore, A. W. (1990) Efficient Memory-based Learning
for Robot Control. PhD thesis, Cambridge University
Computer Science Department.

Riolo, R. (1991) Lookahead planning and latent learn-
ing in a classifier system. In: Proceedings of the In-

ternational Conference on the Simulation of Adaptive
Behavior, MIT Press.

Rosenschein, S. J., & Kaelbling, L. P. (1986) The syn-
thesis of machines with provable epistemic properties.
Proceedings of the 1986 Conference on Theoretical As-
pects of Reasoning about Knowledge, 83-98, Morgan
Kaufmann.

Russell, S. J. (1989) Execution architectures and com-

pilation. Proceedings of ILJCAI-89, 15-20.

Samuel, A. L. (1959). Some studies in machine learn-
ing using the game of checkers. IBM Journal on Re-
search and Development, 3, 210-229. Reprinted in
E. A. Feigenbaum, & J. Feldman (Eds.), Computers
and thought. New York: McGraw-Hill.

Schoppers, M. J. (1987) Universal plans for reac-
tive robots in unpredictable domains. Proceedings of

LJCAI-87.

Sutton, R.S. (1988) Learning to predict by the meth-
ods of temporal differences. Machine Learning 3: 9—
44.

Sutton, R. S. (1990) Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming. Proceedings of the Seventh

International Conference on Machine Learning, 216—
224.

Watkins, C. J. C. H. (1989) Learning with Delayed Re-
wards. PhD thesis, Cambridge University Psychology
Department.

Werbos, P. J. (1987) Building and understanding
adaptive systems: A statistical /numerical approach to
factory automation and brain research. IEEE Trans-
actions on Systems, Man, and Cybernetics, Jan-Feb.

Whitehead, S. D., Ballard, D.H. (1990) Active percep-
tion and reinforcement learning. In: Proceedings of
the Sixth International Workshop on Machine Learn-
ing, 354-357, Morgan Kaufmann.

Whitehead, S. D., Ballard, D.H. (in press) Learning to
perceive and act by trial and error. Machine Learning.



