


A. 1. Samuel 

Abstract: Two machine-learning procedures have been  investigated in some detail using the game of 

checkers.  Enough work has been done to verify the fact that a computer  can be programmed so that it will 

1 learn to play a better game of checkers than can be  played  by the person who wrote the program. Further- 

more, it can learn to do this in a remarkably short period of time (8 or 10 hours of machine-playing time) 

when given only the rules of the game, a sense of direction, and a  redundant and incomplete list of 

parameters which are thought to have something to do with the game, but whose correct  signs and relative 

weights are unknown and unspecified. The principles of machine learning  verified by these experiments 

are, of course, applicable to many other situations. 

introduction 

The studies reported here have been concerned  with the 
programming of a  digital computer  to behave  in  a way 
which, if done by human beings or animals, would be 
described  as involving the process of learning.  While 
this is not  the place to dwell on  the  importance of ma- 
chine-learning  procedures, or to discourse on  the philo- 
sophical aspects,l  there is obviously a  very  large amount 
of work,  now done by people,  which is quite trivial  in  its 
demands  on  the intellect but does, nevertheless, involve 
some learning.  We have  at  our  command  computers with 
adequate data-handling ability and with sufficient com- 
putational speed to  make use of machine-learning  tech- 
niques, but  our knowledge of the basic principles of these 
techniques is still rudimentary. Lacking such knowledge, 
it is necessary to specify  methods of problem  solution  in 
minute  and exact  detail,  a  time-consuming and costly 
procedure. Programming computers to  learn  from ex- 
perience  should  eventually  eliminate the need for  much 
of this  detailed programming effort. 

0 General methods of approach 

At the outset it might be  well to distinguish sharply be- 
tween two  general approaches  to  the problem of machine 
learning. One method,  which  might  be called the NeuraZ- 
Net Approach, deals with the possibility of inducing 
learned  behavior into a  randomly  connected switching 
net (or its simulation on a digital computer) as a  result 
of a reward-and-punishment routine. A second, and 
much  more efficient approach, is to  produce  the equiva- 
lent of a highly organized  network which has  been  de- 
signed to  learn only  certain specific things. The first 

method should  lead to  the development of general-pur- 
pose learning machines. A comparison between the size 
of the  switching nets that  can be reasonably  constructed 
or simulated at  the present  time and  the size of the neural 
nets used by animals, suggests that we have a long way 
to go before we obtain practical devices.2 The second 
procedure requires reprogramming for each new applica- 
tion,  but it is capable of realization at the present time. 
The experiments to be described here were based on this 
second  approach. 

0 Choice of problem 

For some  years the writer  has devoted his spare time to 
the subject of machine  learning  and  has  concentrated  on 
the development of learning procedures as applied to 
games.3 A game provides  a  convenient vehicle for  such 
study as contrasted  with  a problem  taken  from life,  since 
many of the complications of detail are removed. 
Checkers, rather  than che~s,~-7 was chosen because the 
simplicity of its rules  permits  greater  emphasis to be 
placed on learning techniques.  Regardless of the relative 
merits of the two  games as intellectual  pastimes, it is fair 
to  state  that checkers  contains all of the basic characteris- i 
tics of an intellectual activity in which heuristic  proce- 
dures  and learning processes can play a major role and 
in which these processes can be  evaluated. 

Some of these  characteristics  might well be enumer- 
ated. They  are: 

(1) The activity  must  not be deterministic  in the  prac- 
tical sense. There exists no  known algorithm  which will 
guarantee a win or a draw in  checkers, and  the complete 21 1 

I 

IBM JOURNAL -JULY 1959 



explorations of every possible path  through a  checker 
game would involve perhaps 1040 choices of moves 
which, at 3 choices per millimicrosecond, would still take 
lo2’ centuries to consider. 

( 2 )  A definite goal  must exist-the winning of the 
game-and at least one criterion or intermediate goal 
must exist which has a  bearing on  the achievement of the 
final goal and  for which the sign should be known. In 
checkers the goal is to deprive the  opponent of the pos- 
sibility of moving, and  the  dominant criterion is the 
number of pieces of each color on  the board. The im- 
portance of having a known  criterion will be discussed 
later. 

(3) The rules of the activity  must be definite and they 
should be known. Games satisfy this requirement.  Un- 
fortunately,  many problems of economic importance  do 
not. While in  principle the  determination of the rules can 
be a part of the  learning process, this is a  complication 
which might well be left  until later, 

(4) There should  be  a  background of knowledge  con- 
cerning the activity  against which the  learning progress 
can be tested. 

(5)  The activity  should  be one  that is familiar to a 
substantial  body of people so that  the behavior of the 
program  can be made  understandable  to them. The 
ability to  have  the  program play  against human  oppo- 
nents (or antagonists)  adds spice to  the  study  and, inci- 
dentally,  provides  a  convincing demonstration  for those 
who do  not believe that machines can  learn. 

Having settled on  the game of checkers for our learn- 
ing studies, we must, of course, first program  the com- 
puter  to play legal checkers; that is, we must  express the 
rules of the game  in machine language and we must ar- 
range for  the mechanics of accepting an opponent’s 
moves and of reporting  the computer’s moves, together 
with all pertinent  data desired by the experimenter. The 
general  methods for doing this were described by 
Shannon* in 1950 as applied to chess rather  than check- 
ers. The basic program used in these  experiments is quite 
similar to  the  program described by Stracheyg in 1952. 
The availability of a larger  and  faster  machine (the 
IBM 704),  coupled  with many detailed  changes  in the 
programming  procedure, leads to a  fairly  interesting 
game being  played,  even  without any learning. The basic 
forms of the  program will now be described. 

The  basic checker-playing program 

The  computer plays by looking ahead a  few moves and 
by evaluating the resulting  board positions much as a 
human player  might  do.  Board positions are stored by 
sets of machine words, four words  normally being used 
to represent any  particular  board position. Thirty-two bit 
positions (of the 36 available in  an  IBM  704 word) are, 
by convention, assigned to  the 32 playing squares  on  the 
checkerboard,  and pieces appearing  on these squares  are 
represented by 1’s appearing in the assigned bit positions 
of the corresponding  word.  “Looking-ahead’’ is prepared 

212 for by computing all possible next moves, starting with a 

given board  position. The indicated moves are explored 
in turn by producing new board-position  records  cor- 
responding to  the conditions after  the move  in  question 
(the  old board positions being saved to facilitate  a return 
to  the  starting point) and  the process can be  repeated. 
This look-ahead procedure is carried several moves in 
advance, as illustrated  in Fig. 1. The resulting  board po- 
sitions are then  scored  in terms of their  relative  value to 
the machine. 

The  standard  method of scoring the resulting  board 
positions has been in  terms of a linear polynomial. A 
number of schemes of an  abstract  sort were tried  for 
evaluating board positions without  regard to  the usual 
checker  concepts,  but none of these was successful.10 
One way of looking at  the various terms  in  the scoring 
polynomial is that those terms with numerically  small 
coefficients should  measure criteria related as intermedi- 
ate goals to  the  criteria measured by the  larger terms. 
The achievement of these  intermediate goals indicates 
that  the  machine is going in the right  direction, such  that 
the larger terms will eventually  increase. If the  program 
could  look far enough ahead we need  only ask, “Is the 
machine still in the  game?”ll Since it  cannot  look this 
far  ahead in the usual  situation, we must  substitute some- 
thing else, say the piece  ratio, and let the  machine con- 
tinue  the look-ahead  until one side has gained a piece 
advantage.  But  even  this is not always possible, so we 
have the  program test to see if the  machine  has gained a 
positional  advantage,  et  cetera. Numerical measures of 
these various  properties of the  board positions are then 
added together (each with an  appropriate coefficient 
which defines its  relative importance)  to  form  the evalu- 
ation  polynomial. 

More specifically, as defined by the rules for checkers, 
the  dominant scoring parameter is the inability for  one 
side or  the  other  to move.12 Since  this can  occur  but  once 
in any game, it is tested for separately and is not included 
in the scoring  polynomial as tabulated by the  computer 
during play. The next parameter  to be considered is the 
relative  piece  advantage. It is always assumed that  it is 
to  the machine’s advantage  to  reduce  the  number of the 
opponent’s pieces as  compared  to its  own. A reversal of 
the sign of this term will, in  fact, cause the  program  to 
play “give-away’’ checkers, and with learning it can only 
learn to play  a  better and better give-away game. Were 
the sign of this term  not  known by the programmer  it 
could, of course,  be  determined by tests, but it must be 
fixed by the experimenter and, in effect, it is one of the 
instructions to  the  machine defining its task. The nu- 
merical computation of the piece  advantage has been ar- 
ranged in such a way as to  account  for  the well-known 
property  that it is usually to one’s advantage  to  trade 
pieces when one is ahead  and  to avoid trades when 
behind. Furthermore,  it is assumed that kings are  more 
valuable than pieces, the relative weights assigned to 
them being three  to two.13 This  ratio  means  that  the 
program will trade  three  men  for two kings, or two 
kings for  three  men, if  by so doing it  can  obtain some 
positional  advantage. 
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Figure I A “tree” of moves which might be investigated during the look-ahead procedure. The actual 
branchings are much more numerous than those  shown, and the “tree” is apt to extend to  as many 
as 20 levels. 213 
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The choice for  the  parameters  to follow this first term 
of the scoring  polynomial and  their coefficients then be- 
comes  a matter of concern. Two courses are open- 
either the  experimenter  can decide  what these subse- 
quent  terms  are  to be, or he  can  arrange  for  the  program 
to  make  the selection. We will discuss the first case in 
some  detail  in connection with the rote-learning  studies 
and leave for a later section the discussion of various 
program  methods of selecting parameters  and adjusting 
their coefficients. 

It is not satisfactory to select the initial  move  which 
leads to  the  board position  with the highest  score,  since 
to  reach this  position would require  the cooperation of 
the  opponent. Instead, an analysis must  be made  pro- 
ceeding backward from  the evaluated board positions 
through  the “tree” of possible moves, each time  with 
consideration of the  intent of the side whose move is 
being examined,  assuming that  the  opponent would 
always attempt  to minimize the machine’s score while 
the  machine acts to maximize its score. At each branch 
point,  then,  the corresponding board position is given 
the  score of the  board position  which would result from 
the most favorable move. Carrying this  “minimax” pro- 
cedure  back  to  the starting point results  in the selection 
of a  “best move.” The  score of the  board position at  the 
end of the most likely chain is also brought back, and  for 
learning purposes  this score is now assigned to  the pres- 
ent  board position. This process is shown  in  Fig. 2. The 
best move is executed, reported  on  the console lights, 
and tabulated by the  printer. 

The  opponent is then  permitted  to  make his move, 
which can be  communicated to  the  machine  either by 
means of console switches or by means of punched 
cards. The  computer verifies the legality of the  oppo- 
nent’s move, rejecting14 or accepting  it, and  the process 
is repeated. When  the  program  can look ahead  and pre- 
dict a win, this fact is reported  on  the  printer. Similarly, 
the  program concedes  when it sees that it is going to 
lose. 

0 Ply limitations 

Playing-time  considerations make  it necessary to limit 
the look-ahead  distance to some  fairly  small  value. This 
distance is defined as the ply  (a ply of 2 consisting of 
one proposed  move by  the  machine  and  the anticipated 
reply by the opponent). The ply is not fixed but  depends 
upon  the dynamics of the situation, and  it varies from 
move to move and  from  branch  to  branch  during  the 
move analysis. A  great many schemes of adjusting the 
look-ahead  distance have been  tried at various times, 
some of them quite complicated. The most effective one, 
although  quite detailed, is simple in concept and is as 
follows. The  program always looks ahead a  minimum 
distance,  which for  the  opening  game  and without learn- 
ing is usually set at  three moves. At this minimum ply 
the  program will evaluate the  board position if none of 
the following conditions  occurs: (1) the next  move is a 
jump, (2) the last  move was a  jump, or (3) an exchange 

214 offer is possible. If any one of these  conditions exists, the 

program  continues looking  ahead. At a ply of 4 the 
program will stop  and evaluate the resulting board posi- 
tion if conditions (1) and (3) above are  not met. At a  ply 
of 5 or  greater,  the  program stops the look-ahead when- 
ever the next ply level does not offer a jump.  At a ply 
of 11 or  greater,  the  program will terminate  the look- 
ahead, even if the next  move is to be a jump, should one 
side at this time be ahead by more  than two  kings (to 
prevent  the needless  exploration of obviously losing or 
winning sequences). The  program stops at a ply of 20 
regardless of all conditions  (since the  memory space for 
the look-ahead moves is then  exhausted)  and  an adjust- 
ment in  score is made  to allow for  the  pending  jump. 
Finally, an  adjustment is made  in  the levels of the  break 
points between the different  conditions  when  time is 
saved through  rote learning (see below) and when the 
total  number of pieces on  the  board falls below an arbi- 
trary  number. All break  points  are  determined  by single 
data words  which can be changed  at  any  time by manual 
intervention. 

This tying of the ply with board conditions  achieves 
three desired results. In the first place, it permits board 
evaluations to be made  under conditions of relative  sta- 
bility for so-called dead positions, as defined by Turing.15 
Secondly, it causes greater  surveillance of those paths 
which offer  better  opportunities  for gaining or losing an 
advantage. Finally, since branching is usually seriously 
restricted by a jump situation, the total number of board 
positions and moves to be considered is still held  down 
to a  reasonable number  and is more equitably  distributed 
between the various possible initial moves. 

As  a  practical matter, machine-playing time usually 
has been  limited to approximately 30 seconds per move. 
Elaborate table-lookup  procedures, fast sorting and 
searching  procedures,  and  a  variety of new programming 
tricks  were  developed, and  full use was made of all of the 
resources of the  IBM 704 to increase the  operating speed 
as much as possible. One  can, of course, set  the playing 
time at  any desired  value by adjustments of the permitted 
ply; too small a ply results in a bad game and  too  large 
a  ply  makes the  game unduly costly in  terms of machine 
time. 

0 Other  modes of play 

For  study purposes the  program was written to accom- 
modate several  variations of this basic plan. One of these 
permits the  program  to play  against itself, that is, to play 
both sides of the game. This  mode of play has been 
found  to be especially good during  the  early stages of 
learning. 

The  program  can also follow book games  presented to 
it either on cards  or  on magnetic  tape. When  operating 
in this mode,  the  program decides at  each  point  in  the 
game  on its next  move in the usual way and  reports this 
proposed move. Instead of actually making this  move, 
the  program  refers  to  the stored record of a  book  game 
and  makes  the book move. The  program records  its 
evaluation of the two moves, and  it also counts  and  re- 
ports  the  number of possible moves which the program 
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Figure 2 Simplified diagram showing how the evaluations are backed-up through the “tree“ of possible 
moves to arrive  at the best next move.  The evaluation process  starts at 0. 

rates as being better than  the book move and  the  number 
it rates as  being poorer.  The sides are  then reversed and 
the  process is repeated. At  the  end of a book game a cor- 
relation coefficient is computed, relating the machine’s 
indicated moves to those  moves  adjudged best by the 
checker masters.16 

i t  should be noted that  the emphasis throughout all of 
these  studies  has  been on learning  techniques. The 
temptation  to  improve  the machine’s game by giving it 
standard openings or other man-generated  knowledge of 
playing  techniques has been consistently resisted. Even 
when  book  games are played, no weight is given to the 
fact  that  the moves as listed are presumably the best pos- 
sible moves under  the circumstances. 

For demonstration purposes, and also  as  a means of 
avoiding lost machine time while an  opponent is think- 
ing, it is sometimes  convenient to play  several  simul- 
taneous games against  different  opponents. With  the 
program  in  its  present form  the most  convenient num- 
ber for this purpose  has been found  to be six, although 
eight have been  played on a number of occasions. 

Games  may be started with any initial  configuration 
for  the board  position so that  the  program  may be tested 
on  end games, checker puzzles, et cetera. For  nonstand- 
ard starting  conditions, the program lists the  initial  piece 
arrangement.  From time to time, and  at  the  end of each 
game, the  program also tabulates  various bits of statisti- 

cal information which assist in the evaluation of playing 
performance. 

Numerous  other  features  have also  been  added to 
make  the program  convenient to  operate (for  details see 
Appendix A), but these have  no direct  bearing on  the 
problem of learning, to which we will now turn our 
attention. 

Rote learning and its variants 

Perhaps  the most elementary  type of learning  worth dis- 
cussing would be a form of rote learning in which the 
program simply saved all of the  board positions en- 
countered  during play,  together with their  computed 
scores. Reference could then be made  to this memory 
record and a certain  amount of computing time  might 
be saved. This  can  hardly be called a  very  advanced 
form of learning; nevertheless, if the  program then util- 
izes the saved time  to  compute  further in depth it  will 
improve with time. 

Fortunately,  the ability to  store  board  information  at 
a ply of 0 and  to  look  up  boards  at a  larger ply provides 
the possibility of looking much  farther in  advance than 
might  otherwise be possible. To understand this, con- 
sider  a very simple case  where the look-ahead is always 
terminated at a fixed ply,  say 3. Assume further  that  the 
program saves only  the  board positions encountered 
during the actual play with their associated backed-up 215 
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scores. Now it is this list of previous board positions that 
is used to look up  board positions while at a ply level of 
3 in the subsequent games. If a  board position is found, 
its score  has,  in effect, already been backed up by three 
levels, and if it becomes effective in determining  the 
move to be made, it is a  6-ply  score rather  than a  simple 
3-ply score. This new initial board position with its 6-ply 
score is, in  turn, saved and  it  may be encountered in a 
future game and  the  score backed up by an additional 
set of three levels, et cetera.  This procedure is illustrated 
in Fig. 3. The incorporation of this  variation,  together 
with the simpler  rote-learning feature, results in a  fairly 
powerful  learning  technique which has been studied in 
some  detail. 

Several  additional features  had  to be incorporated  into 
the program before it was practical to  embark  on  learn- 
ing studies  using this storage  scheme. In  the first place, 
it was necessary to  impart a sense of direction to  the pro- 
gram in order  to  force it to press on toward  a win. To 
illustrate  this,  consider the situation of two kings  against 
one king, which is a winning combination for practically 
all variations in board positions. In time, the  program 
can be  assumed to  have stored all of these  variations, 
each associated with a  winning score. Now, if such a 
situation is encountered,  the  program will look ahead 
along  all possible paths  and each path will lead to a win- 
ning combination, in spite of the  fact  that only one of 
the possible initial moves may be  along the direct path 
toward the win while all of the rest may be wasting  time. 
How is the  program  to differentiate  between these? 

A good solution is to keep a record of the ply value of 
the different board  positions at all times and  to  make a 
further choice  between board positions on this basis. If 
ahead,  the  program  can  be  arranged  to push  directly 
toward the win while, if behind, it  can be arranged  to 
adopt delaying tactics. The most  recent method used is 
to  carry  the effective ply along with the  score by simply 
decreasing the magnitude of the score  a  small amount 
each time it is backed-up  a ply level during  the analyses. 
If the program is now  faced with a  choice of board posi- 
tions whose scores differ only by the ply number,  it will 
automatically make  the  most advantageous  choice, 
choosing a low-ply alternative if winning and a high-ply 
alternative if losing. The significance of this  concept of a 
direction sense should not be overlooked.  Even  without 
“learning,” it is very  important.  Several of the early at- 
tempts  at  learning failed because the direction sense was 
not  properly  taken into  account. 

0 Cataloging  and  culling  stored  information 

Since  practical  considerations limit the  number of board 
positions which can be  saved, and since the time to 
search  through those that  are saved can easily become 

board  position  in which White is to move, so that all 
boards are  reported as if it were Black’s turn  to move. 
This reduces by nearly  a factor of two the  number of 
boards which must be saved. Board positions, in which 
all of the pieces are kings, can be reflected about  the 
diagonals  with a possible fourfold reduction in  the  num- 
ber  which  must be saved. A more  compact  board repre- 
sentation  than  the  one employed during play is also used 
so as to minimize the storage  requirements. 

After  the  board positions are standardized,  they are 
grouped  into records on  the basis of (1) the  number of 
pieces on the  board, (2)  the presence or absence of a 
piece advantage, (3) the side possessing this  advantage, 
(4) the presence or absence of kings on  the board, (5)  the 
side  having the so-called “move,” or opposition  advan- 
tage, and finally (6) the first moments of the pieces about 
normal  and diagonal  axes through  the  board.  During 
play, newly acquired board positions are saved in the 
memory until a reasonable number have  been accumu- 
lated,  and they are  then merged  with  those on the “mem- 
ory  tape”  and a new memory  tape is produced.  Board 
positions within a record  are listed in a serial fashion, 
being sorted with respect to  the words which define them. 
The records are  arranged  on  the  tape  in  the  order  that 
they are most likely to be needed during  the course of a 
game; board positions  with 12 pieces to a  side  coming 
first, et  cetera. This  method of cataloging is very  impor- 
tant because it  cuts tape-searching time  to a  minimum. 

Reference  must be made, of course,  to  the  board posi- 
tions  already  saved, and this is done by reading  the cor- 
rect  record  into  the  memory  and searching through  it by 
a  dichotomous  search  procedure.  Usually five or more 
records are held in memory at  one time, the exact num- 
ber at  any time  depending upon  the lengths of the  par- 
ticular  records in question. Normally,  the  program calls 
three or four new records into  memory  during each new 
move, making  room  for them as needed, by discarding 
the records  which have been  held the longest. 

Two different  procedures have been found to be of 
value in limiting the  number of board positions that  are 
saved; one based on  the  frequency of use, and  the sec- 
ond  on  the ply. To  keep track of the  frequency of use, 
an age term is carried along with the score. Each new 
board position to be saved is arbitrarily assigned an age. 
When  reference is made  to a  stored board position, 
either  to  update its score or to utilize it in  the look- 
ahead procedure, the age recorded for this board position 
is divided by two. This is called refreshing. Offsetting 
this, each board  position is automatically aged by one 
unit at  the  memory merge  times  (normally occurring 
about  once every 20 moves). When the age of any  one 
board position  reaches an  arbitrary maximum  value  this 
board position is expunged from  the  record.  This is a 

unduly  long, one must devise systems (1) to catalog form of forgetting. New board positions which remain 
boards that  are saved, (2) to delete  redundancies,  and unused are soon forgotten, while board positions which 
(3) to discard board positions which are not believed to are used several  times  in succession will be refreshed to 
be of much value. The most effective cataloging system such  an extent that they will be remembered even if not 
found  to  date  starts by standardizing all board positions, used thereafter  for a  fairly  long  period of time. This  form 

216 first by reversing the pieces and piece positions if it  is a of refreshing and forgetting was adopted on  the basis of 
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of these being end games. The  program learned to play 
a  very good opening game  and  to recognize  most win- 
ning and losing end positions many moves in advance, 
although  its  midgame  play was not greatly  improved. 
This  program now qualifies as  a rather better-than- 
average novice, but definitely not as an expert. 

At  the present  time the  memory  tape contains  some- 
thing over 53,000 board positions  (averaging 3.8 words 
each) which have been selected from a much  larger 
number of positions by means of the culling  techniques 
described.  While  this is still far  from  the  number which 
would tax  the listing and searching  procedures used in 
the  program,  rough estimates, based on  the  frequency 
with which the saved boards  are utilized during  normal 
play  (these figures being tabulated automatically),  indi- 
cate  that a library  tape  containing  at least 20 times the 
present number of board positions would be needed to 
improve the midgame  play significantly. At the  present 
rate of acquisition of new positions this would require 
an  inordinate  amount of play and, consequently, of 
machine time.17 

The general  conclusions  which can be drawn  from 
these tests are  that: 

(1) An effective rote-learning technique must  include 
a procedure  to give the  program a sense of direction, 
and it must contain a refined system for cataloging and 
storing  information. 

( 2 )  Rote-learning plocedures  can be used effectively 
on machines  with the data-handling  capacity of the 
IBM 704 if the  information which  must  be saved and 
searched does not  occupy  more  than, roughly, one mil- 
lion  words, and if not  more  than  one  hundred or so ref- 
erences  need to be made  to this information per  minute. 
These figures are, of course, highly dependent  upon  the 
exact efficiency of cataloging which can be achieved. 

(3) The  game of checkers,  when  played  with  a  simple 
scoring  scheme and with rote learning  only, requires 
more  than this number of words for  master caliber of 
play and, as  a  consequence, is not  completely amenable 
to this treatment  on  the  IBM 704. 

(4) A  game, such as  checkers, is a  suitable vehicle for 
use during  the development of learning techniques, and 
it is a  very  satisfactory  device for demonstrating  ma- 
chine-learning procedures  to  the unbelieving. 

Learning  procedure involving generalizations 

* An obvious way to decrease the  amount of storage 
needed to utilize past  experience is to generalize on  the 
basis of experience and  to  save only the generalizations. 
This should, of course,  be  a continuous process if it is to 
be truly effective, and  it should involve several levels of 
abstraction.  A start  has been made  in this  direction  by 
having the  program select a  subset of possible terms  for 
use in the evaluation  polynomial and by having the  pro- 
gram  determine  the sign and  magnitude of the coeffi- 
cients  which  multiply  these  parameters. At  the present 
time this  subset consists of 16 terms chosen from a list 

21 8 of 38 parameters. The piece-advantage term needed to 

define the task is computed separately and,  of course, is 
not altered by the  program. 

After a number of relatively unsuccessful attempts  to 
have the  program generalize while playing both sides of 
the game, the  program was arranged  to act  as  two dif- 
ferent players, for convenience called Alpha and Beta. 
Alpha generalizes on its experience after  each move by 
adjusting the coefficients in its  evaluation  polynomial and 
by replacing terms which appear  to be unimportant by 
new parameters  drawn  from a reserve list. Beta, on  the 
contrary, uses the  same evaluation  polynomial for  the 
duration of any  one game. Program  Alpha is used to 
play  against human opponents, and  during self-play 
Alpha  and Beta play each  other. 

At  the  end of each self-play game  a determination is 
made of the relative  playing ability of Alpha,  as com- 
pared with Beta, by a neutral  portion of the program. If 
Alpha wins-or is adjudged to be ahead  when a game is 
otherwise terminated-the then  current scoring system 
used by Alpha is given to Beta. If,  on  the  other  hand, 
Beta wins or is ahead, this fact is recorded as  a black 
mark for Alpha.  Whenever Alpha receives an  arbitrary 
number of black marks (usually set at three) it is as- 
sumed  to be on  the wrong track,  and a  fairly  drastic and 
arbitrary  change is made in its scoring  polynomial (by 
reducing  the coefficient of the leading term to zero). 
This  action is necessary on occasion,  since the  entire 
learning process is an  attempt  to find the highest point 
in  multidimensional  scoring  space  in the presence of 
many secondary  maxima on which the  program  can 
become trapped. By manual intervention it is possible to 
return  to some previous condition  or  make  some  other 
change if it becomes apparent  that  the learning  process 
is not  functioning properly. In general,  however, the 
program seeks to extricate itself from  traps  and  to im- 
prove  more  or less continuously. 

The capability of the  program  can be  tested at  any 
time  by  having Alpha play one or more  book games 
(with the  learning  procedure  temporarily immobilized) 
and by correlating its play with the recommendations of 
the masters or,  more interestingly,  by  pitting it against 
a human player. 

0 Polynomial modification procedure 

If Alpha is to  make changes in its  scoring  polynomial, 
it must be given some  trustworthy  criteria  for measuring 
performance. A  logical difficulty presents itself, since 
the only  measuring parameter available is this same 
scoring  polynomial that  the process is designed to im- 
prove.  Recourse is had  to  the peculiar property of the 
look-ahead procedure, which makes it less important  for 
the scoring  polynomial to be particularly good the 
further  ahead  the process is continued. This  means  that 
one  can evaluate the relative change in the positions of 
two  players, when this  evaluation is made over  a  fairly 
large number of moves, by using a  scoring system which 
is much  too gross to be significant on a move-by-move 
basis. 

Perhaps  an even better way of looking at  the  matter 
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is that we are  attempting  to  make  the score,  calculated 
for  the  current  board position, look like that calculated 
for  the  terminal  board position of the  chain of moves 
which most  probably will occur during  actual play. Of 
course, if one could  develop  a  perfect system of this sort 
it would be the equivalent of always looking ahead  to 
the end of the game. The  nearer this ideal is approached, 
the better would be the play.ls 

In  order  to  obtain a sufficiently large  span to  make use 
of this  characteristic, Alpha  keeps a record of the ap- 
parent goodness of its board positions as the game  pro- 
gresses. This record is kept by  computing the scoring 
polynomial for each board position encountered in actual 
play and by saving  this  polynomial  in its entirety. At  the 
same time, Alpha also computes the backed-up score  for 
all board positions, using the look-ahead procedure de- 
scribed  earlier. At each  play  by Alpha  the initial board 
score, as saved from  the previous Alpha move, is com- 
pared with the backed-up  score for  the  current position. 
The difference between  these scores, defined as delta, is 
used to  check  the scoring polynomial. If delta is positive 
it is reasonable to assume that  the initial board evalua- 
tion was in  error  and  terms which contributed positively 
should have been given more weight, while those that 
contributed negatively should have been given less 
weight. A  converse statement  can be made  for  the case 
where  delta is negative. Presumably,  in  this case, either 
the initial board evaluation was incorrect, or a  wrong 
choice of moves was made,  and greater weight should 
have been given to  terms making negative contributions, 
with less weight to positive terms. These changes are 
not made directly but  are  brought  abont in an involved 
way which will now  be  described. 

A  record is kept of the  correlation existing between 
the signs of the individual term  contributions in the ini- 
tial scoring  polynomial and  the sign of delta. After each 
play an  adjustment is made in the values of the correla- 
tion coefficients, due  account being taken of the  number 
of times that each particular term has been used and  has 
had  a nonzero value. The coefficient for  the polynomial 
term (other than  the piece-advantage term) with the  then 
largest correlation coefficient is set at a  prescribed maxi- 
mum value with proportionate values determined for all 
of  the remaining coefficients. Actually, the  term coeffi- 
cients are fixed at integral powers of 2,  this  power being 
defined by the  ratio of the correlation Coefficients. More 
precisely, if the  ratio of two  correlation coefficients is 
equal  to  or larger than n but less than n+ 1, where n is 
an integer, then  the  ratio of the  two term coefficients is 
set equal  to 2". This  procedure was adopted in order  to 
increase the  range in values of the  term coefficients. 
Whenever  a correlation-coefficient calculation leads to a 
negative sign, a  corresponding  reversal is made in the 
sign associated with the  term itself. 

Instabilities 

It should be noted that  the span of moves over  which 
delta is computed consists of a  remembered part  and  an 
anticipated portion.  During  the remembered  play, use 

had been made of Alpha's current scoring  polynomial to 
determine Alpha's moves but not  to  determine  the  oppo- 
nent's moves, while during  the anticipation  play the 
moves for both sides are  made using Alpha's  scoring 
polynomial. One is tempted to increase the sensitivity of 
delta  as an  indicator of change by increasing the  span of 
the  remembered  portion.  This  has been found  to  be 
dangerous  since the coefficients in the evaluation poly- 
nomial and, indeed, the  terms themselves, may  change 
between the time of the remembered  evaluation and  the 
time at which the anticipation  evaluation is made.  As a 
matter of fact, this difficulty is present even for a span 
of one move-pair. I t  is necessary to  recompute  the scor- 
ing  polynomial for a given initial board position after a 
move has been  determined and  after  the indicated cor- 
rections  in the scoring  polynomial  have  been made,  and 
to save this score  for  future comparisons, rather  than  to 
save the  score used to  determine the  move. This  may 
seem a  trivial point,  but its neglect in  the initial stages 
of these experiments  led to oscillations quite analogous 
to  the instability  induced in electrical  circuits by long 
delays in  a feedback loop. 

As  a  means of stabilizing against minor variations in 
the delta values, an  arbitrary  minimum value was set, 
and when  delta  fell below this  minimum for  any  par- 
ticular  move no  change was made in the polynomial. 
This  same  minimum value is used to set limits for  the 
initial board evaluation score  to decide whether  or not 
it will be assumed to be zero. This  minimum is recom- 
puted  each time and, normally,  has  been fixed at  the 
average value of the coefficients for  the  terms in the  cur- 
rently existing evaluation  polynomial. 

Still another type of instability  can occur whenever 
a new term is introduced into  the scoring  polynomial. 
Obviously, after only  a single move the  correlation coeffi- 
cient of this new term will have a  magnitude of 1 ,  even 
though it might go to 0 after  the very  next move. To 
prevent violent  fluctuations due  to this  cause, the  corre- 
lation coefficients for newly introduced terms  are  com- 
puted  as if these  terms had already  been  used  several 
times and  had been found  to  have a zero  correlation co- 
efficient. This is done by replacing the times-used num- 
ber  in the calculation by an  arbitrary  number (usually 
set at 16) until the usage does, in fact,  equal  this  number. 

After a term  has been in use for some  time,  quite the 
opposite  action is desired so that  the  more  recent experi- 
ence can outweigh  earlier results. This is achieved, to- 
gether with a  substantial reduction in  calculation  time, 
by using powers of 2 in  place of the  actual times-used 
and by  limiting the maximum  power that is used. To be 
specific, at  any stage of play defined as the Nth move, 
corrections to  the values of the  correlation coefficients 
C, are  made using 16 for N until N equals 32, where- 
upon 32 is used until N equals 64, et  cetera, using the 
formula: 

c,,-, =k 1 cx=cN-l-- 
N '  

and a  value for N larger than 256 is never used. 
After a  minimum was set for delta it seemed  reasona- 
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ble to  attach greater weight to situations  leading to large 
values of delta.  Accordingly,  two additional categories 
are defined. If a contribution  to delta is made by the first 
term, meaning that a change has occurred  in  the piece 
ratio, the indicated  changes  in the correlation coefficients 
are doubled, while if the value of delta is so large  as to 
indicate that  an almost sure win or lose will result, the 
effect  on  the correlation coefficients is quadrupled. 

Term  replacement 

Mention  has been made several times of the  procedure 
for replacing terms  in  the scoring  polynomial. The  pro- 
gram, as it is currently  running, contains 38 different 
terms  (in addition  to  the piece-advantage  term), 16 of 
these being included  in  the  scoring  polynomial at  any  one 
time  and  the remaining 22 being kept  in reserve. After 
each move  a  low-term tally is recorded  against that active 
term which has  the lowest correlation coefficient and,  at 
the  same  time, a test is made  to see if this brings its tally 
count  up  to some arbitrary limit,  usually  set at 8. When 
this limit is reached for  any specific term, this term is 
transferred  to  the  bottom of the reserve list, and it is re- 
placed by a term  from  the head of the reserve list. This 
new term  enters  the polynomial  with zero values for 
its correlation coefficient, times  used, and low-tally 
count.  On  the average, then,  an active term is replaced 
once each  eight  moves and  the replaced terms  are given 
another  chance  after  176 moves. As  a  check on  the ef- 
fectiveness of this procedure,  the  program  reports  on 
the usage which has  accrued against each discarded term. 
Terms which are repeatedly  rejected after a  minimum 
amount of usage can  be  removed and replaced  with  com- 
pletely new terms. 

It might be argued that this procedure of having the 
program select terms  for  the evaluation  polynomial from 
a supplied list is much  too simple and  that  the  program 
should  generate the  terms  for itself. Unfortunately,  no 
satisfactory  scheme for doing this has yet  been devised. 
With a  man-generated list one might at least ask that 
the  terms be  members of an  orthogonal set,  assuming 
that this has some  meaning  as  applied to  the evaluation 
of a  checker  position. Apparently,  no  one knows  enough 
about checkers to define such a set. The only  practical 
solution  seems to be that of including  a relatively large 
number of possible terms in the hope that all of the 
contributing  parameters get  covered  somehow,  even 
though in an involved and  redundant way. This is not 
an undesirable state of affairs, however,  since it simulates 
the situation  which is likely to exist when an  attempt is 
made  to  apply similar  learning  techniques to real-life 
situations. 

Many of the  terms in the existing list are related in 
some vague way to  the  parameters used by  checker ex- 
perts. Some of the concepts which  checker  experts 
appear  to use have eluded the writer's attempts  at defi- 
nition, and  he has been unable  to  program them.  Some 
of the  terms  are  quite unrelated to  the usual checker 
lore  and  have been discovered more  or less by accident. 

220 The second moment  about  the diagonal axis through  the 

double corners is an example. Twenty-seven different 
simple terms are now in use, the rest being combinational 
terms,  as will be described later. 

A  word  might  be  said about these  terms with respect 
to  the exact way in which they are defined and  the 
general procedures used for  their evaluation. Each term 
relates to  the relative  standings of the two sides, with 
respect to the parameter in  question, and it is numeri- 
cally equal  to  the difference between the ratings for  the 
individual sides. A reversal of the sign obviously cor- 
responds  to a change of sides. As  a further  means of 
insuring  symmetry the individual  ratings of the respec- 
tive sides are determined at corresponding  times in the 
play as viewed by the side  in  question. For example, 
consider  a parameter which  relates to  the  board condi- 
tions  as  left after  one side has moved. The  rating of 
Black for  such a parameter would be made  after Black 
had moved, and  the  rating of White would not be made 
until after White had moved. During anticipation  play, 
these  individual  ratings are  made  after  each move and 
saved for  future reference. When  an evaluation is de- 
sired the  program takes the differences between the most 
recent ratings and those made a  move  earlier. In general, 
an  attempt  has been made  to define all parameters so 
that  the individual-side ratings are expressible as small 
positive integers. 

0 Binary connective  terms 

In addition to  the simple terms of the type  just  described, 
a number of combinational  terms have been introduced. 
Without these  terms the scoring  polynomial  would, of 
course,  be  linear.  A number of different ways of intro- 
ducing  nonlinear  terms have been devised but only one 
of these has been  tested  in any detail. This scheme pro- 
vides terms which have some of the properties of binary 
logical connectives. Four  such  terms  are  formed  for 
each  pair of simple terms  which are  to be related. This 
is done by making  an  arbitrary division of the  range in 
values for  each of the simple terms and assigning the 
binary values of 0 and 1 to these ranges. Since  most of 
the simple terms  are symmetrical  about 0, this is easily 
done  on a  sign basis. The new terms  are  then  of  the 
form A*B, A*B, A*B,  and A*B, yielding values either of 
0 or 1. These terms  are introd'uced into  the scoring 
polynomial with adjustable coefficients and signs, and 
are  thereafter indistinguishable from  the  other terms. 

As it would require some 1404  such combinational 
terms  to  interrelate  the  27 simple  terms  originally  used, 
it was found desirable to limit the  actual  number of 
combinational terms used at  any  one time to a  small 
fraction of these and  to  introduce new terms  only  as it 
became possible to  retire  older ineffectual terms. The 
terms actually used are given in Appendix C .  

0 Preliminary  learning-by-generalization  tests 

An idea of the learning ability of this procedure  can be 
gained by analyzing an initial test series of 28 games19 
played with the  program just  described. At  the  start  an 
arbitrary selection of 16  terms was chosen and all terms 

" 
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were assigned equal weights. During  the first 14 games 
Alpha was assigned the White  side,  with Beta con- 
strained as to its first move (two cycles of the seven 
different initial moves). Thereafter,  Alpha was assigned 
Black and White  alternately. During this time a total 
of 29 different terms was discarded and replaced, the 
majority of these on two  different occasions. 

Certain  other figures obtained during these 28 games 
are of interest. At  frequent intervals the program lists 
the 12 leading  terms in Alpha’s scoring  polynomial  with 
their correlation coefficients and a running  count of the 
number of times these coefficients have  been  altered. 
Based on these samplings, one observes that  at least 20 
different terms were assigned the largest coefficient at 
some  time or other, some of these alternating with other 
terms a number of times, and two  even reappearing at 
the  top of the list with their signs reversed. While these 
variations  were  more  violent at  the  start of the series 
of games and decreased  as  time  went on,  their presence 
indicated that  the learning procedure was still not  com- 
pletely  stable. During  the first seven games there were 
at least 14 changes  in  occupancy at  the top of the list 
involving 10 different  terms. Alpha won three of these 
games and lost four.  The quality of the play was ex- 
tremely  poor. During  the next seven games there were 
at least eight changes made in the  top listing involving 
five different terms.  Alpha lost the first of these games 
and won the next six. Quality of play  improved  steadily 
but the  machine still played rather badly. During  Games 
15  through  21 there  were eight changes in the  top listing 
involving five terms; Alpha winning five games and 
losing two.  Some  fairly good amateur players who 
played the machine during this period  agreed that  it 
was “tricky  but  beatable”. During  Games  22  through 28 
there were at least four changes  involving three terms. 
Alpha won two games and lost five. The  program  ap- 
peared to be approaching a  quality of play  which  caused 
it  to be described as “a better-than-average  player”.  A 
detailed analysis of these results indicated that  the  learn- 
ing procedure did work and  that  the  rate of learning 
was surprisingly  high, but  that  the learning was quite 
erratic  and  none  too stable. 

e Second series of tests 

Some of the  more obvious  reasons for this erratic 
behavior in the first series of tests have been identified. 
The  program was modified in several respects to im- 
prove the situation, and additional tests were made. Four 
of these modifications are  important enough to justify  a 
detailed  explanation. 

In  the first place, the  program was frequently fooled 
by bad play on  the  part of its opponent. A  simple solu- 
tion was to change the  correlation coefficients less dras- 
tically when delta was positive than when  delta was 
negative. The  procedure finally adopted  for  the positive 
delta  case was to  make corrections to selected terms in 
the polynomial only. When  the scoring  polynomial was 
positive, changes  were made  to coefficients associated 
with the negatively contributing terms,  and when the 

polynomial was negative, changes  were made  to  the co- 
efficients associated with positively contributing terms. 
No changes  were made  to coefficients associated  with 
terms which happened  to be  zero. For  the negative delta 
case, changes  were made  to  the coefficients of all con- 
tributing  terms, just as  before. 

A  second defect seemed to be connected  with the 
too  frequent  introduction of new terms  into  the scoring 
polynomial and  the tendency for these new terms  to 
assume dominant positions on  the basis of insufficient 
evidence. This was remedied by the simple expedient 
of decreasing the  rate of introduction of new terms 
from  one every  eight moves to  one every 32 moves. 

The  third defect had  to  do with the complete exclusion 
from consideration of many of the  board positions 
encountered  during play by reason of the  minimum 
limit on delta. This resulted in  the misassignment of 
credit to those board  positions which permitted spec- 
tacular moves when the credit  rightfully belonged to 
earlier  board  positions  which had permitted the neces- 
sary  groundlaying moves. Although no precise way has 
yet been devised to insure the  correct assignment of 
credit,  a  very simple expedient was found  to be most 
effective in minimizing the adverse effects of earlier 
assignments. This expedient was to allow the  span of 
remembered moves, over which delta is computed,  to 
increase  until  delta exceeded the  arbitrary  minimum 
value, and  then  to apply the corrections to  the coeffi- 
cients  as  dictated by the  terms  in  the retained poly- 
nomial for this  earlier board position. In this case, the 
difficulty  which was mentioned in the section on  In- 
stabilities in connection with an  arbitrary increase  in 
span, does  not occur  after each correction, since no 
changes are  made in the coefficients of the scoring 
polynomial as long as delta is below the  minimum value. 
Of course,  whenever  delta  does exceed the  minimum 
value the  program must then  recompute  the initial scor- 
ing polynomial for  the then current board  position and 
so restart  the  procedure with  a span of a single remem- 
bered move-pair. This over-all procedure rectifies the 
defect of assigning credit to a board position that lies 
too far along the move chain,  but it introduces the 
possibility of assigning credit to a board position that 
is not far  enough along. 

As a partial expedient to compensate for this newly 
introduced danger, a change was made in the initial 
board evaluation. Instead of evaluating the initial board 
positions directly,  as was done before,  a standard  but 
rudimentary tree-search (terminated  after  the first non- 
jump move) was used. Errors due  to impending jump 
situations were eliminated by this  procedure, and be- 
cause of the greater  accuracy of the evaluation it was 
possible to reduce the minimum  delta limit by a  small 
amount. 

Finally, to avoid the  danger of having  Beta adopt 
Alpha’s  polynomial  as  a  result of a chance win on 
Alpha’s part (or perhaps a  ‘situation  in  which Alpha 
had allowed its polynomial to  degenerate  after  an  early 
or midgame advantage  had been gained), it was decided 22 1 
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to  require a majority of wins on A!pha’s part before 
Beta would adopt Alpha’s scoring  polynomial. 

With these modifications, a new series of tests was 
made. In  order  to  reduce  the  learning time, the initial 
selection of terms was made  on  the basis of the results 
obtained during  the earlier tests, but  no  attention was 
paid to  their previously assigned weights. In  contrast 
with the earlier erratic behavior, the revised program ap- 
peared to be  extremely  stable, perhaps  at  the expense of 
a  somewhat  lower  initial  learning rate.  The way in which 
the  character of the evaluation  polynomial  altered  as 
learning  progressed is shown in Fig. 4. 

The most  obvious change  in behavior was in regard 
to  the relative number of games  won by Alpha  and  the 
prevalence of draws. During  the first 28  games of the 
earlier series Alpha won 16  and lost 12.  The  corre- 
sponding figures for  the first 28 games of the new series 
were 18 won by Alpha,  and  four lost, with six draws. 
In all cases the games were terminated, if not finished, 
in 70 moves and a judgment  made  in  terms of the final 
positions. Unfortunately, these figures are  not strictly 
comparable because of the decreased frequency with 
which Beta adopted Alpha’s  polynomial during  the second 
series, both by design and because a programming error 
immobilized the adoption procedure  during  part of the 
tests. Nevertheless, the  great decrease  in the  number of 
losses and  the prevalence of draws  seemed to indicate 
that  the learning process was much  more stable.  Some 
typical  games from this  second series are given in Ap- 
pendix B. 

As learning proceeds, it should  become harder  and 
harder  for  Alpha  to improve its game, and  one would 
expect the  number of wins by Alpha  to decrease  with 
time. If secondary  maxima  in  scoring  space are en- 
countered,  one might even find situations in which Alpha 
wins less than half of the games. With Beta at  such a 
maximum any  minor  change in Alpha’s polynomial 
would result  in  a degradation of its play, and several 
oscillations about  the maximum  might occur before 
Alpha  landed  at a point which would enable it  to beat 
Beta. Some  evidence of this trend is discernible in  the 
play, although  many  more games will have  to be played 
before it can be  observed  with  certainty. 

The tentative  conclusions  which can be drawn  from 
these tests are: 

(1) A simple generalization  scheme of the type here 
used can be an effective learning device for problems 
amenable to tree-searching  procedures. 

( 2 )  The  memory  requirements of such schemes are 
quite modest and  remain fixed with  time. 

(3) The  operating times are also reasonable and re- 
main fixed, independent of the  amount of accumulated 
learning. 

(4) Incipient  forms of instability in  the solution can 
be  expected but, at  least for  the checker program, these 
can be dealt  with by quite  straightforward procedures. 

(5 )  Even with the inconlplete and  redundant set of 
parameters which have been used to  date, it is possible 

222 for  the  computer  to I6arn to play  a  better-than-average 

game of checkers  in  a relatively short  period of time. 
As  a final precautionary note, it should  be stated  that 

these experiments have  not encompassed  a sufficiently 
large series of games to  demonstrate unambiguously 
that  the learning procedure is completely  stable or  that 
it will necessarily lead to  the best possible choice of 
parameters  and coefficients. 

Rote learning vs. generalization 

Some  interesting  comparisons can be made between the 
playing style developed by the learning-by-generalization 
program  and  that developed  by the earlier  rote-learning 
procedure. The  program with rote learning  soon learned 
to  imitate master  play during  the opening moves. It was 
always quite  poor  during  the  middle game, but it easily 
learned how to avoid most of the obvious traps  during 
end-game  play and could  usually drive  on  toward a win 
when left with a  piece  advantage. The  program with the 
generalization procedure  has never learned  to play in 
a  conventional manner  and its  openings are  apt  to be 
weak. On  the  other  hand,  it soon learned  to play  a 
good middle  game, and with a  piece  advantage it usually 
polishes off its opponent  in  short  order. Interestingly 
enough, after  28 games it had still not learned how to 
win an  end  game with two kings against one in  a 
double corner. 

Apparently,  rote  learning is of the greatest  help, 
either under conditions  when the results of any specific 
action  are long  delayed, or  in those  situations  where 
highly specialized techniques are required.  Contrasting 
with this, the generalization procedure is most helpful 
in  situations in which the available permutations of con- 
ditions are large  in number  and  when  the consequences 
of any specific action  are  not long delayed. 

e Procedures involving both forms of learning 

The next  obvious  step is to  combine  the  better  features 
of the rote-learning procedure with a  generalization 
scheme. This  must be done with  some care, since it is 
not  practical to  update  the previously saved information 
after every  change in  the evaluation  polynomial.  A  com- 
promise  solution  might be to save only  a  very limited 
amount of information  during  the early  stages of learn- 
ing and  to increase the  amount as warranted by the 
increasing  stability of the evaluation coefficient with 
learning. For example, the  program could  be arranged 
to save only the piece-advantage term  at  the  start.  At 
some  stage in  the learning  process the next term could 
be added,  perhaps when no change  had been made in 
the  parameter used for this term  during some  fairly 
long  period,  say for three complete games. If and when 
the  program is able  to play an  additional period without 
changes  in the next parameter, this  could also be added, 
et cetera.  Whenever  a change does occur  in a parameter 
previously assumed to be  stable the  entire  memory 
tape  could be reviewed, all terms involving the changed 
parameter  and those  lower on  the list could be ex- 
punged, and  the program  could drop back to  the earlier 
condition with respect to its term-saving  schedule. 
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Figure 4 Second  series of learning-by-generalizcrtion tests.  Coefficients  assigned by the 
program to the more significant parameters of the evaluation  polynomial 
plotted as a function of the  number of games played. Two regions of special 
interest might be noted: (1)  the situation  after 13 .or 14 games, when the pro- 
gram  found  that the initial signs of many of the terms had been set incor- 
rectly, and (2) the conditions of relative  stability  which'are  beginning  to show 
up after 31 or 32 games. i 

K C E N T  

e 
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to  introduce  rote  learning  at  this  time.  It is, of course, 
perfectly  feasible  to  salvage  much of the  learning  which 
has  been  accumulated  by  both of the  programs  studied 
to  date.  This  could  be  done  by  appending  an  abridged 
form of the  present  memory  tape  to  the  generalization 
scheme  in  its  present  stage of learning  and  by  proceed- 
ing  from  there  in  accordance  with  the  first  solution 
proposed  above. 

0 Future  development 

WhiIe it is believed  that  these  tests  have  reached  the 
stage of diminishing  returns,  some  effort  might  well  be 
expended in an  attempt  to  get  the  program  to  generate 
its own  parameters  for  the  evaluation  polynomial.  Lack- 
ing a perfectly  general  procedure,  it  might  still  be 
possible to  generate  terms  based on theories  as  proposed 
by  students of the  game.  This  procedure  would  be  at 
variance  with  the  writer’s  previous  philosophy,  but  it is 

to  problems of economic  importance. 

Conclusions 

As a result of these  experiments  one  can  say  with  some 
certainty  that it is  now  possible  to  devise  learning 
schemes  which  will  greatly  outperform an average  per- 
son  and  that  such  learning  schemes  may  eventually  be 
economically  feasible as applied  to  real-life  problems. 
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Appendix A: Programming details 

0 Approximate  size of program 

Basic checker-playing routine . . . . . . . . . .  
Input, move verification and  output . . . . . . . .  
Game starting  and  terminating  routines . . . . . . .  
Loaders,  table  generators,  dumping, et cetera . . . . .  
Statistical and analytical  routines . . . . . . . . .  
Rote-learning routines . . . . . . . . . . . .  
Generalization-learning routines . . . . . . . . .  
Tables and constants for basic play . . . . . . . .  
Working  space for basic play . . . . . . . . . .  
Working  space for generalization learning . . . . . .  
Working  space  for rote learning . . . . . . . . .  

1100 instructions 
1400 instructions 
600 instructions 
850 instructions 
700 instructions 

1500 instructions 
650 instructions 
700 words 

2000 words 
500 words 

balance of memory 

Approximate  computation  times 

To find all available moves from given board position . . . . . . . . . . . . . . . .  2.6 milliseconds 
To make a single move and find resulting board position . . . . . . . . . . . . . . .  1.5 milliseconds 
To evaluate  a  board position (4 terms) . . . . . . . . . . . . . . . . . . . .  2.4 milliseconds 
TO find score for a  saved board position (rote  learning) . . . . . . . . . . . . . . .  2.3 milliseconds 
TO evaluate position (with 16 terms for generalization learning) . . . . . . . . . . . .  7.5 milliseconds 

0 Board  representations 

The  standard checkerboard  numbering system (see  Appendix B) is used in communicating with the machine.  A modi- 
fied numbering system is used for internal  computations, the numbers shown on  the  squares in Fig. A-1  corresponding 
to the bit positions in an  IBM  704 word. Any given board position is represented by four  such words; one word ( F A )  
containing 1’s in those bit positions corresponding  to  squares  containing pieces of the  color whose turn it is to move 
and which normally  move in a forward direction. To be specific, if it is Black’s turn  to move (i.e., if Black is “active”) 
F A  designates the location of all of  Black’s pieces, both men and kings. Conversely, if White is active, FA designates 
the location of White’s kings only, since White’s men can only move in the  direction  arbitrarily called backward. 
The  other words designate, respectively: BA, backward  active pieces; FP, forward passive pieces; and BP, backward 
passive pieces. 

To conserve  space when writing on tape,  three words are used to record  board positions with kings, and only  two 
words are used for board positions without kings. These are saved in a  standardized form, as explained in  the text. 

Possible moves are designated by five words; one word to indicate by its sign (with the  word itself containing other 
information) whether the moves are jumps or not. (If  a jump is available, only jump moves are saved.) The  other 
four words designate the location of those pieces which can move in the  four different diagonal  directions: RF, for 
right forward; LF, for left forward; LB, for left  backward; and RB, for right  backward, respectively. 

By reference  to Fig. A-1, it will be observed that a  right-forward move results in an  increase of 4 in the  square 
designation, while a  left-forward  move results in  an increase of 5. Bit positions 9, 18  and 27 do  not  appear  on  the 
board. This notation  makes it possible to compute available moves for all pieces simultaneously. Having previously 
computed a word called EMPTY, which contains 1’s in locations corresponding to all unoccupied  squares,  one can 
compute RF, for  the  normal move case, in  four instructions, as listed below (in  IBM  704 symbolic language) : 

C L A  EMPTY (puts word EMPTY into  the  accumulator) ; 
A LS 4 (shifts word to left by 4 positions) ; 
A N A   F A  (forms logical AND between EMPTY and FA ) ; 

S T 0  RF (stores word as newly computed R F )  . 

Jump moves are computed by a simple extension of this procedure. Multiple jumps are handled as a sequence of single 
224  jumps  separated by null-reply moves. 
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Figure A-I Checkerboard notation for internal computations. 

Additional time-saving expedients 

Bit counting is done by a table-lookup procedure in a closed subroutine of 16 executed  instructions (408 microseconds). 
This  requires  a  256-word  table which is generated at  the  start by a 13-word program. Similar table-lookup  procedures 
are used, to  turn a  word  end-for-end, and to locate the 1's in a word for move reporting. 

Multiplications are usually avoided. In several places where  multiplication by small  integers  must be done, it is 
programmed  in terms of shifts and logical operations. 

During the look-ahead  procedure  a  complete  record is kept of the sequence of board positions currently under 
investigation. As a  result, no computing is needed to  retract moves. 225 
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Appendix 6: Sample games from the second  series with generalization learning 

1 226 

0 Typical  openings 
The first eight moves of selected games in which Alpha played Black against Beta, showing the way  in which different 
types of play were tried. 

G-4  G-6  G-12  G-I7  G-19  G-21  G-31  G-3 7 - __ 
~ 

10 14 11 16 11  16 11 16 11 16 11 16 11 16 12 16 
24  19 22 18 22 17 24 20 24 20 24  20 23  18 24 20 
14 18 16  20 16 20 10  14 7 11 8 11 7 11 8 12 
23  14 18 14 17  13 20 11 22  17 28  24 27  23 28  24 

- - __- 

9 18 9 18 9 14 8 15  10 14 10 14 16 20 10 14 
22 15 23 14 23 18 22 17 17 10 23  18 23 19 23  18 
11  18 10  17 14 23 7 11 6 15 14 23 20  27 14 23 
21  17 21 14 27 18 17  10 28  24 27 18 31 24 27  18 

0 Typical  games 
Sample games in which Alpha played White against forced Beta openings. 

G-I 

12 16 
24  19 
8 12 

22  18 
10 14 
26  22 
16 20 
30 26 
11 16 
28  24 
7 11 

22  17 
3 8  

17 10 
6 15 22 

26 17 
9 13 

17 14 
2 7  

23  18 
16 23 
14 10 
7 14 

18 9 
5 14 

27  18 9 
20  27 
31  24 
12  16 
21  17 
13 22 
25  18 

1 5  
9 6  
5 9  
6 1  

- 
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G-18 ___ 
12  16 
24  20 
8 12 

28  24 
10 15 
22 18 
15 22 
25 18 
7 10 

18 14 
10 17 
21 14 
9 18 

23 14 
6 9  

30  25 
9 18 

26  23 
3 8  

23 14 
1 6  

27  23 
6 9  

14  10 
9 13 

25 21 
11 15 
20 11 
15 18 
23 14 

8 15 
24 19 
15 24 
32  28 
24 27 
31  24 

G-30 - 
12 16 
24 20 
8 12 

28 24 
10 14 
22 18 
6 10 

24 19 
1 6  

32 28 
3 8  

26 22 
9 13 

18 9 
5 14 

22 18 
6 9  

25 22 
2 6  

30 25 
14 17 
21 14 5 
6 9  

18 15 
11 18 
20  11 2 
10 14 
22 15 
14 17 
5 1  

17  21 
25 22 
21  25 
22 18 
25 30 

2 6  

G 4 0  

10 14 
24 20 
11 15 
27  24 
7 10 

23  18 
14 23 
26 19 
10 14 
19 10 
6 15 

22 17 
2 7  

17 10 
7 14 

24 19 
15 24 
28  19 
14 17 
21 14 

9 18 
25 22 
18  25 
29  22 
5 9  

31  27 
1 5  

20  16 
3 7  

22 17 
8 11 

17 13 
11  20 
13 6 
7 10 
6 1  

- G-I - 
9 13 
1 6  

13 17 
32 27 
16  20 
18 14 
11 15 
6 10 

15 18 
14 9 
Terminated 
Manually 

G-18 - 
12 16 
24  20 
16  19 
29  25 
13 17 
10 7 
2 11 

14 10 
19  23 
21 14 
23  26 
10 7 
26 30 
25  21 
30 26 
7 3  

11 15 
14 10 
5 9  

10 6 
15  19 
6 1  

26 22 
1 6  
9 13 

20  16 
19 23 
6 9  

23 27 
16 11 
22  25 
11 7 
25 30 
7 2  

27 32 

G-39 

11 16 
24  20 
10 15 
20 11 
7 16 

21  17 
6 10 

23 19 

G-30 
__ 
9 14 

18 9 
8 11 

15 ,8 
4 11 

19  15 
11 18 
23 14 
13  17 
9 5  

12  16 
28  24 
17  22 
6 10 

30  25 
1 6  

25  21 
5 1  

21  17 
24  20 
16  19 
20  16 
17  13 
6 2  

13 17 
10 6 

G-41  G-43 - - 
10 14 11 16 
24  20  23  19 
11 15 16 23 
27 24 26 19 
7 10 8 11 

23 18  22  17 
14 23  10 14 
26 19  17  10 

G-40 

Beta Concedes 

70 Move Termination 

4 8  
1 6  

10 14 
6 10 

14 17 
10 15 
17  21 
32  28 
5 9  

27 24 
20  27 
19 16 
12 19 
15 22 31 
9 14 

31  26 
14 18 
28 24 

8 11 
24 19 
21  25 
30  21 

Beta Concedes 



BLACK 

Figure B-I Square  designations used in reporting games. 

Appendix C: Evaluation polynomial details for second  series 

0 Method of computing  terms 

The 16 terms called for in the  evahation polynomial are computed, individually, by taking the value of the  appropriate 
parameter, as defined below, for  the  board position under consideration and  subtracting  the value of this same 
parameter  computed for the  board position just  prior to the last  move (with  the necessary reversal  in the definitions 
of active and passive sides).  This difference is then multiplied by the corresponding  program-computed coefficient, 
which can vary between -218 and +21*, and credited to  the side which was passive on  the  board position under 
consideration. 
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Definitions of parameters 

ADV  (Advancement)  DYKE  (Dyke) 
The  parameter is credited with 1 for each passive man in The  parameter is credited  with 1 for each  string of pas- 
the  5th  and  6th rows (counting  in passive's direction) sive pieces that occupy three  adjacent diagonal squares. 
and debited  with 1 for  each passive man in the  3rd  and EXCH (Exchange) 
4th rows. The  parameter is credited  with 1 for  each  square  to 
APEX  (Apex) which the active side may  advance  a  piece and, in so 
The  parameter is debited  with 1 if there  are no kinas on doing, force  an exchange. - 
the  board, if either square 7 or 26 is occupied by an ac- EXPOS (Exposure) 
tive man,  and if neither of these squares is occupied by a The parameter is credited with for each passive piece 
passive man. that is flanked along one  or  the  other diagonal by two 
BACK  (Back  Row  Bridge) 
The  parameter is credited  with 1 if there  are  no active 
kings on  the  board  and if the  two bridge squares (1 and 
3,  or 30 and 32) in the back  row are occupied by passive 
pieces. 

CENT  (Center  Control I )  
The  parameter is credited  with 1 for  each of the follow- 
ing squares: 1 1 ,  12, 15, 16, 20,  21, 24 and 25 which is 
occupied by a passive man. 

empty squares. 

FORK  (Threat of Fork) 
The  parameter is credited  with 1 for each  situation in 
which passive pieces occupy two adjacent  squares in one 
row  and in which there  are  three empty  squares so dis- 
posed that  the active side could, by occupying one of 
them, threaten a sure  capture of one  or  the  other of the 
two pieces. 

GAP (GaD) . I ,  

CNTR  (Center  Control 11) 
The  parameter is credited  with 1 for each of the  follow- 
ing squares: 1 1 ,  12, 15, 16, 20,  21, 24 and 25 that is 
either currently occupied by an active  piece or  to which 
an active  piece can move. GUARD  (Back Row Control) 

The  parameter is credited with 1 for  each single empty 
square  that separates  two passive pieces along a  diagonal, 
or that separates  a passive piece from  the edge of the 
board. 

CORN  (Double-Corner  Credit) 
The  parameter is credited  with 1 if the material  credit 
value for  the active  side is 6 or less, if the passive side is 
ahead in material  credit, and if the active side can move 
into  one of the double-corner squares. 

I CRAMP  (Cramp) 
The  parameter is credited with 2 if the passive side  occu- 
pies the  cramping  square ( 13 for Black, and 20 for 
White)  and  at least one  other  nearby  square (9 or 14 for 
Black, and 19 or 20 for  White), while certain squares 
(17, 21, 22 and 25 for Black, and 8,  11,  12 and 16 for 
White)  are all occupied by the active side. 

DENY  (Denial of Occupancy) 
The  parameter is credited with 1 for each square defined 
in  MOB if on the next  move  a  piece  occupying  this 
square could be captured without an exchange. 

DIA  (Double Diagonal File) 
The  parameter is credited  with 1 for  each passive piece 
located  in the diagonal files terminating in the double- 
corner squares. 

The  parameter is credited  with 1 if there  are  no active 
kings and if either the Bridge or  the Triangle of Oreo is 
occupied by passive pieces. 

HOLE  (Hole) 
The  parameter is credited  with 1 for  each  empty  square 
that is surrounded by three  or  more passive pieces. 

KCENT  (King  Center  Control) 
The  parameter is credited  with 1 for each of the follow- 
ing  squares: 1 1 ,  12, 15, 16, 20,  21, 24 and 25 which is 
occupied by a passive king. 

MOB  (Total Mobility) 
The  parameter is credited with 1 for each square to 
which the active  side  could  move one  or  more pieces in 
the  normal fashion,  disregarding the  fact  that  jump 
moves may  or may not be available. 

MOBIL  (Undenied Mobility) 
The  parameter is credited  with the difference between 
MOB  and  DENY. 

MOVE  (Move) 
The Darameter is credited with 1 if pieces are even with 

DIAV  (Diagonal  Moment  Value) 

piece located on  squares 2 removed from  the double- squares 1,  2, and 4. 
corner diagonal files, with 1 for  each passive piece lo- 

a total piece count ( 2  for men, and 3 for kings) of less 
than 24, and if an  odd  number of pieces are in the move 

The parameter is credited with 1 / 2  for each passive system, defined as  those  vertical files starting with 

cated  on  squares 1 removed from  the double-co&x files NODE  (Node) 
and with 3/2 for  each passive piece in the double-corner The  parameter is credited  with 1 for  each passive piece 

228 files. that is surrounded by at least three  empty squares. 
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ORE0 (Triangle of Oreo) 
The  parameter is credited with 1 if there are  no passive 
kings and if the Triangle of Oreo  (squares 2, 3 and 7 for 
Black, and squares 26, 30 and 31 for  White) is occupied 
by passive pieces. 

POLE  (Pole) 
The  parameter is credited with 1 for each passive man 
that is completely surrounded by empty  squares. 

RECAP  (Recapture) 
This  parameter is identical  with  Exchange,  as defined 
above. (It was introduced to test the effects produced by 
the  random times at which parameters  are introduced 
and deleted from  the evaluation  polynomial.) 

THRET  (Threat) 
The  parameter is credited  with 1 for each square  to 
which an active piece may be moved and in so doing 
threaten  the  capture of a passive piece on a  subsequent 
move. 

Binary connective terms 
The abbreviations used for  the  terms of this type which have been employed are listed below, in the  order of 
AmB, A*B Z-B,  and 2.3, where A and B are the two respective parameters heading the sublists of abbreviations. 

Undenied Mobility- 
Denial of Occupancy-Total  Mobility  Undenied  Mobility-Denial of Occupancy Center  Control I 

DEMO 
DEMMO 
DDEMO 
DDMM 

MODE 1 
MODE 2 
MODE 3 
MODE 4 

MOC 1 
MOC 3 
MOC 2 
MOC 4 

Evaluation polynomial  (first 12 terms only) after 42 games, during which a total o f  1039 different sets of  adjustments 
were  made to the terms and their coefficients." 

~ 

Correlation Sign of Power of 2 Times 
Term  Coefficient  Coefficient Used as Coefficient  Adjusted 

MOC 2 0.45 - 18 84 
KCENT 0.40 + 16 127 
MOC 4 0.35 - 14  95 
MODE 3  0.33 - 13 210 
DEMMO 0.27 - 11 132 
MOVE 0.19 + 8 91 
ADV 0.19 - 8 739 
MODE 2 0.19 - 8 55 
BACK 0.14 - 6  6 
CNTR 0.13 + 5 12 
THRET 0.13 f 5 442 
MOC 3 0.10 + 4 89 

.~ 

Discarded  terms during 42 games"; 
~~ 

Times  Adjusted 
Term  Before Discard Term  Before Discard 

Times  Adjusted 

" 

CORN 0 

EXPOS 162 
MODE 4 0 GUARD 0 
CENT 386 CRAMP 0 
MODE 1 1 

DDEMO 53 608 
EXCH 445 1 1  EB 792 
MOC 1 1 HOLE 598 

POLE 11 DYKE 115 
MOBIL 707 DDMM 19 
FORK 400 

"Note added in proof: An additional 20 games  have recently been played.  Although 
some  significant  changes  were noted, the general  stabilization of the learning  process 
suggested by Figure 4 has been confirmed. During this  play, 412 more  adjustments 
were  made to the terms and their coefficients and 12 additions  were  made  to the 
list of discarded  terms. Received  March 3, 1959 
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