As a.ppea.red in the Proceedings of the International Workshop on the Simulation of Adaptive Behavior:
From Animals to Animats, MIT Press, 1991, pp. 283-296.

Reinforcement Learning Architectures for Animats

Richard S. Sutton
GTE Laboratories Incorporated
Waltham, MA 02254
sutton@gte.com

Abstract

In the first part of this paper I argue that the
learning problem facing animats is essentially
that which has been studied as the reinforce-
ment learning problem—the learning of be-
havior by trial and error without an explicit
teacher. A brief overview is presented of the
development of reinforcement learning archi-
tectures over the past decade, with references
to the literature.

The second part of this paper presents Dyna,
a class of architectures based on reinforce-
ment learning but which go beyond trial-and-
error learning. Dyna architectures include a
learned internal model of the world. By in-
termixing conventional trial and error with
hypothetical trial and error using the world
model, Dyna systems can plan and learn opti-
mal behavior very rapidly. Results are shown
for simple Dyna systems that learn from trial
and error while they simultaneously learn a
world model and use it to plan optimal action
sequences. We also show that Dyna architec-
tures are easy to adapt for use in changing
environments.

1 Animats and the Reinforcement
Learning Problem

What is an Animat? An animat is an adaptive system
designed to operate in a tight, closed-loop interaction
with its environment. An animat need not be a learn-
ing system, but often it is; some sense of adaptation of
behavior to variations in the environment is required.

Figure 1 is a representation of the animat problem
as I see it. On some short time cycle, the animat re-
ceives sensory information from the environment and
chooses an action to send to the environment. In ad-
dition, the animat receives a special signal from the
environment called the reward. Unlike the sensory in-
formation, which may be a large feature vector, or the
action, which may also have many components, the re-
ward is a single real-valued scalar, a number. The goal

Animat
Sensory
Input ?Rcward Action
(state)
World

Figure 1. The Reinforcement Learning Problem fac-
ing an Animat. The goal is to maximize cumulative
reward.

of adaptation is the maximization of the cumulative
reward received over time.

This formulation of the animat problem is the same
as that widely used in the study of reinforcement learn-
ing. In fact, reinforcement learning systems can be de-
fined as learning systems designed for and that perform
well on the animat problem as described above. Infor-
mally, we define reinforcement learning as learning by
trial and error from performance feedback—i.e., from
feedback that evaluates the behavior generated by the
animat but does not indicate correct behavior. In the
next section we briefly survey reinforcement learning
architectures.

One might object to the problem formulation ir
Figure 1 on the grounds that all possible goals have
been reduced to a scalar reward. Although this appeare
limiting, in practice it has proved to be a useful way
of structuring the problem. Some examples of goals
formulated in this way are:

o Foraging: Reward is positive for finding food ob-
jects, negative for energetic motion, slightly nega-
tive for standing still.

e Pole-balancing (balancing a pole by applying
forces to its base): The reward is zero while the
pole is balanced, and then becomes -1 if the pole
falls over or if the base moves too far out of
bounds.

e Towers of Hanoi: Reward is positive for reaching
the goal state.

e Recycling Robot: Reward is positive for dropping
soda cans in the recycling bin, negative for bump-
ing into things, more negative for bumping hard
into things, most negative for being yelled at or
for running down the battery, etc.

e Video Game Playing: One unit of reward for every
point scored.

Another reason one might object to the problem
formulation in Figure 1 is that the goal of learning is
defined solely in terms of something (the reward) aris-
ing from the external environment, not from the ani-
mat itself. Often goals do concern the evolution of the
the animat’s own internal state, e.g., its energy reser-
voirs. Fortunately, it appears that most goals, perhaps
all, can be put in the “external reward” form simply by
redrawing the boundary between animat and environ-
ment. For example, if the goal concerns the animat’s
energy reservoirs, then these are considered part of the
environment; if the goal concerns the positions of the
animat’s limbs, then these too can be considered part
of the environment—the animat’s boundary is drawn
at the interface between the limbs and their control
systems. Roughly speaking, things are considered part
of the animat if they are completely, directly, and with
certainty controllable; things are considered part of the
environment if they are not. Since the goal is always
something over which we have imperfect or uncertain
control, it is placed outside the animat.

2 Overview of Reinforcement
Learning Architectures

In this section we review the major steps in the de-
velopment of reinforcement learning architectures over
the last decade. These steps are illustrated by the four
architectures shown in Figure 2.

All reinforcement learning involves the learning of
a mapping from a representation of a situation or state
to an appropriate action (or a probability distribution
over actions) for that situation. This mapping is called
the policy; it specifies what the animat will do in each
situation at its current stage of learning. The simplest
reinforcement learner that one might imagine, then,
would consist only of a policy and a way of adjusting
it based on reward, as shown in Figure 2a. Such ar-
chitectures, in which the policy is the only modifiable
data structure (and, indeed, the only structure at all)
are here called policy-only architectures.

The policy can be implemented in any of a number
of ways. It can be a connectionist neural network, or
a symbolic learning structure such as a decision tree
or lisp program, or a conventional set of statistics such
as is used by maximum-likelihood or nearest-neighbor
techniques. Any of these methods can be used—with
varying advantages and disadvantages—to implement
this and the other modifiable structures (in the other
architectures) shown in Figure 2.

The learning algorithm for the policy must be of
a slightly unusual type. Standard supervised learn-
ing methods such as backpropagation are not sufficient

here, but must be modified, at least slightly, to take
into account the fact that a “target” action is not di-
rectly available. Instead, a form of correlation must
be done between the reward received and the actions
taken by the animat, all with respect to the sensory
input. Actions correlated with high reward have their
probability of being repeated increased, while those
correlated with low reward have their probability de-
creased. Examples of such algorithms for policy-only
architectures can be found in (Farley & Clark, 1954;
Widrow, Gupta & Maitra, 1973; Barto & Sutton, 1981;
Barto & Anandan, 1985).

Policy-only architectures really only work well
when it is clear a priori what constitutes a high re-
ward and what constitutes a low one—for example, if
all high rewards are positive and all low rewards are
negative. Often, however, rewards are not distributed
around a baseline of zero, but around some other, un-
known value. Worse yet, the baseline may change from
state to state. A low reward value in one state may
be the highest attainable in another. To handle such
variations, a baseline value must be learned that is a
function of the state; the actual reward is then com-
pared with the current state’s baseline. This is what is
done in reinforcement-comparison architectures (Fig-
ure 2b). As a baseline, these architectures usually
use a prediction of the reward. The prediction error—
the difference between predicted and actual reward—is
used both as an enhanced, zero-balanced reward signal
for adjusting the policy and as an ordinary error for
learning the reward predictions (Figure 2b). A variety
of reinforcement-comparison algorithms have been ex-
plored and compared (Barto, Sutton & Brouwer, 1981:
Sutton, 1984; Williams & Peng, 1989; Williams, 1986).

Reinforcement comparison architectures are effec-
tive at optimizing immediate rewards, but not at op-
timizing total reward in the long run. The problem is
that actions have two kinds of consequences—they af-
fect the next reward and they affect the next state, but
reinforcement-comparison architectures only take the
first of these into account. Suppose an action produces
high immediate reward but deposits the environment
in a state from which only low reward can be obtained?
In order to optimize long-term reward, these delayec
affects of action must be taken into account.

The adaptive heuristic critic (AHC) architecture,
shown in Figure 2¢, was designed to take such delayeé
effects into account. The predictor of immediate re-
ward has been replaced with a predictor of refurn, &
measure of long-term cumulative reward. For any state
z, the return is formally defined as the expected value
of the sum of all future rewards, discounted by their
delay, given that the systen starts in z:

o0
return(z) = E{Z’y'r“.l xp = z},
t=0

where 9, 0 < 4 < 1, is the discount rate determin-
ing how fast one’s concern for delayed reward falls off
with length of the delay.! The “return predictor” box

1This is analogous to the discount rate in economics—a

State

A) Policy-Only World

State Action

State Action

C) Adaptive Heuristic Critic D) Q-Learning

Figure 2. Overview of Reinforcement Leaming Architectures. See text.
The symbol E] indicates a one time step delay, and the symbol ® indicates
multiplication. The line labeled "for best” in D is the prediction of return
for the best action; the other output from the return predictor is the prediction
of return for the action actually taken.

in Figure 2¢ comes to predict this return by virtue of
the circuit shown below it for calculating a temporal-
difference error (Sutton, 1988). In all other respects,
the learning algorithm inside this box could be exactly
the same as that used in the “reward predictor” box of
Figure 2b. The AHC architecture has been used in a
variety of learning control tasks (Sutton, 1984; Barto,
Sutton & Anderson, 1983; Anderson, 1987; Barto, Sut-
ton & Watkins, 1989).

Finally, Figure 2d shows the most recent rein-
forcement learning architecture, Q-learning (Watkins,
1989). The primary innovation here is that the pre-
dicted return is now a function of action as well as
state. Formally, the return for a state z and action a
is defined as

o0
return(z,a) = E{E'y'rt.“ Zo=z,80 = a}. (1)
t=0
Two kinds of return are always predicted for the cur-
rent state. One is the best predicted return for the
state—the predicted return for the action with the
highest predicted return. The other is the predicted
return for the action actually selected. These two pre-
dictions are then combined according to the same cir-
cuit as used in the AHC architecture. In Q-learning,
the policy could be a separate modifiable data struc-
ture as suggested by Figure 2d, but most often it is
simply a dependent function of the return predictions.
For example, the policy may be simply to pick the ac-
tion that obtains the maximal return prediction. A
particular Q-learning algorithm will be given in detail
later.

3 Dyna Architectures

Reinforcement learning architectures are effective at
trial-and-error learning, but no more. They can not
do any of the things that are considered “cognitive,”
such as reasoning or planning. They do not learn
an internal model of the world’s dynamics, of what-
causes-what, but only of what-to-do (policy) and how-
well-am-I-doing (return predictions). This is an im-
portant limitation because potentially much more can
be learned in the form of a world model than can be
learned by trial and error; the reward signal is just a
scalar, while the sensory input signal is a much richer
potential source of training information. And what if
the goal changes? Typically, a world model can re-
main relatively intact over goal changes and can assist
in achieving the new goal, whereas policy and return
predictions must be totally changed.

Dyna architectures are simple extensions of rein-
forcement learning architectures to include an internal
world model (Sutton, 1990; Whitehead, 1989). The
world model is defined as something that behaves like
the world: given a state and an action it is supposed to
output a prediction of the resultant reward and next
state. If the world’s state is observable, then it is
straightforward to learn a world model using super-
vised learning methods and training examples taken

dollar today is worth more than a dollar tomorrow.

1. Observe the current state z and choose an action:
a — Policy(z).

2. Send the action to the world and observe the re-
sultant next state y and reward r.

3. Apply a reinforcement learning method to the ex-
perience z, y, a, and r.

4. Update the world model based on the experience
z, Yy, a, and r.

5. Repeat the following steps k times:

5.1 Select a hypothetical state z and hypothetical
action a.

5.2 Send z and a to the world model and obtain
predictions of next state y and reward r.

5.3 Apply a reinforcement learning method to the
hypotheticql'experience z,9, a, and r.

6. Gotol.
Figure 3. Main Loop of the Dyna Algorithm.

from actual interactions with the world. If the world is
not observable, then it must be inferred estimated from
the history of sensory input and action. Although there
are a variety of algorithms for doing this, in the general
case it is still an open problem. Here we assume for the
time being that the state is observable.

In Dyna architectures the model is used as a direct
replacement for the world in one of the reinforcement
learning architectures shown in Figure 2. Reinforce-
ment learning continues in the usual way, but, in ad-
dition, learning steps are also run using the model in
place of the world, using predicted outcomes rather
than actual ones. For each real experience with the
world, many hypothetical experiences generated by the
world model can also be processed and learned from.
The cumulative effect of these hypothetical experi-
ences is that the policy approaches the optimal pol-
icy given the current model; a form of planning has
been achieved. The overall Dyna algorithm is given in
Figure 3.

Figure 4 shows results for a Dyna architecture
based on the AHC architecture, called Dyna-AHC. The
task is to navigate through the maze shown in Figure
4 from the starting state “S” to the goal state “G”.
From each state there are four possible actions: UP,
DOWN, RIGHT, and LEFT, which change the state
accordingly, except where such a movement would take
the system into a barrier (shaded state) or outside the
maze, in which case the state is not changed. Reward
is zero for all transitions except for those into the goal
state, for which it is +1. The lower left portion of
the figure shows learning curves for Dyna-AHC sys-
tems with ¥ = 100, k¥ = 10, and k = 0. The k = 0
case involves no hypothetical steps; this is a pure trial-
and-error reinforcement-learning system. Although the

length of path taken from start to goal falls dramati-
cally for this case, it falls much more rapidly for the
cases including hypothetical experiences, showing the
benefit of planning using the learned world model. For
k = 100, the optimal path was generally found and
followed by the fourth trip from start to goal. This is
extremely rapid learning.

Figure 5 shows why the Dyna-AHC system solved
this problem so much faster than the pure reinforce-
ment learning system. Shown are the policies found
by the k¥ = 0 and k = 100 systems half-way through
the second trial. Without planning (k = 0), each trial
adds only one additional step to the policy, and so only
one step (the last) has been learned so far. With plan-
ning, the first trial also learned only one step, but here
during the second trial an extensive policy has been de-
veloped that by the trial’s end will reach back almost
to the start state. By the end of the third or fourth
trial a complete optimal policy will have been found
and perfect performance attained.

800

700

STEPS
PER
TRIAL

0 Planning steps
(Trial and Error Leamning Only)

200

100

TRIALS

Figure 4. Learning Curves for Dyna-AHC Systems on
a Simple Navigation Task. A trial is one trip from
the start state “S” to the goal state “G”. The more
hypothetical experiences (“planning steps”) using the
world model, the faster an optimal path was found.
These data are averages over 100 runs.

4 Problems of Changing Worlds

Suppose that, after a Dyna-AHC system has learned
the optimal path from start to goal, a new barrier is
added that blocks the optimal path. The Dyna-AHC
system discussed above will run into the block and
then try the newly ineffective action many hundreds of
times. Eventually, the correct new path will be found,
but the process is very slow. It seems inappropriately
slow in that the system’s world model is updated im-
mediately. Even though the world model knows that
the formerly good action is now poor, this is not re-
flected in the system’s behavior for a long time. I cali
this the blocking problem.

Now consider a second sort of change in the envi-
ronment. Suppose, after the optimal path has been
learned, a barrier is removed that permits a shorter
path from start to goal. The Dyna-AHC system is
unable to take advantage of such a shortcut; it never
wavers from the formerly optimal path and thus never
discovers that the former obstacle is gone. I call this
the shoricut problem. In seeking to improve the Dyna-
AHC system to handle blocks, one might also seek tc
improve it to handle shortcuts. What is needed here
is some way of continually testing the world model. I
the next section we present a Dyna architecture based
on Q-learning that handles both kinds of changes with
little increase in complexity.

WITHOUT PLANNING (k = 0)
| = ‘

WITH PLANNING (k = 100)

I c
~le]y
$ el Ny
u ‘__,_,__,__,_,T
T IR EEI
" t] o T

Figure 5. Policies Found by Planning and Non-
Planning Dyna-AHC Systems by the Middle of the
Second Trial. The black square indicates the current
location of the Dyna system. The arrows indicate ac-
tion probabilities (excess over the smallest) for each
direction of movement.

5 Dyna-Q Architectures

In the rest of this paper we focus on Dyna architectures
based on Q-learning. In this section we give a complete
specification of two such Dyna-Q architectures, called
Dyna-Q- and Dyna-Q+.

Recall that, in Q-learning, the return predictions
are made on the basis of both a state and an action
(Figure 2d). For any state x and action a, let Q4 be
the current prediction of return(z,a); these are also
called Q-values. Suppose the experience z, y, a, and
r (state, next state, action, and reward) occurs. The
simplest form of Q-learning is based on constructing
from this the following training example:

Qea shouldbe r+ymaxQu, (2)

where A is the set of actions and 7 is the discount-
rate parameter from (1). This training example could
be passed to any appropriate supervised learning al-
gorithm. In the results reported in the next section,
the return predictor was implemented as a table. The
complete update rule for this case is:

Qza — Q:za +ﬁ("+7fg1€anbe - Qza):

where 8 is a positive learning-rate parameter. This is
the only update rule in the version of Q-learning used
here. The policy was to deterministically select the
action with highest Q-value:

Policy(z) = arg r‘ﬁ&x Qza-

The Dyna-Q algorithms use Q-learning as their re-
inforcement learning method in Steps 3 and 5.3 of Fig-
ure 3. In the experiments presented in the next section,
the starting states and actions for hypothetical expe-
riences were selected uniformly randomly (Step 5.1).
The model was implemented as a lookup table with an
entry for each state-action pair. This completes the
description of Dyna-Q-.

As we show below, Dyna-Q- is not able to solve the
shortcut problem. To help on this problem, Dyna-Q+
uses an additional memory structure to keep track of
the degree of uncertainty about each component of the
model. For each state z and action a, a record is kept
of the number of time steps ng, that have elapsed since
a was tried in z in a real experience. The square root
\/Mza is used as a measure of the uncertainty about
Q:a.2 To encourage exploration, each state-action pair
is then given an ezploration bonus proportional to this
uncertainty measure. For real experiences, the policy
is to select the action a that maximizes Q4 + €/Nza,
where ¢ is a small positive parameter. This method
of encouraging variety is very similar to that used in
Kaelbling’s (1990) interval-estimation algorithm.

2T'he use of the square root is heuristic but not arbitrary,
as the standard deviation of stationary, cumulative random
processes increases with the square root of the number of
cumulating steps.

However, this approach alone does not take advan-
tage of the planning capability of Dyna architectures.
Suppose there is a state-action pair that has not beer
tested in a long time, but that is far from the currently
preferred path, and thus extremely unlikely to be tried
even with the exploration bonus discussed above. In &
Dyna system, why not expect the system to plan an
action sequence to go out and test the uncertain state-
action pair? If there is genuine uncertainty, then there
is potential benefit in going out and trying the action,
and thus forming such a plan is simply rational behav-
ior and should be done. It turns out that there is &
simple way to do this in Dyna. The exploration bonus
of €\/nzq is used not only in the policy, but also ir
the update equation for the Q-values. That is (2) is
replaced by:3

Qza should be r4e/nze +7 rgleaﬁ(Qys.

In addition, the system is permitted to hypothetically
experience actions it has never before tried, so that
the exploration bonus for not having tried them car
be propagated back by the planning process. This car
be done by starting the system with a non-empty initia:
model. In the experiments with Dyna systems reportec
below, actions that had never been tried were assumec
to produce zero reward and leave the state unchanged.
This completes the specification of Dyna-Q-.

6 Changing-World Experiments

Experiments were performed to test the ability of Dyns
systems to solve blocking and shortcut problems. Al
three Dyna systems were used: Dyna-AHC, Dyna-Q-,
and Dyna-Q+. All systems used k = 10. For the Dyna-
AHC system, the other parameters were set as in the
navigation experiment. For the Dyna-Q systems, they
were set at 8 = 0.5, v = 0.9, and ¢ = 0.001. In al}
cases, the initial Q-values were zero.

The blocking experiment used the two mazes showr:
in the upper portion of Figure 6. Initially a short patk
from start to goal was available (first maze). After 1000
time steps, by which time the short path was usuall:
well learned, that path was blocked and a longer patk
was opened (second maze). Performance under the new
condition was measured for 2000 time steps. Averags
results over 50 runs are shown in Figure 6 for the three
Dyna systems. The graph shows a cumulative recoré
of the number of rewards received by the system up
to each moment in time. In the first 1000 trials, ail
three Dyna systems found a short route to the goal, al-
though the Dyna-Q+ system did so significantly faster
than the other two. After the short path was blocked
at 1000 steps, the graph for the Dyna-AHC system
remains almost flat, indicating that it was unable to
obtain further rewards. The Dyna-Q systems, on the
other hand, clearly solved the blocking problem, rel:-
ably finding the alternate path after about 800 time
steps.

3Note that this differs from (2) only on hypothetical
experiences, as nzq = 0 on real experiences.

Cumulative
Reward

0 1000
Time Stéps

Figure 6. Average Performance of Dyna Systems on
a Blocking Task. The left maze was used for the
first 1000 time steps, the right maze for the last 2000.
Shown is the cumulative reward received by a Dyna
system at each time (e.g., a flat period is a period dur-
ing which no reward was received).

The shortcut experiment began with only a long
path available (first maze of Figure 7). After 3000
times steps all three Dyna systems had learned the long
path, and then a shortcut was opened without interfer-
ring with the long path (second maze of Figure 7). The
lower part of Figure 7 shows the results. The increase
in the slope of the curve for the Dyna-Q+ system, while
the others remain constant, indicates that it alone was
able to find the shortcut. The Dyna-Q+ system also
learned the original long route faster than the Dyna-Q-
system, which in turn learned it faster than the Dyna-
AHC system. However, the ability of the Dyna-Q+
system to find shortcuts does not come totally for free.
Continually re-exploring the world means occasionally
making suboptimal actions. If one looks closely at Fig-
ure 7, one can see that the Dyna-Q+ system actually
acheives a slightly lower rate of reinforcement during
the first 3000 steps. In a static environment, Dyna-Q+
will eventually perform worse than Dyna-Q--, whereas,
in a changing environment, it will be far superior, as
here. One possibility is to use a meta-level learning
process to adjust the exploration parameter ¢ to match
the degree of variability of the environment.

One strength of the Dyna approach is that it ap-
plies to stochastic problems as well as deterministic
ones. We have explored this direction in recent work,
but are not yet ready to present systematic results.
The basic idea is to learn a model which predicts not a
deterministc next state and next reward, but rather
a probability distribution over next states and next
rewards. In the simple cases we have explored, this

Cumulative
Reward

I 1s L IstU 111

ok : . i . R
[+] 3000

Time Steps

Figure 7. Average Performance of Dyna Systems or
a Shortcut Task. The left maze was used for the
first 3000 time steps, the right maze for the last 3000.
Shown is the cumulative reward received by a Dyna
system at each time (e.g., the slope corresponds to the
rate at which reward was received).

reduces to counting the number of times each possi-
ble outcome has occurred. In hypothetical experiences,
the expected value of the right of (2) is then estimated
using the sample statistics. A slightly different explo-
ration bonus is also needed. Promising preliminary
results have so far been obtained for simple problems
involving random autonomous agents and stochastic
state transitions (e.g., action UP takes the system tc
the state above 80% of the time, and to a random
neighboring state 20% of the time).

Further results are needed for a thorough compar-
ison of Dyna-AHC and Dyna-Q architectures, but the
results presented here suggest that it is easier to adapt
Dyna-Q architectures to changing environments.

7 Limitations and Conclusions

The simple illustrations presented here are clearly lim-
ited in many ways. The state and action spaces are
small and denumerable, permitting tables to be used
for all learning processes and making it feasible for the
entire state space to be explicitly explored. For large
state spaces it is not practical to use tables or to visit
all states; instead one must represent a limited amount
of experience compactly and generalize from it. Both
Dyna architectures are fully compatible with the use
of a wide range of learning methods for doing this. For
example, Lin (1990) has explored the use of Dyna ar-
chitectures using backpropagation networks instead of
tables.

We have also assumed that the Dyna systems have

explicit knowledge of the world’s state. In general,
states can not be known directly, but must be esti-
mated from the pattern of past interaction with the
world (Rivest & Schapire, 1987; Mozer and Bachrach,
1990). Dyna architectures can use state estimates con-
structed in any way, but will of course be limited by
their quality and resolution. A promising area for fu-
ture work is the combination of Dyna architectures
with egocentric or “indexical-functional” state repre-
sentations (Agre & Chapman, 1987; Whitehead, 1989).

Yet another limitation of the Dyna systems pre-
sented here is the trivial form of search control used.
Search control in Dyna boils down to the decision of
whether to consider hypothetical or real experiences,
and of picking the order in which to consider hypo-
thetical experiences. The tasks considered here are so
small that search control is unimportant, and thus it
was done trivially, but a wide variety of more sophisti-
cated methods could be used. Particularly interesting
is the possibility of using Dyna architectures at higher
levels to make these decisions.

Finally, the examples presented here are limited in
that reward is only non-zero upon termination of a
path from start to goal. This makes the problem more
like the kind of search problem typically studied in Al,
but does not show the full generality of the framework,
in which rewards may be received on any step and there
need not even exist start or termination states.

Despite these limitations, the results presented here
are significant. They show that the use of an internal
model can dramatically speed trial-and-error learning
processes even on simple problems. Moreover, they
show how planning can be done with the incomplete,
changing, and oftimes incorrect world models that are
contructed through learning. Finally, they show how
the functionality of planning can be obtained in a com-
pletely incremental manner, and how a planning pro-
cess can be freely intermixed with execution and learn-
ing. I conclude that it is not necessary to choose be-
tween planning, reacting, and learning. These three
can be integrated not only into one animat, but into
a single algorithm, where each appears as a different
facet of that algorithm.

Acknowledgments

The author gratefully acknowledges the extensive
contributions to the ideas presented here by Andrew
Barto, Chris Watkins and Steve Whitehead. I also wish
to also thank the following people for ideas and dis-
cussions: Paul Werbos, Luis Almeida, Ron Williams,
Glenn Iba, Leslie Kaelbling, John Vittal, Charles An-
derson, Bernard Silver, Oliver Selfridge, Judy Franklin,
Tom Dean and Chris Matheus.

References

Agre, P. E., & Chapman, D. (1987) Pengi: An im-
plementation of a theory of activity. Proceedings of

AAAL87, 268-272.

Anderson, C. W. (1987) Strategy learning with multi-
layer connectionist representations. Proceedings of the

Fourth International Workshop on Machine Learning,
103-114. Morgan Kaufmann, Irvine, CA.

Barto, A. G., & Anandan, P. (1985) Pattern recogniz-
ing stochastic learning automata. IEEE Transactions
on Systems, Man, and Cybernetics 15, 360-375.

Barto, A. G., & Sutton. R. S. (1981) Landmark learn-
ing: An illustration of associative search. Biological
Cybernetics 42, 1-8.

Barto, A. G., Sutton R. S., & Anderson, C. W. (1983}
Neuronlike elements that can solve difficult learning
control problems. IEEE Transactions on Systems,
Man, and Cybernetics 13, 834-846.

Barto, A. G., Sutton, R. S., & Brouwer, P. S. (1981}
Associative search network: A reinforcement learning

associative memory. Biological Cybernetics 40, 201-
211.

Barto, A. G., Sutton, R. S., & Watkins, C. J. C. H.
(1989) Learning and sequential decision making.
COINS Technical Report 89-95, Dept. of Computer
and Information Science, University of Massachusetts.
Amherst, MA 01003. Also to appear in Learn-
ing and Computational Neuroscience, M. Gabriel and
J.W. Moore (Eds.), MIT Press, 1991.

Farley, B. G., & Clark, W. A. (1954) Simulation of self-
organizing systems by digital computer. I.R.E. Trans-
actions on Inf. Theory 4, 76-84.

Kaelbling, L. (1990) Learning in Embedded Systems.
Stanford Computer Science Ph.D. Dissertation. Tech-
nical Report No. TR-90-04, Teleos Research, Palo Alte,
CA.

Lin, L. (1990) Self-improving reactive agents: Case
studies of reinforcement learning frameworks. SAB-9C.

Mozer, M. C., & Bachrach, J. (1990) Discovering the
structure of a reactive environment by exploration. In
Advances in Neural Information Processing Systems £,
D. S. Touretzky, Ed. Morgan Kaufmann, San Matec,
CA. See also Technical Report CU-CS-451-89, Dept.
of Computer Science, University of Colorado at Boul-

der 80309.

Rivest, R. L., & Schapire, R. E. (1987} A new ap-
proach to unsupervised learning in deterministic er-
vironments. Proceedings of the Fourth International
Workshop on Machine Learning, 364-375. Morgan
Kaufmann, Irvine, CA.

Sutton, R. S. (1984) Temporal credit assignment in
reinforcement learning. Doctoral dissertation, Depart-

ment of Computer and Information Science, University
of Massachusetts, Amherst, MA 01003.

Sutton, R.S. (1988) Learning to predict by the methods
of temporal differences. Machine Learning 3, 9-44.

Sutton, R. S. (1990) Integrated architectures for learr-
ing, planning, and reacting based on approximating
dynamic programming. Proceedings of the Seventh In-
ternational Conference on Machine Learning, 216-224,
Morgan-Kaufmann.

Watkins, C. J. C. H. (1989) Learning with Delayed
Rewards. Ph.D. dissertation, Cambridge University,
Psychology Department.

Widrow, B., Gupta, N. K., & Maitra, S. (1973) Pun-
ish/reward: Learning with a critic in adaptive thresh-
old systems. IEEE Transactions on Systems, Man, and
Cybernetics §, 455—465.

Whitehead, S. D. (1989) Scaling reinforcement learning
systems. Technical Report 304, Dept. of Computer Sci-
ence, University of Rochester, Rochester, NY 14627.

Williams, R. J., & Peng, J. (1989) Reinforcement learn-
ing algorithms as function optimizers. Int. Joint Con-
ference on Neural Networks.

Williams, R. J. (1986) Reinforcement learning in con-
nectionist networks: A mathematical analysis, Univer-
sity of California, San Diego Inst. for Cognitive Science
Technical Report 8605.

