Exponentiated Gradient Methods for Reinforcement Learning

Doina Precup
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

dprecup@cs.umass.edu

Abstract

This paper introduces and evaluates a nat-
ural extension of linear exponentiated gra-
dient methods that makes them applicable
to reinforcement learning problems. Just as
these methods speed up supervised learning,
we find that they can also increase the ef-
ficiency of reinforcement learning. Compar-
isons are made with conventional reinforce-
ment learning methods on two test problems
using CMAC function approximators and re-
placing traces. On a small prediction task,
exponentiated gradient methods showed no
improvement, but on a larger control task
(Mountain Car) they improved the learning
speed by approximately 25%. A more de-
tailed analysis suggests that the difference
may be due to the distribution of irrelevant
features.

1 INTRODUCTION

Exponentiated gradient (EG) methods were first pro-
posed by Littlestone (1988) in the form of the Win-
now algorithm for training linear threshold classifiers.
Kivinen and Warmuth (1994) proposed the first EG
methods for on-line linear regression. The analogous
conventional method for online linear regression is the
Least-Mean Square (LMS) rule (Widrow & Hoff, 1960;
also known as the Widrow-Hoff rule or the delta rule).
The LMS rule makes additive updates in weight space,
whereas EG methods perform multiplicative updates.

Kivinen and Warmuth (1994) established theoretical
worst case loss bounds for both kinds of methods in the
context of online linear regression. The theoretical and
experimental evidence suggest that EG methods have

Richard S. Sutton
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003
rich@cs.umass.edu

a lower loss bound for problems in which only a few of
the input features are relevant. Empirically, they con-
verge faster for this class of problems. EG methods
have also proved effective in applications. For exam-
ple, several researchers have shown that they can be
used successfully to train linear classifiers for informa-
tion routing tasks with sparse targets (Lewis, Schapire,
Callan & Papka, 1996; Papka, Callan & Barto, 1996).

EG methods have several characteristics that make
them appealing for reinforcement learning. First, they
are online methods, which is required for reinforce-
ment learning. Second, many reinforcement learning
tasks with continuous state spaces have been tack-
led using sparse coarse coded function approximators
(e.g., Sutton, 1996, Watkins, 1989, Rummery and Ni-
ranjan, 1994). EG methods may be able to discrim-
inate irrelevant features quickly in this type of input
representation. Third, online reinforcement learning is
particularly sensitive to the speed of learning, and EG
methods can potentially improve it.

This paper presents EG methods for reinforcement
learning with linear function approximators. EG
methods are presented in section 2. Section 3 presents
the extension to temporal-difference learning and rein-
forcement learning. Sections 4 and 5 describe experi-
mental results on prediction and control tasks. Section
6 further analyzes the experimental results, and sec-
tion 7 presents conclusions.

2 EXPONENTIATED GRADIENT
METHODS

First, we review the derivation of conventional EG
methods for online supervised learning. The learner
is presented with a sequence of N-dimensional real-
valued vectors, x¢, and is asked to predict the scalar
values, y;, associated with them. At each time step,

the learner’s prediction, i;, depends on the input vec-
tor and the current hypothesis, represented by a vector
of real-valued weights, wy:

Ue = f(x¢, wy).

The learner adjusts its hypothesis by choosing a new
weight vector, wg;1, that minimizes the objective
function

d(Wit1, We) + aE(ye, Gt), (1)

where d is a distance metric and F is an error function.
The parameter a determines how much emphasis is
put on the corrective part of the objective function
relative to the conservative part.

The objective function (1) can be used to derive weight
update rules for different distance metrics, error mea-
sures, and forms of predictors. We focus on the case
of linear predictors, in which w; is an N-dimensional
real vector, and the predicted output is given by
U = Wixy = Ei\; we(i)x¢ (i), where wy(i) are the
individual components of wy, and (i) are the indi-
vidual components of x;.

The LMS rule can be obtained from (1) by us-
ing the Euclidian distance metric, d(wgyi,w;) =
Zfil(wtﬂ(i) — w(i))?, and the squared error,
E(yt,9:) = (yr — 9:)?. The resulting update rule is:

Wit = Wi+ a(ye —)X (2)

The corresponding EG method uses the squared
error and the unnormalized relative entropy dis-
tance metric, d(Wey1, We) = Y ;1 (w1 () — we (@) +
wy (i) log(wﬁgl()i))). Assuming that the weights are re-
stricted to positive values, the resulting update rule
can be written:

logwiy1 = logwy + a(y: — Ji)x¢, (3)

where the natural logarithm is applied component-
wise. Thus, in a sense, the EG method takes the same
steps as the LMS rule, but in the space of the loga-
rithm of the weights. This yields multiplicative instead
of additive updates in weight space.

EG methods must take special steps to allow nega-
tive as well as positive weights. Otherwise, update
rule (3) would require strictly positive weights. The
solution adopted by Kivinen and Warmuth (1994)
is to duplicate the input vector x;, replacing it by
(¢(1), ..t (N), —24(1),...,—x¢(N)). Thus, although
each weight is strictly positive, the difference of the
weights corresponding to each input feature can have
any sign.

Both EG and LMS methods are of linear complexity
in the number of weights (O(N)). However, the EG
method needs twice as many weights, and is slightly
more expensive computationally: it requires an expo-
nentiation operation for each weight on each time step,
in addition to the computation required by the LMS
rule.

The EG method is also more sensitive than LMS to the
initial magnitude of the weights. If this magnitude is
too small, the algorithm will converge very slowly. Big
initial magnitudes can lead to instability and overflow
errors.

In order to keep the weight magnitudes bounded,
Kivinen and Warmuth (1994) proposed a variation of
the EG method that applies a normalization step af-
ter each weight update. The normalization linearly
rescales all weights so that they sum to a constant:

2% N

Z wy (i) = W.

Normalization introduces a supplementary parameter,
W, which needs to be tuned. Our initial experiments
found normalization to be sometimes counterproduc-
tive and never very helpful (Precup & Sutton, 1996).
We did not use it in the experiments presented here.

3 EXTENSION TO
REINFORCEMENT LEARNING

It is natural to extend the EG idea to reinforcement
learning in two steps. First we extend it to the case of
long-term prediction by temporal-difference learning,
and then we extend it to the full case of reinforcement
learning, including control.

The long term prediction problem most frequently en-
countered in reinforcement learning is that of predict-
ing the discounted cumulative future reward. The
learner is presented with a time sequence of input vec-
tors, x;, and scalar rewards, r;. At each time ¢, the
learner seeks to predict

oo

Yt = Z’Ykrt+k+1, (4)
k=0

where v € [0,1] is called the discount-rate parameter.
The prediction at time ¢ is denoted g; and is formed
as a linear function of x; and a real-valued parameter
vector, w;, just as in the supervised case.

The standard learning rule for this problem is linear
TD(A) (Sutton, 1988). It is given by

Wiy = Wy + adgey, (5)

where d; is the temporal-difference error at time t:

Ot =Tyt + YWE X1 — U,
and e; is a vector of eligibility traces. In our experi-
ments we found that EG worked much more reliably
with replacing traces (Singh & Sutton, 1996) than with
conventional accumulating traces. Replacing traces
are defined by

€t (’L) =

{ 1 if 2,(i) = 1
7A€t,1(i) if l't(l) = 0,

where e;(i) is the ith component of e;. Replac-
ing traces require that the input features be binary,

.’I}t(Z) € {0, 1}

The natural way to extend TD(A) to an EG form is to
perform the same update (5), except in the logarithm
of the weights, just as we did in the supervised case.
The result is a new update rule:

logwyyy :=logw; + adie, (6)

which we refer to as EG-TD(\).

We now briefly describe the further extension of the
EG ideas to the full reinforcement learning case, in-
cluding control. Our extension assumes a discrete ac-
tion set, and is based on the Sarsa algorithm (Rum-
mery & Niranjan, 1994; Sutton, 1996), although
analogous extensions to other methods are probably
straightforward. The EG extension we tested is iden-
tical to the Sarsa algorithm described by Sutton (1996)
except that steps were made in the logarithm of the
weights. We call this algorithm EG-Sarsa.

In brief, the full reinforcement learning methods make
a separate prediction of the discounted future reward
for each possible action. The learner prefers to take
at each step the action with the greatest prediction of
future reward. Each prediction is a linear function of
a feature vector, x;, describing the current state. The
reader is referred to earlier papers for further details
(Singh & Sutton, 1996; Sutton, 1996).

4 CONTINUOUS RANDOM WALK
(PREDICTION) EXPERIMENT

In this task, the observed data, x; and ry, are gen-
erated by a system whose state is a point taking a

0.43

0.42
(%]
g o4t
3
S 04t
(5]
2 os9f
&
T 038
L
(%]
S o037t
o
5 036
o
g
Z 035¢
0.34 |
033 L L L L
0 0.2 0.4 0.6 0.8 1
lambda
Figure 1: Summary performance on continuous

random-walk task

random walk in the interval from 0 to 1. The time se-
quence is broken into a series of episodes, each of which
begins with the state in the middle, at 0.5, and ends
with the state reaching or exceeding one of the bounds
at 0 and 1. On each time step, the state moves up or
down by a uniformly selected random step in the con-
tinuous interval [—0.2, 40.2]. The reward, r, is zero on
all time steps except those on which the the state ex-
ceeds one of the bounds. Exceeding either bound ends
the episode and the time period over which the sum (4)
is accumulated. The reward at the end of the episode
is equal to the position at the end of the trial. For
instance, if the position at the end of a trial is —0.02,
the final reward will also be —0.02. The discount-rate
parameter is v = 1. Thus, the correct prediction for
any state is the position of the state inside the walking
interval.

A sparse coarse coding technique, CMAC (Albus,
1981; Miller, Glanz & Kraft, 1990), was used to con-
struct the binary feature vector, x;, from the real-
valued state. The state space, [0, 1], was divided into
10 equal-sized intervals. An additional intervel was
added in order to allow for an offset of the whole tiling.
This was repeated to obtain 10 tilings, each offset by a
different randomly selected fraction of an interval. For
each interval, there was a corresponding feature that
took on the value 1 when the state was within that
tile, and 0 otherwise. Thus, there were 11 * 10 = 110
tiles and 110 input features. At each step, exactly 10
features are active (one for each tiling), representing
the current state.

We applied EG-TD(A) and conventional TD()) to this
problem, each with a variety of values for o and .

GOAL

‘ Gravity

Figure 2: Mountain-car task

For TD()) the weights were initialized to 0, and for
EG-TD()) they were initialized to 1, which produces
the same initial predictions (zero everywhere). For
each combination of algorithm and parameter value
we ran 10 episodes. To obtain a performance measure
for each run, we evaluated the final learned prediction
function at 21 sample points along the interval from 0
to 1, evenly spaced at 0.05. For this problem we know
the correct predictions are equal to the position. The
performance measure for a run was the square root of
the mean-squared error (RMSE) between the correct
predictions and the final learned predictions over the
21 sample points. This performance was then averaged
over 100 independent runs to provide a measure of the
performance of each algorithm and set of parameter
values.

Figure 1 shows performance as a function of A, using
the best a value for each combination of algorithm and
A value. TD(A) and EG-TD(\) performed similarly at
all the values of A. None of the differences are statis-
tically significant.

5 MOUNTAIN CAR (CONTROL)
EXPERIMENT

The mountain-car problem is a minimum-time control
problem in which the learning agent seeks to drive a
vehicle to the top of a hill (Figure 2). The reward is —1
for all time steps until the goal is reached. There is no
discounting (y = 1). At each time step there are three
possible actions: accelerate forward, accelerate back-
ward, and no acceleration. It is not possible to simply
accelerate up the hill because gravity is stronger than
the engine. The only solution is to accelerate back-
wards first and then thrust forwards towards the goal.
The detailed physics we use in these experiments are

800

Average number of stepsitrial

200 L L L L
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
alpha

Figure 3: Performance on mountain-car task

400
. 380)
s
S 30
5
2 340
=
@ 320F
‘CL) 5
2 300
=] 4
8 280
E EG-Sarsa’
g 260 - o
o ;
g
220 | |
200 : : : ‘ ‘ ‘

0 0.1 02 03 04 05 06 07 08 09
lambda

Figure 4: Summary performance on mountain-car
task, using the best « for each A value

as given by Singh and Sutton (1996). The software we
used was derived from that provided by Mahadevan.

We applied the Sarsa and EG-Sarsa algorithms, with
replacing traces, as described earlier. The details of
mapping the algorithms onto the mountain car task
were exactly as described in (Singh & Sutton, 1996).
This task has a continuous state space, with two state
variables: position and velocity. We used a set of
three CMACs, one for each action. Each CMAC had 5
tilings with random offsets. Each variable was evenly
divided in 8 intervals, adding one additional interval
in order to accomodate a random offset. Thus, there
were 9 x 9 x 5 = 405 input features, five of which are
active at any one time.

For Sarsa, the initial weight values were all 0, which
gives an optimistic estimate. This ensures exploration

"gd.new" —
"gd.new" —-—-
6 L =
5 51 I
£
2
5 4 SRS M 1
[
2
kS 3l]
o]
o
£
z 2 ! T
1 L 4
0 ‘ H i

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Weight magnitude

Figure 5: Weight histogram for the Random Walk,
TD(A)

in the beginning, even when using a greedy policy for
picking actions, as we did in these experiments. For
EG-Sarsa, both the weights for both positive and neg-
ative inputs were initialized to 1, which produces the
same optimistic initial predictions (zero everywhere).

Each algorithm was run with a variety of values for «
and A. For each algorithm and parameter values, we
ran 20 episodes, and then repeated for 30 independent
runs. The performance measure for each combination
of algorithm and parameter values was the number of
time steps to reach the goal, averaged over the first
20 episodes and then over the 30 runs. All the algo-
rithms used the same random starting positions for the
episodes.

Figure 3 shows the performance in detail, for all values
of A and a. Figure 4 is a summary of the results,
showing only the best performance of each algorithm
at each \ value. EG-Sarsa generated shorter episodes
than conventional Sarsa at almost all combinations of
parameter settings. Moreover, for all A values, EG-
Sarsa was about 25% faster at the best a, and the
differences are statistically significant.

6 DISCUSSION

Why does EG speed up learning on the mountain-car
task, but not on the random walk task? In order to
answer this question, we generated histograms of the
weights that were learned on one run for one pair of A
and « values, after a longer learning period.

Figures 5 and 6 present the histograms for the two
algorithms on the random walk task after 100 walks.

9 T T
"egd.new" —
8 | "egd.new" - B
7 . — .|
c
£
= 6 M 1
2
= 5) LA 1
o
2
kS 4 - E
3
€ 3r . b
=)
z
2 L 4
1 . .|
0 B H ‘

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Weight magnitude

Figure 6: Weight histogram for the Random Walk,
EG-TD())

250

200 B

150 4

100 B

Number of weights

50 +

Weigh-t values

Figure 7: Q-value histogram for one action, Sarsa

250

200 + 4

150 B

100 + E

Number of weights

50 - R

Weigh_tevalues

Figure 8: Q-value histogram for one action, EG-Sarsa

Figures 7 and 8 present the same histograms for the
mountain car task after 500 episodes. The shapes of
the two sets of histograms are different. In the ran-
dom walk, the weights are more evenly distributed.
Moreover, their is no preponderance of small valued
weights. In the mountain-car task, the distribution
is quite uneven, with a large number of weights close
to 0. The weight distributions generated by the two
learning algorithms also appear to be different.

In supervised learning, EG methods have been shown
to converge faster than gradient descent in problems
with many irrelevant input features. These results sup-
port the hypothesis that a similar situation arises when
using EG methods for reinforcement learning.

7 CONCLUSIONS

We have presented a straightforward extension of ex-
ponentiated gradient methods to reinforcement learn-
ing. The empirical results suggest that exponentiated
gradient variations of reinforcement learning methods
can yield significantly faster learning when used with
linear function approximators. This improvement de-
pends on the task that needs to be solved. More
precisely, exponentiated gradient methods can be ex-
pected to learn faster if the representation is such that
many input features are irrelevant. More experiments
with more tasks are needed to determine how often
and how easily this characteristic occurs.

When using exponentiated gradient methods, one
needs to pay slightly more attention to prevent over-
flow of the weights. The use of replacing traces, in-
stead of accumulating traces, helps deal with this is-
sue. The algorithms are also sensitive to the initial
weight magnitudes. Small initial values can lead to
slow convergence. Overall, however, we did not find
EG methods significantly harder to tune than conven-
tional reinforcement learning methods.

A cknowledgments

The authors thank Manfred Warmuth, Paul Utgoff,
and Jyrki Kivinen for encouragement, ideas, and com-
ments contributing to this paper, and Amy McGov-
ern, for proof-reading. This research was supported
by NSF Grant ECS-9511805 to Andrew G. Barto and
Richard S. Sutton. Doina Precup also acknowledges
the support of the Fulbright Foundation.

References

Albus, J. S. (1981). Brain, behaviour and robotics,
chapter 6, pp. 139-176. Byte Books.

Kivinen, J., & Warmuth, M. K (1994). Exponentiated
gradient versus gradient descent for linear pre-
dictors, Technical Report UCSC-CRL-94-16, CSE
Dept., University of California, Santa Cruz.

Lewis, D. D., Schapire, R. E., Callan, J. P., & Papka,
R. (1996). Training algorithms for linear text clas-
sifiers. Proceedings of the Nineteenth Annual Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval (pp. 298-
315). Zurich, Switzerland.

Littlestone, N. (1988). Learning quickly when irrele-
vant attributes abound: A new linear-threshold
algorithm. Machine Learning, 2, 285-318.

Miller, W. T., Glanz, F. H., & Kraft, L. G. (1990).
CMAC: An associative neural network alternative
to backpropagation. Proceedings of the IEEE, 78,
1561-1567.

Papka, R., Callan, J. P., & Barto, A. G. (1996).
Text-based information retrieval using exponenti-
ated gradient descent, to appear in Neural Infor-
mation Processing Systems, 1996.

Precup, D., & Sutton, R. S. (1996). Empirical compar-
ison of gradient descent and exponentiated gradi-
ent descent in supervised and reinforcement learn-
ing, Technical Report 96-70, CS Dept., University
of Massachusetts, Amherst.

Rummery, G. A., & Niranjan, M. (1994). On-line Q-
learning using connectionist systems, Technical re-
port CUED/F-INFENG/TR 166 Cambridge Uni-
versity Engineering Department.

Singh, S.P., & Sutton, R.S. (1996). Reinforcement
learning with replacing eligibility traces. Machine
Learning , 22, 123-158.

Sutton, R. S. (1988). Learning to predict by the
method of temporal differences. Machine Learn-
ing, 3, 9-44.

Sutton, R.S. (1996). Generalization in reinforcement
learning: Successful examples using sparse coarse
coding. Advances in Neuwral Information Process-
ing Systems 8 (pp. 1038-1044,). MIT Press.

Watkins, C.J.C.H. (1989). Learning with delayed re-
wards. Doctoral dissertation, Psychology Depart-
ment, Cambridge University.

