Multi-Time Models for Reinforcement Learning

Doina Precup
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003

dprecup@cs.umass.edu

Abstract

Reinforcement learning can be used not only
to predict rewards, but also to predict states,
i.e. to learn a model of the world’s dynam-
ics. Models can be defined at different lev-
els of temporal abstraction. Multi-time mod-
els are models that focus on predicting what
will happen, rather than when a certain event
will take place. Based on multi-time models,
we can define abstract actions, which enable
planning (presumably in a more efficient way)
at various levels of abstraction.

1 Action models

Model-based reinforcement learning offers a possible
solution to the problem of integrating planning in a
real-time learning agent. Models are used to make pre-
dictions about the environment. The input of a model
is a state and an action. The model should output a
distribution of possible future states, as well as the ex-
pected value of the reward along the way. Since models
provide action-dependent predictions, they also define
policies for achieving certain states, or for achieving
maximum expected rewards.

Reinforcement learning algorithms have traditionally
been concerned with 1-step models, which assume that
the agent interacts with its environment at some dis-
crete, lowest-level time scale. We extend this frame-
work by defining multi-time models, which describe
the environment at different time scales.

Multi-time models are a formalism for describing ab-
stract actions. Intuitively, abstract actions should
express complex behaviors, which can take variable
amounts of time. Our main goal is to achieve faster

Richard S. Sutton
Department of Computer Science
University of Massachusetts
Ambherst, MA 01003
rich@cs.umass.edu

learning and cheaper planning by using abstract ac-
tions in addition to primitive actions. As a conse-
quence, the models describing abstract actions should
be suitable for planning (i.e. should allow the devel-
opment of “good” policies), expressive and learnable.

2 Value functions

A key step in many reinforcement learning systems is
the computation of state value functions. The value
function for a policy 7 associates to each state s the
expected value of the total discounted reward that the
agent gathers when starting in s and acting according
to m:

o0
V7(s) = Bx{)_7'resalso = s},
t=0

where v € [0,1) is the discount-rate parameter. The
optimal value function V* associates to each state s
the maximum expected reward that can be achieved
when starting in s:

V*(s) = max V™ (s).

™

An agent that acts greedily with respect to V* will
maximize its expected reward. Since value functions
are the basis of planning in reinforcement learning sys-
tems, action models should enable us to accurately
compute these functions.

Conventionally, in reinforcement learning, we assume
that the agent interacts with its environment at some
discrete, lowest-level time scale ¢t = 0,1,2,... We will
also make a discrete states and actions assumption:
at each time step, the agent is in one of m states
st € {1,2,...,m} and can choose one action a; from a
set P of primitive actions. In response to a:, the envi-
ronment produces a reward r;;; and the state changes
to St+1-

In this paper, we will use a vector representation of
the states. Each state s will have a corresponding m-
dimensional unit basis vector s. All the components
of s are 0, except the one corresponding to s, which is
1. For example, state s = 2 is represented through the

column vector
0

O =

0
We denote by S the set of all state vectors (i.e., the
unit-basis vectors of length m).

The value function of a policy 7 can also be represented
as an m-vector v such that v'ls = V7(s),Vs € S
(where xT denotes the transpose of vector x). Simi-
larly, the optimal value function V* will be represented
thourgh the m-vector v*.

3 1-step models

The model for a primitive action a consists of an m-
vector r, and an m X m matrix P,. The vector r,
contains the expected immediate rewards for taking
action ¢ in each state. Thus:

rg’s = E{rit1|st =s,a; = a},Vs €S

The components of P, are 7p{;, where pj;, =
Pr{si1+1 = j|st = i,a; = a} is the probability of the
transition from state i to state j, given action a. Thus,
for any state vector s,

PaTs = YE{stt1|st =s,ar =a},Vs €S

We call the pair ry, P, the 1-step model for action a.
Together, the 1-step models of all primitive actions
completely characterize the dynamics of the environ-
ment.

We define 1-step models for a policy as the 1-step mod-
els of the actions taken under that policy, averaging
over action models in the case of stochastic policies.
Thus, the 1-step model r;, P, of a policy 7 satisfies
the following relations:

rz;s = E {rey1|st = s},

Pfs = YE {sty1|st = s}, Vs € S.

4 Planning in reinforcement learning

1-step models can be used to compute value functions
through the Bellman equations for prediction and con-

trol. These equations can be written in vector form
using the notation introduced above.

The Bellman equation for a policy 7 has the form
vi=r" + P,v", (1)
where r™, P, are the 1-step model for 7.

Similarly, the Bellman optimality equation can be ex-
pressed as
v* = max{r, + P,v*}, (2)
a€P

where v* is the m-vector containing the optimal state
values, the max function is applied component-wise,
and spans over the set of primitive actions P.

The Bellman equations are usually used to derive up-
date rules that compute v™ and v*. The computation
of v starts with an arbitrary initial approximation
v§, and performs at each step an update of the form:

Vig1 ¢ Tn + Prvp

Similarly, v* can be computed by iteratively applying
the following update rule:

* *
Vil & r;lea%{ra + P,v;}

We want to reverse the roles and use the value func-
tions in order to define models that are suitable for
planning. A model is considered suitable for planning
if and only if it helps to compute the value functions.
In particular, a suitable model has to satisfy the Bell-
man equations. The following two sections introduce
two notions that help define suitable models.

5 Valid models

Definition 1 A model r, P, is valid for policy 7 if and
only limy_,o, P* =0, and

vi=r+ Pv". (3)

Any valid model can be used to compute v™ via the
iteration algorithm vj41 < r + Pvy. This is a direct
sense in which the validity of a model implies that it
is suitable for planning. The simplest model satisfying
this property is the 1-step model of 7. We want to
identify other models with the same property.

For some purposes, it is more convenient to write a
model r, P as a single (m + 1) x (m + 1) matrix:

1] -0 -

_ |
M_r P

We say that the model M has been put in homoge-
neous coordinates. The vectors corresponding to the
value functions can also be put into homogeneous co-
ordinates, by adding an initial element that is always
1.

With this notation, the generalized Bellman equation
becomes:

vT = Mv" (4)

Homogeneous coordinates make it easy to prove the
following closure properties of valid models.

Theorem 1 Closure under composition. Let M; and
M- be two arbitrary models that are valid for some
policy w. Then the composed model M; M, is also
valid for 7.

Proof: (M My)v™ = M (Mav™) = Miv™ =v™

Theorem 2 Closure under averaging. For any set of
models {M;} that are valid for policy = and any set
of diagonal matrices {D;} such that }_; D; = I, the
weighted model }_ D;Mj; is also valid for .

Proof: (32 DjMj)v™

> > Di(MvT) - =
DT =IvTE =v™ m
J J

Using composition and averaging we can create a large
space of valid models for a policy, starting from the 1-
step model.

6 Non-overpromising models

We now turn to the full reinforcement learning prob-
lem, including control. We would like to define ab-
stract actions that can be used in the Bellman opti-
mality equation (2), just like a primitive action. In
other words, we would like to write a generalized Bell-
man optimality equation:

v = arer%)a,ch{ra + P,v*}, (5)
in which A is the set of abstract actions. We want
the abstract actions to help us compute v* faster but,
of course, we do not want them to change the value
of v*. An abstract action will not affect the optimal
value function, as long as its associated model r, P
does not predict more reward than it is really possible
to achieve. This property is captured in the following
definition.

Definition 2 A model r,P, is called non-
overpromising (NOP) if and only if P has only
positive elements, limy_,, P¥ = 0, and

v >r+ Pv", (6)

where the > relation has to be true component-wise.

Equivalently, in homogeneous coordinates, for a non-
overpromising model, M, we have:

v > Mv*. (7)

There are closure properties for NOP models, similar
to the ones for valid models. To prove these properties,
we will use the following lemma:

Lemma 1 Let M = r, P be any non-overpromising
model and vy, vy be two vectors such that vi < vs.
Then Mv, < Mvs.

Proof: If vi < v, then, for any matrix P with positive
elements, Pvy; < Pvs (by weighted summation of the
initial set of inequalities. Therefore, r+ Pvy < r+Pvy
or, equivalently, Mv; < Mvy m

Theorem 3 Closure under composition. If M; and
M- are non-overpromising models, the composed
model M; M, is also non-overpromising.

Proof: (M Ms)v* = My (Myv*) < Myv* < v* (using
lemma 1 and the hypothesis) m

Remark 1 If the models M; and M correspond to
the actions a; and as, the composed model M; M, cor-
responds to an abstract action that would execute aq
followed by as.

Theorem 4 Closure under column-wise averaging.
For any set of non-overpromising models {1} and any
set of diagonal weighting matrices {D;} with positive
elements such that Ej D; = I, the weighted model
Zj D;M;j is also non-overpormissing.

Proof: (> DiMy)ve = Y Di(Myve) <
> ;Djve = Iv* = v* (using lemma 1 for Dj)
]

Remark 2 If the models {M;} correspond to the ab-
stract actions {a;}, then the averaged model }; D; M;
can be viewed as corresponding to the action of select-
ing among the actions {a;} with probabilities given by

{Dj}-

The 1-step models of primitive actions are obviously
non-overpromising, due to (2). We now prove the same
property for 1-step policy models.

Theorem 5 For any policy w, the 1-step model M,
is non-overpromising.

Proof: Policy n is fully described by the vectors
Ta,a € P, where m,(i) is the probability of taking
the primitive action @ in state ¢ when acting accord-
ing to m. Thus, r; + Pv* = >, 7l (r, + P,v*) <
S miv* = Iv* = v* (for the inequality, we use the
fact that m, (i) > 0,Vie {1,...,m}) m

Remark 3 The previous proof does not assume that
7 is a stationary policy.

Remark 4 The non-overpromising condition for M,
can be rewritten using the fact that M is valid for 7:

v = v > Pr(vF—vT)

7 The relationship between valid and
non-overpromising models

Definitions 1 and 2 illustrate two different aspects that
characterize “adequacy for planning”. But what is the
relationship between the sets of models satisfying these
two conditions? A summary of this relationship is pre-
sented in figure 1.

Valid
models

NOP
models

Transitive Closure

1-step models

Figure 1: Relation between valid and NOP models

It is quite clear that there are non-overpromising mod-
els which are not valid for any policy 7. In particular,
any hopelessly pessimistic model is non-overpromising,
but it cannot be achieved by any policy. Thus, the
class of non-overpromising models is not included in
the class of models that are valid for some policy 7.

However, the fact that the set of models that are valid
for some policy 7 is not included in the set of non-
overpromising models is not at all obvious. Intuitively,

it would seem that if a model is valid for some policy
m, it should also be non-overpromising. In fact, this is
not true.

0 0 0

Figure 2: A Markov chain example, to illustrate the
fact that not all valid models are non-overpromising

An illustration can be provided by considering the
Markov chain in figure 2. The environment has three
possible states, and there are two possible actions: aq
which preserves the same state, without giving any re-
ward, and a» which always causes a transition to state
2. All the transitions are deterministic, and the im-
mediate rewards are as shown on the arrows in figure
2.

With a discount factor of -y, the models of the two
primitive actions can be written as:

0 v 0 0

rg,=| 0|, Py,=]10 v 0
| 0 | | 0 0 v]
1] [0 v 0]

Fes=| 0|, Pu=1]0 v 0
| 0 | L0 v 0

The optimal value function for this environment can
be easily computed:

Let us consider a policy 7 that chooses a; and as with
equal probabilities. The value function of this pol-
icy can be computed by using the prediction Bellman
equation (1):

[u”(l)] 1 (T0] _700][1;”(1)]
v™(2) = = 0 0 0 v™(2)
[u”(?,)J 2 _0_+_087J[v”(3)J
1 (1] '070][1;:(1)]
o]0 o] e |
30T(1) + 3+ 307(2)
= " (2)]
F0™(3) + Fv™(2)

The resulting values are:
ETANES

L@] [o |

Let us consider a model with the following P matrix:

0 ~ O
0 ~ O
v 0 O

The interresting aspect of this model is that it predicts
a transition from state 3 to state 1, which in fact is not
possible. We compute the reward vector for the model
in such a way as to make it valid for policy « described
above:

o [r] [0 v 0 o
0 [=|m|+]0y 0 0o |,
0 rs v 0 0 0

which yields

r . r 1
7‘1 27,}, -|
T2 = 0 .
Y
L r3 . L _27'7 J

We now check to see if the model r, P that we defined
is non-overpromising:

AR RIEREE
B R | F

The optimal value predicted by this model for state 3
is strictly positive, so it exceeds the true optimal value
v*(3) = 0. The model r, P is valid, but overpromising.

The model r, P has another interresting property: it
cannot be generated through any sequence of compo-
sitions and averaging operations applied to the 1-step
model of the environment. Intuitively, one would ex-
pect that all the models that are non-overpromising
and valid for some policy © belong to the transitive
closure that can be built using the 1-step model of the
environment as a seed and applying composition and
averaging. This hypothesis is also false.

Let us consider the Markov process in figure 3. The
states and transitions are the same as in the previ-
ous example, but the reward structure is changed: the
agent receives a reward of 1 for switching from state
3 to state 2. Thus the optimal value function in this
case is:

Figure 3: A Markov chain example, to illustrate that
there are valid and non-overpromising models that are
not in the transitive closure of 1-step models

Following the same steps as in the previous example,
we can compute the value function for the policy
which chooses actions a; and as with equal probability:

Considering the same matrix P, we compute a new
reward vector r such that the model r, P is valid for
U

2—y 0 Y 0 2—y
0 |+]0~yol|]ol= 0
= vy 0 0 1 =+
It is easy to see that, for v < 1, we have 5= < 1

and é:—z + v < 1, which means that r, P is a non-
overpromising model.

8 (-models

The theory presented so far defines more precisely the
conditions under which models are considered suitable
for planning. The goal of defining expressive and learn-
able models lead to the definition of 8-models (Sutton,
1995). B-models are a particular class of models, which
“summarize” a mixture of models from different time
scales in a single matrix. This section defines S-models
and discusses their properties.

Definition 3 For any policy 7 having the 1-step
model M., we call M7 the n-step model of .

The n-step models of a policy 7 are built by compo-
sition from the 1-step model of the policy. Therefore,
they are both valid for policy = (by theorem 1) and
non-overpromising (by theorem 3).

Definition 4 (3-models. Let m be a policy and B be
a diagonal matrix that associates a parameter (i) €
[0,1] to each state of the environment ¢ € {1,...,m}.
Let 8; = B(st) be the parameter applicable at time
step t. Then the 3-model M2 =rB PB associated to
7 and B is defined by:

[e'e] t—1

t—1
S e |50 :s]
t=1 i=1

BT _
r, s=FE,

PB's=E,

00 t—1
> A =8I Bise | s0 = Sl
t=1 i=1

0B; is a measure of the importance given to the i-th
state of the trajectory. In particular, if 3; = 1, then
state 7 has no weight associated to it. If 5; = 0, all
the remaining weight along the trajectory is given to
state ¢; thus, state 7 is an “outcome” state. In general,
all states with 3; < 1 can be viewed as “outcome”
states, for which 1 — (; is the probability of stopping
the current trajectory in state i, and §; is the prob-
ability of continuing the trajectory. We are currently
working on proving that S-models are valid and non-
overpromissing.

Although we have defined B-models based on 1-step
models, this is not the way in which we plan to derive
them. The goal is to learn S-models from experience,
starting from “seeds”, without having to go through
1-step models.

A possible seed that one can use is the policy 7 to-
gether with the matrix of values B. Sutton (1995)
presents a TD-style learning algorithm for g-models.
In essence, the algorithm applies at each time step ¢
the following corrections:

Ary = afreer + 1f (VBes1St41 — St)leri1

AP = a[(1 = Big1)vse41 + Pl (VBre1se41 — se)led s,

where « is the step size, and e;4 is the m-vector con-
taining the eligibility traces of all the states. The eli-
gibility traces are updated using the following rule:

€141 ’)/AﬂtEt + st

This learning algorithm is completely on-line and in-
cremental, and its complexity is comparable to that of
regular 1-step TD-learning. Its major disadvantage is
that it needs a whole specification of policy 7, which
is costly to get in general. Besides, our purpose is
to learn policies that are somehow useful, rather that
starting with predefined ones.

This is why we consider that a better starting seed
would be to specify the outcome states (i.e. the B
matrix) along with their hypothetical values U. In this
setting, we basicaly suggest that the agent learns poli-
cies for achieving certain outcome states. Q-learning
or any other reinforcement learning algorithm can then
be applied to learn the optimal state-action value func-
tion Qf; . Policy 7 is then defined by acting greedily
with respect to Q*U 5, and we can learn the correspond-
ing B-model as in the previous case.

An alternative to specifying hypothetical values for
outcome states would be to overlay additional rewards
over those provided by the environment, in order to
bias the system towards certain actions. However,
given the semantics of S-models, the previous alter-
native seems preferable.

9 Open Questions

There are several open questions that need to be in-
vestigated:

e Can we characterize the intersection between the
set of non-overpromising models and the set of
valid models in a unified way?

e Outside the transitive closure of 1-step mod-
els, how can we capture the difference between
the valid models that are non-overpromising and
those that are not?

e Can we learn Q-values for abstract actions? The
major difference between abstract and primitive
action is that abstract action can take indefinite
amounts of time. Thus, the agent should be able
to redecide on its choice of action before the cur-
rent action is complete. In this case, the ac-
tion that didn’t finish should be assigned partial
credit, based on the value of the state in which
the action was interrupted.

e Can models be learned in parallel with learning
the optimal value function?

e Instead of providing the (-values to the system,
could we learn them from experience as well?

e What is the merit of building new abstract actions
from existing ones using composition and averag-
ing?

e How can we establish which abstract actions are
useful, in order to “prune” the space of actions we
can choose from?

Acknowledgments

The authors thank Paul Utgoff, Satinder Singh, Peter
Dayan, Gunnar Blix and the members of the ANW lab
at the University of Massachusetts for encouragement,
ideas, and comments contributing to this paper. This
research was supported by NSF Grant ECS-9511805
to Andrew G. Barto and Richard S. Sutton. Doina
Precup also acknowledges the support of the Fulbright
Foundation.

References

Sutton, R. S. (1995). TD models: Modeling the
world as a mixture of time scales. Proceedings of
the Twelfth International Conference on Machine
Learning (pp- 531-539). Morgan Kaufmann.

