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Abstract

This paper introduces a variant of the ADALINE in which the input signals are nor-

malized to have zero mean and unit variance, and in which the bias or “threshold weight”

is learned slightly differently. These changes result in a linear learning element that learns

much more efficiently and rapidly, and that is much less dependent on the choice of the

step-size parameter. Using simulation experiments, learning time improvements of from

30% to hundreds of times are shown. The memory and computational complexity of the

new element remains O(N) , where N is the number of input signals, and the added

computations are entirely local. Theoretical analysis indicates that the new element learns

optimally fast in a certain sense and to the extent that the input signals are statistically

independent.
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Summary

Widrow and Hoff’s ADALINE is one of the most effective, most well understood, and

most widely used connectionist learning components (Widrow and Hoff, 1960). Here we

propose some small changes and additions to the ADALINE that result in large increases

in its learning rate. The most important change is the addition of a preprocessing step in

which each input signal is normalized to have zero mean and unit variance. Figure 1a shows

a standard ADALINE, and Figure 1b shows an ADALINE with normalized input signals,

i.e., a normalized ADALINE or NADALINE. The special input line that always carries the

value +1 is not normalized; the associated bias or “threshold” weight is learned slightly

differently in the NADALINE, as described below. The learning of all other weights,

as well as the overall input-ouput transformation, is done exactly as it is in the standard

ADALINE, but of course using the normalized rather than the original input signals. That

is:

y(t) =
n∑
i=1

wi(t)x′i(t) + b(t)

and

wi(t+ 1) = wi(t) + ρ(d− y)x′i(t),

where ρ is a positive step-size parameter and all other symbols are as given in Figure 1b.

Normalization is done by a local, linear process as follows. Let x̄i(t) and σi(t) be

estimates at time t of the mean and standard deviation of the original input signal xi . In

the experiments reported here, these estimates were the sample mean and sample standard

deviation for the input signal values seen up through time t , computed according to the

standard incremental formulas. ∗ The normalized signals x′i(t) were then computed as

x′i(t) =
xi(t)− x̄i(t)

σi(t)
.

∗ See, e.g., Iman & Connover, 1983. For the first few time steps it is possible for these sample statistics
to be undefined; these cases were handled such that there was no consequent change in the weights.
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It is clear that in the NADALINE the best value for the bias weight b is the mean of the

desired or target response signal d . ∗∗ Accordingly, b(t) was set to the sample mean of

the d values seen up to (but not including) t , computed as above for x̄i(t) . For non-

stationary problems it would be better not to use sample statistics in this way, but to

instead use running averages.

Figure 2 shows a simple comparison of the learning speeds ADALINE and NADALINE

for a variety of values for the step-size parameter. The task was to learn (mimic) randomly

selected training sets of 17 examples, each example consisting of an input vector of 20

binary (0/1) components and a corresponding desired response of either +1 or -1. Plotted

is the average error per example after 25 presentations of the training set. The best

errors for ADALINE are about four times those for NADALINE. Figure 3 shows a similar

comparison for the case in which the binary input signals are chosen from {−1,+1} rather

than from {0, 1} . This is the case in which NADALINE’s advantage is the least, as the

input signals are already nearly normalized a priori. Nevertheless, a speedup of about 30%

is obtained.

Notice that NADALINE’s performance varies in approximately the same way as a func-

tion of the step-size parameter in both experiments, whereas ADALINE’s dependence on

ρ is different in the two experiements. Unless the input signals are very highly correlated,

NADALINE reliably performs well at an ρ value of approximately 1
n+1 . This means that

NADALINE can usually be used without any search for parameter values.

So far we have considered input signal values in {0, 1} and {−1,+1} . Figure 4 is

a summary comparison of learning times for ADALINE and NADALINE for a range of

input signal values from {6, 7} down to {−5,−4} . The x-axis is labeled with the first

member of the pair, called the base; the second member is greater by 1. Thus, ADALINE

performs best when the base is -0.5, so that the two values are symmetrically distributed

around 0. The learning time is defined as the number of presentations of the training set

required before all actual responses y are of the same sign as the desired responses d .

∗∗ This follows because we want, as a minimum, that E {d} = E {y} ; but E {y} =

E
{∑

wi
xi(t)−x̄i

σi
+ b
}

=
∑
wi

E{xi(t})−x̄i
σi

+ b) = b , thus E {d} = b .
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The ADALINE data was obtained by trying a variety of values for ρ , and taking the best

learning time. The NADALINE data was obtained by using the single nominal learning

rate value ρ = 1
n+1 . The simulations also used the “momentum” technique (Rumelhart,

Hinton & Williams, 1985, see figure caption), which slightly speeds the learning of both

elements.

These results show that ADALINE learning times are severely lengthened, in some

cases by over a hundred times, if the mean value of an input signal departs very far from

zero, whereas the NADALINE learning times are unaffected by such changes, and are

always faster, even at the best base levels for ADALINE, and even when ADALINE’s step

size parameter is chosen to give it maximum advantage. Although we have considered only

single units here, the advantages of normalization may have particular significance within

networks. Although we may able to arrange for the original inputs to a network to be in

{+1,−1} , or otherwise nearly normalized, the input signals from interior “hidden” units

will not be, even if a symmetric squashing function is used (Stornetta & Huberman, 1987).

Although the theory of normalization remains to be fully worked out, and is anyway

beyond the scope of this short paper, part of the reason for its effectiveness is immedi-

ately clear. It is well known that the convergence rate of the ADALINE is governed by the

eigenvalues of the input cross-correlation matrix R = [E {xixj}] . The larger the “spread”,

or ratio of the largest to the smallest eigenvalue, the slower convergence must be (Widrow

and Stearns, 1985). If the input signals are statistically uncorrelated, then the normal-

ization process converts the input cross-correlation matrix to the identity matrix. Thus,

all of the eigenvalues are 1, the spread is minimized, and so therefore is convergence time.

Normalization’s effect on the spread in the case of statistically dependent signals, or on

the misadjustment in either case, remain open questions for further research.
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Figure 1. The primary difference between the classic ADALINE and the NADALINE is a

local normalization of the input signals.
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Figure 2. Comparison of ADALINE and NADALINE on a random binary mapping prob-

lem. The input signal values are all either 0 or 1. Plotted is the average error per example

after 25 presentations of the training set as a function of ρ , the step-size parameter. Each

data points represents the mean performance on 100 randomly selected training sets. The

standard error of these means is approximately 0.01.
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Figure 3. Comparison of ADALINE and NADALINE on a random binary mapping prob-

lem. The input signal values are all either +1 or -1. Plotted is the average error per

example after 25 presentations of the training set as a function of ρ , the step-size parame-

ter. Each data points represents the mean performance on 100 randomly selected training

sets. The standard error of these means is approximately 0.01.
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Figure 4. Summary comparison of ADALINE and NADALINE on a suite of tasks as in

Figure 2 and 3. The input signal values are all either BASE or BASE+1. The learning

time is the number of presentations of the training set before all responses are of the correct

sign (targets were +1 and -1). The means are accurate to within 10% at the 0.95 level of

significance. The ADALINE data points were obtaining by using many different ρ values

and then taking the best performance. In obtaining these data, the momentum technique

was also used for both algorithms.
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