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METHOD AND APPARATUS FOR MACHINE 
LEARNING 

RELATED APPLICATIONS 

This application is a continuation of U.S. Ser. No. 08/979, 
139 filed on Nov. 20, 1992, now U.S. Pat. No. 5,946,675, by 
the Same inventor as this application and assigned to the 
same assignee. Application Ser. No. 08/979,139 is a 
continuation-in-part of U.S. Ser. No. 07/947,213 filed on 
Sep. 18, 1992 by the same inventor as this application and 
assigned to the same assignee. Application Ser. No. 07/947, 
213 is now abandoned. 

FIELD OF THE INVENTION 

The current invention relates generally to a method and 
apparatus for machine learning of a pattern Sequence and 
more particularly to a method and apparatus for machine 
learning of a pattern Sequence utilizing an incrementally 
adjustable gain parameter. 

BACKGROUND OF THE INVENTION 

The task of learning by a machine a pattern Sequence 
which is a linear function of multiple inputs is a central 
problem in many technical fields including adaptive control 
and estimation, Signal processing, artificial intelligence, 
pattern recognition, and neural networking. The machine 
must perform responsive tracking of the pattern Sequence in 
real time while achieving fast convergence in a computa 
tionally efficient manner. Often the process of learning the 
pattern Sequence is made more difficult in that very little 
prior knowledge of the System generating the Sequence is 
known. Moreover, while the inputs to the machine for 
learning the pattern may be identified, the relevance and 
weight of each input in affecting the output pattern Sequence 
is usually not known. 

Methods of determining the relevance of a particular input 
along with a Specific weight are known. The weights are 
derived from a modifiable gain parameter. The gain param 
eter is modified based on the auto-correlation of the incre 
ments in the identified input. When the gain parameter is 
positively correlated with a certain average of the preceding 
input increments, the gain parameter is increased. Con 
versely if the input increments are negatively correlated the 
gain parameter is decreased. The gain parameters are 
adjusted to enhance the efficiency and responsiveness of the 
learning process. 

Prior techniques for adapting the gain parameter of an 
adaptive learning process have been disclosed by Kesten in 
“Accelerated Stochastic Approximation”, Annals of Math 
ematical Studies, Vol 29, 1958, pp. 41-59. The Kesten 
method reduces gain parameters or moves them along a 
fixed Schedule converging to Zero. The method can not find 
again level appropriate to the dynamics of a non-Stationary 
task and is limited to a single gain parameter for the entire 
System. 
A method entitled Delta-Bar-Delta (DBD) for accelerat 

ing convergence of neural networks is disclosed by Jacobs 
in “Increased Rates of Convergence Through Learning Rate 
Adaptation”, Neural Networks, vol. 1, 1988, pp. 295-307, by 
Chan et al. in “An Adaptive Training Algorithm for Back 
Propagation Networks', Cambridge University Engineering 
Department Technical Report, CUED/F-INFENG/TR.2, 
1987, by Tollenaere in “SuperSAB: Fast Adaptive Back 
Propagation with Good Scaling Properties”, Neural 
Networks, vol. 3, 1990, pp. 561-573, by Devos et al. in “Self 

2 
Adaptive Back Propagation”, Proceedings NeuroNimes, 
1988, EZ, Nanterre, France, and by Lee et al. in “Practical 
Characteristics of Neural Network and Conventional Pattern 
Classifiers on Artificial and Speech Problems”, Advances in 

5 Neural Information Processing Systems, vol. 2, 1990, pp 
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168-177. These DBD methods do not operate incrementally 
and are not dynamic. The methods modify the gain param 
eters after a complete pass through the training Set and thus 
can not be applied to an on-line learning situation. 

Classical estimation methods including the Kalman filter, 
Least-Squares methods, Least-Mean-Squares (LMS), and 
normalized LMS are described by Goodwin et al. in Adap 
tive Filtering Prediction and Control, Prentice Hall, 1984. 
These methods can be divided into classes with differing 
disadvantages. The Kalman filter method offers optimal 
performance in terms of tracking error, but requires more 
detailed knowledge of the task domain than is usually 
available. In particular, it requires complete knowledge of 
the Statistics of the unknown System's time variation. The 
least-Squares methods requires leSS Such knowledge, but 
does not perform as well. In addition, both of these methods 
require a great deal of memory and computation. If the 
primary learning process has N parameters, then the com 
plexity of these methods is of the order of N° . That is, their 
memory and computational requirements increase with the 
Square of the number of parameters being estimated. In 
many applications this number is very large, making these 
methods undesirable. The LMS and Normalized LMS meth 
ods are much less complex, requiring memory and compu 
tation that is only of order N. However, these methods have 
Slow convergence. 
Thus it is desirable to discover a method of machine 

learning that achieves fast convergence and has responsive 
tracking of a pattern Sequence without excessive 
computation, System knowledge, or intervention in a real 
time System. 

OBJECTS OF THE INVENTION 

Accordingly, it is a primary object of this invention to 
obviate the above noted and other disadvantages of the prior 
art. 

It is a further object of the invention to provide a novel 
machine apparatus for detecting and learning pattern 
Sequences. 

It is a yet further object of the invention to provide a novel 
method apparatus for detecting and learning pattern 
Sequences. 

SUMMARY OF THE INVENTION 

The above and other objects and advantages are achieved 
in one aspect of this invention with a method and apparatus 
for machine learning of a pattern Sequence using an incre 
mentally adaptive gain parameter to adjust the learning rate 
of the machine. The machine receives a plurality of inputs 
that may correspond to Sensor information or the like and 
predicts the pattern Sequence from past experience and the 
input values. Each input has associated with it an individual 
gain parameter and learning rate. The gain parameters are 
increased or decreased in real time in correlation with the 
accuracy of the learning process. 

In one aspect of the invention, the pattern Sequence is 
predicted utilizing a weighted linear combination of the 
inputs. The particular weights are derived from the indi 
vidual learning rates of the inputs and the associated gain 
parameterS. 
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The disclosed method and apparatus are advantageously 
utilized in Signal processing, adaptive control Systems, and 
pattern recognition. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 1 is an illustration of a computer system that 
embodies the learning machine in accordance with the 
current invention. 

FIG. 2 is a depiction of the linear combination of the 
weighted inputs to produce the output result. 

FIG. 3 is a graphical comparison of performance among 
alternative methods of machine learning. 

DETAILED DESCRIPTION OF THE 
INVENTION 

For a better understanding of the present invention, 
together with other and further objects, advantages, and 
capabilities thereof, reference is made to the following 
disclosure in conjunction with the accompanying drawings. 

In one embodiment of the current invention, a program 
mable computer System is utilized as the machine apparatus 
to perform the learning process. AS shown in FIG. 1, the 
computer system 100 has a processor 105 for executing 
instructions that employ the disclosed method of machine 
learning, a memory 110 for Storing data, input ports 115 for 
receiving information to be processed by the processor 105, 
and an output port 120 for making the results of processor 
105 available. Typically computer system 100 is an adaptive 
Signal processing System or a adaptive control System 
wherein input ports 115 receive sensor information and 
output port 120 is used to control a physical process. The 
machine apparatus is also advantageously utilized in pattern 
recognition applications. 

The method of machine learning disclosed herein is a 
meta-learning technique in the Sense that it learns the 
learning-rate parameters of an underlying base learning 
System. The base learning System is an approximation to the 
Kalman filter with reduced computational complexity. This 
learning process is often thought of as a Single connectionist 
unit as shown in FIG. 2. The unit is linear, meaning that the 
predicted value of the pattern Sequence y(t), at each time 
Stept, is a weighted Sum of its real-valued inputs x(t): 

were each w(t) is the value at time t of a modifiable 
weight W associated with X. It is understood in the 
disclosure that follows that the index i refers to the 
parameter associated with the input X. At each time 
Step, the machine 100 receives a set of inputs on input 
ports 105, 

X(t), computes its output in processor 105, y(t), and 
compares it to a given desired result, y(t). The aim of 
the machine learning is to minimize the Squared error 
Ö(t), where 8(t)=y(t)-y(t), on future time steps. The 
approximate Kalman filter learning rule updates the 
weights at each time Step according to: 
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4 

where C. is a positive constant called the learning rate, and 
R is an estimate of the variance of the noise in y (R is 
typically taken to be 1). 

The present invention utilizes a Single linear unit using the 
above rule as a basis. However for the present invention, 
there is a different learning rate, k, for each input X, and 
these change according to a meta-learning process. The 
present invention is named the K1 method. The base-level 
learning rule is 

The learning rates are a powerful form of bias in this System. 
Learning about irrelevant inputs acts as noise interfering 
with learning about relevant inputs. In effect, learning rates 
are a valuable resource that must be allocated carefully. 
Inputs that are likely to be irrelevant should be given small 
learning rates, whereas inputs that are likely to be relevant 
should be given large learning rates. 

In the present invention, the learning rates are all of the 
form 

where R is typically equal to 1. 
The B are updated by the following rule: 

f(t+1)=f3,(t)+08(t)x,(t)h(t), (5) 

where 0 is a positive constant denoted the meta-learning 
rate, and h is an additional per-input memory param 
eter updated by 

h;(t+1)=h(t)+k(t)8(t)1-k(t)x,(t) (6) 

where x' is defined as X for x>0, else 0. The memory h, 
is a decaying trace of the cumulative Sum of recent 
changes to W. 

The intuitive idea behind the current K1 method of 
machine learning is that the increment to f, in (5) is 
proportional to the product of the current weight change, 
Ö(t)x,(t), and a trace of recent weight changes, h(t). By 
accumulating this product, the overall change in f3 becomes 
proportional to the correlation between current and recent 
weight changes. If the current Step is positively correlated 
with past Steps, that indicates that the past Steps should have 
been larger (and equation (5) accordingly increases f). If the 
current Step is negatively correlated with past Steps, that 
indicates that the past Steps were too large; the K1 method 
is overshooting the best weight values and then having to 
re-correct in the opposite direction (here equation (5) 
decreases f). 
The best learning rate will have been found when weight 

updates are uncorrelated with preceding updates. 
The K1 method as described above is similar to Jacobs 

Delta-Bar-Delta algorithm as described in his 1988 publi 
cation. However, Jacobs' method can be applied only on a 
batch-by-batch basis, with updates after a complete presen 
tation of a training Set, whereas here we assume examples 
arrive one-by-one and are not necessarily revisited after 
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wards. The K1 method is incremental in that the trace h is 
defined such that it fades away only to the extent that the 
corresponding input X, is present, as indicated by X,*(t). The 
K1 method also improves over Jacobs in that the decay rate 
is not a separate free parameter, but is tied to the current 
learning rate. The new K1 method in fact has only one free 
parameter, the meta-learning rate, 0, whereas Jacobs 
method has three free parameters. 

The steps of the K1 method are as follows: 
Initialize h; to 0, and W, B, as desired, i=1,. . . 
Repeat for each new example (x1, ..., x, y). 

calculate: 

l 

calculate: 

Ó = y -y 

Repeat for i = 1,..., n: 
calculate: 

In practice, it is often useful to bound each B, from below 
by, Say, -10, to prevent arithmetic underflows. In addition, 
it is prudent to limit the change in B, on any one Step to, Say, 
t2. However, this bounding is not required to obtain the 
empirical results presented in the next Section. 

EXAMPLE 

The capabilities of the instant K1 method for a linear 
combination of inputs were assessed using a Series of 
tracking taskS-Supervised-learning or concept-learning 
tasks in which the target concept drifts over time and is to 
be tracked. Non-Stationary tasks are more appropriate here 
than conventional learning tasks because we are trying to 
assess the K1 methods ability to learn biases during early 
learning and then use them in later learning. To Study this 
one needs a continuing learning problem, not one that can be 
Solved once and is then finished. 

The task involved 20 real-valued inputs and one output. 
The inputs were chosen independently and randomly 
according to a normal distribution with mean Zero and unit 
variance. The target concept was the Sum of the first five 
inputs, each multiplied either by a weight, i.e. 

where all the S are continuous values initially Zero. To 
make it a tracking problem, on every example a number 
selected independently with normal distribution was 
added to the 5 weights S, . . . , Ss. Further, noise was 
introduced in y with the variance R. Thus, the same 
five inputs were always relevant, but their relationship 
to the target concept changed slowly. 

The K1 methods performance was tested versus the LMS 
(Least Mean Squares) method, the NLMS (Normalized 
Least Mean Squares), the Kalman filter, and the IDBD 
method described in the application identified at the begin 
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6 
ning of this application. Because this is a tracking task, it 
Suffices to perform one long run and measure the asymptotic 
tracking performance of the competing methods. 

All of the tested methods were run for 20,000 examples 
So as to get past any initial transients, and then ran another 
10,000 examples. The average mean-Squared error over that 
10,000 examples was used as the asymptotic performance 
measure of the method. The methods used were ordinary 
LMS, the NLMS (Normalized Least Mean Squares), the 
Kalman filter, and the IDBD method and the instant K1 
method, all with a range of learning or meta-learning rates. 
The B in the currently disclosed K1 method were set 
initially such that efi'=1 for all i. 
The results of this performance evaluation are Summa 

rized in FIG. 3. FIG. 3 illustrates a comparison of the 
average asymptotic performances of the tested methods. AS 
can be seen the Kalman filter is best in terms of asymptotic 
error, but the method requires Special apriori knowledge that 
the other alternative methods do not require. The K1 method 
outperforms the other tested methods and approaches the 
performance of the Kalman filter. 

TABLE 1. 

Approximate computational Complexity of the algorithms 

Algorithm Memory Adds & Mults 

LMS 4n 
NLMS 6n 
IDBD 3n 13n 
K1 3n 17n 
LS /2n + n 2.5m + 8.5n 

Kalman /2n + in 2.5in +8.5n 

TABLE 1 lists the approximate computational complexity 
of the tested methods. The K1 method has a computational 
complexity of order n while the Kalman filter is of order n. 
It is also noted that although the K1 method outperforms the 
IDBD method it is computationally more complex and thus 
more difficult to implement. 
While there has been shown and described what is at 

present considered the preferred embodiment of the inven 
tion it will be obvious to those skilled in the art that various 
changes and modifications may be made therein without 
departing from the invention as defined by the appended 
claims. 
What is claimed is: 
1. A computer System for determining a time dependent 

pattern Sequence y(t), comprising: 
a memory configured to Store instructions, and 
a processor configured to execute the instructions to 

receive a plurality of time dependent inputs x(t) and a 
meta-step-Size parameter 0, determine a predicted 
value of the pattern Sequence y(t) from the time depen 
dent inputs based on a learning rate C that is expo 
nentially related to an incremental gain f3(t), the incre 
mental gain f3,(t) being derived from previous values of 
B,(t), 

Store the predicted value of the pattern Sequence y(t) in the 
memory, and determine the pattern Sequence y(t) using 
the Stored predicted value. 

2. The computer System of claim 1, wherein the predicted 
value of the pattern Sequence is calculated as a linear 
combination of the plurality of time dependent inputs. 

3. The computer system of claim 1, wherein the derivation 
means derives the incremental gain f3(t) according to the 
rule: 
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where 0 is a positive constant denoted as the meta- 4. The computer System of claim 1, wherein the predicted 
learning rate, and h is an additional per-input memory value of the pattern Sequence is calculated as a non-linear 
parameter updated by combination of the plurality of time dependent inputs. 

5. The computer system of claim 1, wherein the derivation 
2 5 means derives the incremental gain B(t) according to the 

rule: 

where x' is defined as X for x>0, else 0. k . . . . 


