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APPENDIX C

ADAPTATION OF LEARNING RATE PARAMETERS

C.1 Preface

The work presented in this appendix 1is directed toward
developing an algorithm for ad justing the learning rate
parameter c of each synapse individually. Consider a single
synapse in one of the learning elements, such as &
Widrow-Hoff element or the "classical conditioning" element
discussed in Section 4. This synapse 1s trying to use the
information in its presynaptic signal to contribute to the
prediction of subsequent input. One problem is that all the
other synapses will also be trying to do this. If each
changed itself independently of the others so that its
contribution would make up the difference or error in
prediction, then the next time the situation occurred, there
would probably be a huge overshoot as the hundreds of active
synapses each provided enough to correct the original error.
in this sort of situation each synapse must proceed

cautiously, changing 1its weight but 1ittle to prevent
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overshoct, yet not so 1little as to make learning

unnecessarily slow (undershoot).

A second and similear problem is that the signal may
only provide information in a statistical sense; i.e., its
presence may indicate that the input will probably be higher
(or lower), but not that it definitely will be. In this
case the synapse must average out the cases in which the
synapse 1is right and wrong to arrive at a compromise measure
combining both the size of the change in input predicted and
the probability with which it is predicted. Again, this
averaging means a slowing in the learning rate for the
synapse, which must be counterbalanced against the need for
speedy learning (which requires a high learning constant).

How then is this learning constant to be set?

The above discussion suggests the general form of the

2NSWETr: Each synapse can determine from its local measure
of success in prediction - its overshoots or wundershoots -
whether 1ts learning rate is too large or too small. Thus,

each synapse should set its learning rate parameter as the
adaptation proceeds, according to some iterative algorithm.
The work presented in this appendix is the beginning of the

search for, and formalization of, that algorithm.

It should be clear from the discussion of the problem
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facing the individual Synapse that it 1is basically a
tracking task. The synapse is trying to track the actual
input with its prediction of that input by changing its
prediction proportionally to the difference between
predicted and actual input in those cases in which the
Synapse 1is involved, i.e., in those cases in which the
Synapse is presynapticaly active. In the terminology of
servo-mechanism tracking, that constant of proportionality,
the 1learning rate constant, is known as the gain. Thus,
this appendix considers the problem of setting the gain of a
simple tracking servo-mechanism. It is felt that the
results are highly relevant to the learning rate parameter
setting problem for synapses, but the work has not yet
progressed to the point where it can be directly translated
into this form. Further work 1is necessary both on the
abstracted tracking problem and on mapping the results back
into a 1learning rate parameter adaptation algorithm for a

neuron~like adaptive element.

The rest of this appendix was originally a self
contained paper entitled "A Method for the Automatic

Selection of Gain for Discrete-Time Algorithms."
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C.2 Introduction

Consider a one-dimensional, discrete-time tracking
problem and its solution by a simple servomechanism (see
Figure C.1). The pursuing function y{(t) and the target
function Y(t) are related according to the classic

servomechanism equation:

y(t+1) = y(t) .+ G [ Y(t)-y(t) 1 , (C.1)

where G is called the gain. In general, the target function
Y(t) and the gain G will determine the quality of
performance. If Y(t+1) 1is determined from Y(t) by the
addition of a random variable <chosen according to a
symmetric probability distribution with an expected value of
zero, then the optimal gain will be G=1.0, since then y(t)
will equal Y(t-1), the best guess for Y(t). If the target
function Y has inertia, the optimal géin will lie between
1.0 and 2.0, and if Y(t) is a noise corrupted version of an
inertialess function 2z(t), then the optimal gain will lie
between 0 and 1.0. 1In this context the problem considered
in this appendix is the automatic selection of a gain
parameter through experience with attempts to track a target

function Y.

An adaptive tracking system should have both the
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FIGURE C.1. A block diagram of a simple tracking
Servomechanism. y(t) 1is the pursuing function, Y(t) the
target function, and E(t) the signed error.
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property of refinement, meaning the ability to carefully
zero 1in on the target function by averaging out noise, and
the property of responsiveness, meaning the ability to stop
converging and follow the target closely if it begins to
move rapidly. To have both of these properties in a
tracking servomechanism requires a method of adaptively
modifying the gain. Previous work on this problem
apparently has not found a satisfactory solution (e.g.,

Eisenstein, 1972).

C.2 The Gradient Descent Approach

To optimize some parameter or vector C(t) according to
some evaluation function J(t) to be minimized, a
straightforward approach is that of gradient descent with

fixed increment:

Clt+1) = C(t) - a v J(t)

c(t)
where a is the fixed positive increment size. Ideally, one
can analytically compute an expression for the gradient to
get the desired algorithm. For example, this technique can

be wused to derive the serve equation (Equation C.1). Here
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the parameter to be optimized 1is y(t), the evaluation
function J(t) to be minimized 1is [Y(t)—y(t)]z, and the
positive increment 1is G/2:

y(t+1) y(t) - G/2 ¥ J(t)

y(t)

a [Y(t)y-y(E)]
y(t) - G/2

d y(t)

y(t) + G [ Y(E)-y(t)

Yielding the servo-mechanism equation (Equation c.1).

Now let us apply the same methodology to derive an
algorithm for optimizing the gain term G which we now vary

as a function of time:

y(t+1) y(t) + G(t+1) [ Y(t)-y(t) ]

G(t+1) G(t) - a v J(E)

G(t)

d
= G(t)

a

[Y(t)-y(t)1°
daG(t)

- G(t) - o CY(t) = y(£-1)+G(£) [Y(t-1)-y(t=1)] 12

dG(t)
- G(t) + 2a [Y(t)-y(t)] [Y(t=1)-y(t=-1)]

= G(t) + b E(t) E(t-1) (C.z
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for b = 22 and E(t) = Y(t) - y(t).

The intuition behind the workings of this algorithm is
fairly straightforward: If the gain is too large, there
will be & tendency for the pursuing function y(t) to
overshocot the target, which causés oscillation in the error,
and thus via this algorithm will csuse &a decrease in the
gein. If the gain is too small, on the other hand, then the
pursuer will tend to yndershoot, and successive errors will
usually be of the same sign, and this algorithm will cause
the gain to decrease. Previous approcaches to this problem
and 1ts relatives have been based only on the signs of the
succesive errors, completely ignoring the sizes of the
errors (Kesten, 1958; Sardis, 1970; Perel'man, 19€7).
That the algorithm presented here wutilizes more of the
information available in the successive errors suggests that

it may be an improvement over these earlier methods.

C.4 Analysis of a Special Case

For the purposes of analysis, we now consider a special
case of the general problem. Assume Y(t) 1is a noise

corrupted version of a random variable z(t), and that z(t)
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is verying as in a "random walk":

Y(t) = z(t) + B(t) (C.3)
z(t+1) = z(t) + A(t), (c.u)
for movement and noise random variables A{(t) and B(t). Let

us assume that the random variables A(t) and B(t) are chosen
according to normal probability distributions with zero
means and variances sA and sBE respectively. (Since the
movement of z is an inertialess random walk, for this
special case the optimesl gain will never be greater than
1.0.) For this case, we can prove that algorithm (C.2)
converges to the gain that minimizes the expected mean
square error EXP{[Y(t)-y(t)]Z}. The proof has two main
steps: 1) find an expression for the optimal gain in terms
of sA and sB, and 2) proves that Equation C.2 converges to
that optimal gain. To find an expression for the cptimal
gain, first we find an expression for the expected

asymptotic mean square error (MSE) in terms of sA, sB, and

the gain G.

Let e(t) = z(t) - y(t)

Then note that the total error can be written

E(t) = e(t) + b(t) . (C.5)
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Now we solve for asymptotic e(t):

e(t+1) = z2(t+1) - y(t+1)
= z(t) + A(t) - y(t) - G E(Y)
= e(t) + A(t) - G [e(t)+B(t)]
= (1-G)e(t) + A(t) - G B(t)
or

T -1 n
e(t)

n=0

Let e(®) denote the limit of this expression as t

(1-G) e(0) + pX (1-G) [ A(t-1-n) - G B(t-1-n) ]

infinity. Since e(x) is a sum of independent identically

normelly distributed random veriables, it will

normally distributed, will have mean zero, and will have

variance the sum of the variances of the summands:

2 t 2
S = 1im T S
e(»)  tro n=0 {(1-6)" [ A(t-n)-GB(t-n)1}
t 2n 2 2
= 1im r [(1-G6) 1 [sA + G sB ]
too n=0

Ny

where s denotes the variance of the random variable X.

This geometric series is convergent for 0 < G < 2.0C:

2 sA2 + G2 sE2

2]
€(w) 1 - (1-G)°



ADAPTATION OF LEARNING RATE PARAMETERS PAGE C-11

By (C.5), and since e(w) is normally distributed with mean
zero, E(«) is also normally distributed with mean zero and

of variance

2 sa? 4+ g2 sB? )
s = + SB (C.6)
E(w) 1 - (1-G)

Which is just the desired equation for the mean square error
in terms of sA, sB, and G. The value of G which minimizes
this MSE can be found by the straightforward but tedious
process of differentiating Equation C.6 with respect to G
and setting it to zero. After simplification and solving a

guadratic, a single positive root is found:

-—sA2 +\V/5A4 + U sA2 582
G = 5 (c.7)
opt 2 sEB

For the second part of the proof we must show that
Equation C.2 converges to the optimal gain (C.7). From

(C.2) and (C.6):

G(t+1) = G(t) + b E(t) E(t-1) (C.8)

We will assume that if the constant b is chosen properly,
G(t) will (nearly) converge to the fixedpoint of (C.8), and
only prove that that fixedpoint 1is (C.7). (Note: to really

complete the convergence proof it 1s necessary to let the
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increment b become an decreasing sequence and prove a
contraction property on the expected change in G(t) as t

goes to infinity.) At the fixedpoint G of (C.8)

(&
1]

EXP{ E(t+1) E(t) }

EXP{ [ e(t+1) + B(t+1) 1 E(t) }

EXP{ [ (1-G)E(t) - B(t) + A(t) + B(t+1) 1 E(t) }

EXP{ (1-G)E(t)? = E(t)B(t) + E(t)A(t) + E(t)B(ts1) )

(1-GYEXP{E(t)?} - EXP{ [e(t)+B(t)] B(t) }

= (1-G)EXP{ E(t)2 } - EXP{ B(t)2 )
2

= (1-G) s - 552
E(w)

Substituting in with (C.8), and simplifying yields

whose only positive root is the same as (C.5), the

expression for the optimal gain.
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c.5 Computer Simulation

The algorithm (Equations (.1, C.2, C.3, C.U4)  was
programmed on a digital computer, with the distributions of
the random variables approximated by pseudo-random number
generating programs. Figure C.2 reports the results of an
experiment in which the observation noise standard deviation
sB was step changed from sB=0.3 to sb=2.0 and back again.
Figure C.2a shows the optimal gain compared to the actual
gain, both versus time. This figure demonstrates that the
gain adaptation algorithm can both increase and decrease the
gain, whichever is appropriate. Figure <C.2b shows the
analytic asymptotic error for the actual and optimal gains
plotted versus time. This figure illustrates that the
algorithm can keep the error of the tracking system at wvery
nearly the optimal theoretical limit despite occasional or
slow changes in the unknown system and thus in the optimel

gain.

C.6 Further Levels of Adaptation

One nice aspect of the algorithm presented here is that

only one parameter, the gain increment parameter b, need Dbe
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FIGURE C.2. Computer simulation of the single level
adaptive gain selection algorithm. In this experiment the
observation noise standard deviation parameter was step
changed from sB=0.3 to sB=2.0 and then back again while the
random movement standard deviation parameter remained
constant at 1.0. These changes were made at the 1000th and
2000th time steps respectively.

FIGURE C.2a compares the analytic optimal gain (dashed line)
with that found by the single-level gain adaptation
algorithm (solid line). Note that the algorithm <can both
increase and decrease the gain.

FIGURE C.2b compares the analytic asymptotic error (MSE)
levels under the optimal (dashed 1line) and actual gains
(solid line). The changes in actual gain keep the error
nearly at the theoretical minimum despite the changes in the
observation noise. The gain change rate parameter was
b=0.001 in this experiment.
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chosen arbitrarily by the designer or user of the technique
to fit the characteristics of the particular application.
This is in sharp contrast to the methods of Perel'man (1967)
and Kesten (1958), whose performance 1s dependent on a
series of possible gain parameters th-ot need to be specified
by the user. 1In the algorithm here, even the dependence on
the b parameter can be reduced, 1i.e., can be made
automstically adaptive to the environment, by extending the
scheme to additional levels of adaptation. Applying the
same methodology we wused twice above, we let b become a
function of time and change it in proportion to the gradient

of the evaluation function J(t) with respect to b(t):

b(t+1) = b(t) - a v J(t)
b(t)

Solving this analyticealy results in an algorithm for the

optimal rate of change of gain parameter. This algorithm
will in turn have a rate paramter, and an optimizing
algorithm can be derived for that. The result 1is an

arbitrarily deep hierarchy of rate of change or gain
algorithms. A pattern in these algorithms quickly becomes
apparent. We change notation slightly at this point to
allow a statement of the multiple-level adaptive gain
selection scheme which makes this pattern more apparent.

For a gain selection algorithm with n levels of adaptation:
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y(t+1) = y(t) + G (t+1) E (¢)
1 0

where E (t) = Y(t) - y(t)
0

G (t+1) = G (£) + G (t+1) E (t) i=z1, ...,n=1
i i i+1 i

where E (t) = E (t) E (t-1) i=1,...,n=1
i i-1 i-1

and G (t+1) = G , a small positive constant for the last
n n

level of adaptation.

This multiple-level algorithm was also programmed on a
digital computer for the special case of normally
distributed movement and noise random variables. An
experiment was run comparing the previous two level system
(the first level of adaptation was just the simple servo
itself) to a three level system for a case in which the
optimal gain remained constant. We see¢ from Figure C.3a
that while the two level system found the optimal gain very
quickly, there was no tendency for the gain to converge to
that value. The three level system, on the other hand, was
able to detect that the optimal gain itself was not
changing, and reduced the rate at which it changed the gain,
resulting in the convergence of the gain to 1its optimal
value (Figure C.3b). However, simulation results also

revealed that the multiple-level algorithm can become
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FIGURE C.3. Comparison of a single level gain adaptation
algorithm with a two level algorithm for the case of a
constant optimal gain. While the single level system
(Figure C.3a) finds the optimal gain (dashed line), there 1is
no tendency for the gain to converge to it. The two level
gain adaptation algorithm (Figure C.3b), on the other hand,
can adjust the rate with which it varies its gain, and does
converge to the optimal gein. In this experiment sA=1.0,
sB=3.0, and the rate or gain constants for the last levels
of adaptation were gain(2)=0.001 for Figure C.3a and
gain(C.3)=5.0e-8 for Figure C.3b.
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unstable for some unknown systems and for some settings of
the rate or gain constants for the last level c¢f adeaptation.
This is probably due to the fact that the gradient descent
analysis technique 1is due to a linear approximstion of the
gradient of the evaluation function J(t). If the 1increment
is small, this approximation 1is a good one, but if the
increment is large, it can be a very pocr approximation to
the actual gradient. In the multiple-level algorithm this
increment is under adaptive contrel, and thus there 1is no
guarantee that the increment will remain sufficiently smzall,
and instability can result. Further work is needed to solve
this problem with the otherwise promising multiple-level

algorithm.

C.7 Conclusions

The multiple-level gain selection algorithm presented
here seems to be applicable to any case of discrete-time
adaptation involving a signed error and an associated gain
or rate parameter. This algorithm is able to both increase
and dec;easé gain in response to —changes 1in the target
function's behavior, wutilizes all the information in the
error signal, and 1is extremely simple. Comparisons are

dificult to make between disimilar algorithms, but the above



ACAPTATION OF LEARNING RATE PARAMETERS PAGE C-21

properties suggest that this algorithm may be a significant
improvement over other gain or rate parameter selecticn

algorithms in the literature.

Finally, a multiple-level version of this algorithm was
presented. Its particular advantages will be most important
in systems which must handle with high performance a wide
range of uncertain environments. Although the approach
seems promising, further work is necessary on the

multiple-level algorithm.
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