
Temporal Abstraction
in Temporal-difference Networks

Richard S. Sutton, Eddie J. Rafols, Anna Koop
Reinforcement Learning and Artificial Intelligence Laboratory

University of Alberta
Edmonton, Alberta, Canada

Abstract

We present a generalization of temporal-difference networks to in-
clude temporally abstract options on the links of the question network.
Temporal-difference (TD) networks have been proposed as a way of rep-
resenting and learning a wide variety of predictions about the interaction
between an agent and its environment. These predictions arecomposi-
tional in that their targets are defined in terms of other predictions, and
subjunctivein that that they are about what would happen if an action
or sequence of actions were taken. In conventional TD networks, the
inter-related predictions are at successive time steps and contingent on
a single action; here we generalize them to accommodate extended time
intervals and contingency on whole ways of behaving. Our generaliza-
tion is based on the options framework for temporal abstraction. The
primary contribution of this paper is to introduce a new algorithm for
intra-option learning in TD networks with function approximation and el-
igibility traces. We present empirical examples of our algorithm’s effec-
tiveness and of the greater representational expressiveness of temporally-
abstract TD networks.

The primary distinguishing feature of temporal-difference (TD) networks (Sutton & Tan-
ner, 2005) is that they permit a general compositional specification of thegoalsof learning.
The goals of learning are thought of as predictive questions being asked by the agent in the
learning problem, such as “What will I see if I step forward and look right?” or “If I open
the fridge, will I see a bottle of beer?” Seeing a bottle of beer is of course a complicated
perceptual act. It might be thought of as obtaining a set of predictions about what would
happen if certain reaching and grasping actions were taken, about what would happen if
the bottle were opened and turned upside down, and of what the bottle would look like if
viewed from various angles. To predict seeing a bottle of beer is thus to make a prediction
about a set of other predictions. The target for the overall prediction is a composition in the
mathematical sense of the first prediction with each of the other predictions.

TD networks are the first framework for representing the goals of predictive learning in a
compositional, machine-accessible form. Each node of a TD network represents an individ-
ual question—something to be predicted—and has associated with it a value representing
an answer to the question—a prediction of that something. The questions are represented
by a set of directed links between nodes. If node 1 is linked to node 2, then node 1 rep-
resents a question incorporating node 2’s question; its value is a prediction about node 2’s

prediction. Higher-level predictions can be composed in several ways from lower ones,
producing a powerful, structured representation language for the targets of learning. The
compositional structure is not just in a human designer’s head; it is expressed in the links
and thus is accessible to the agent and its learning algorithm.

The network of these links is referred to as thequestion network. An entirely separate set
of directed links between the nodes is used to compute the values (predictions, answers)
associated with each node. These links collectively are referred to as theanswer network.
The computation in the answer network is compositional in a conventional way—node
values are computed from other node values. The essential insight of TD networks is that
the notion of compositionality should apply to questions as well as to answers.

A secondary distinguishing feature of TD networks is that the predictions (node values)
at each moment in time can be used as a representation of the state of the world at that
time. In this way they are an instance of the idea ofpredictive state representations(PSRs)
introduced by Littman, Sutton and Singh (2002), Jaeger (2000), and Rivest and Schapire
(1987). Representing a state by its predictions is a potentially powerful strategy for state
abstraction (Rafols et al., 2005). We note that the questions used in all previous work with
PSRs are defined in terms of concrete actions and observations, not other predictions. They
are not compositional in the sense that TD-network questions are.

The questions we have discussed so far aresubjunctive, meaning that they are conditional
on a certain way of behaving. We predict what we would seeif we wereto step forward and
look right, orif we wereto open the fridge. The questions in conventional TD networks are
subjunctive, but they are conditional only on primitive actions or open-loop sequences of
primitive actions (as are conventional PSRs). It is natural to generalize this, as we have in
the informal examples above, to questions that are conditional on closed-loop temporally
extended ways of behaving. For example, opening the fridge is a complex, high-level
action. The arm must be lifted to the door, the hand shaped for grasping the handle, etc.
To ask questions like “if I were to go to the coffee room, would I see John?” would require
substantial temporal abstraction in addition to state abstraction.

The options framework (Sutton, Precup & Singh, 1999) is a straightforward way of talking
about temporally extended ways of behaving and about predictions of their outcomes. In
this paper we extend the options framework so that it can be applied to TD networks.
Significant extensions of the original options framework are needed. Novel features of
our option-extended TD networks are that they 1) predict components of option outcomes
rather than full outcome probability distributions, 2) learn according to the first intra-option
method to use eligibility traces (see Sutton & Barto, 1998), and 3) include the possibility
of options whose ‘policies’ are indifferent to which of several actions are selected.

1 The options framework

In this section we present the essential elements of the options framework (Sutton, Precup
& Singh, 1999) that we will need for our extension of TD networks. In this framework, an
agent and an environment interact at discrete time stepst = 1, 2, 3.... In each statest ∈ S,
the agent selects an actionat ∈ A, determining the next statest+1.1 An action is a way of
behaving for one time step; the options framework lets us talk about temporally extended
ways of behaving. An individual option consists of three parts. The first is theinitiation
set, I ⊂ S, the subset of states in which the option can be started. The second component
of an option is itspolicy, π : S × A ⇒ [0, 1], specifying how the agent behaves when
following the option. Finally, a termination function,β : S × A ⇒ [0, 1], specifies how

1Although the options framework includes rewards, we omit them here because we are concerned
only with prediction, not control.

the option ends:β(s) denotes the probability of terminating when in states. The option is
thus completely and formally defined by the 3-tuple(I, π, β).

2 Conventional TD networks

In this section we briefly present the details of the structure and the learning algorithm
comprising TD networks as introduced by Sutton and Tanner (2005). TD networks address
a prediction problem in which the agent may not have direct access to the state of the
environment. Instead, at each time step the agent receives anobservationot ∈ O dependent
on the state. The experience stream thus consists of a sequence of alternating actions and
observations,o1, a1, o2, a2, o3 · · ·.
The TD network consists of a set of nodes, each representing a single scalar prediction,
interlinked by the question and answer networks as suggested previously. For a network
of n nodes, the vector of all predictions at time stept is denotedyt = (y1

t , . . . , yn
t)T . The

predictions are estimates of the expected value of some scalar quantity, typically of a bit, in
which case they can be interpreted as estimates of probabilities. The predictions are updated
at each time step according to a vector-valued functionu with modifiable parameterW,
which is often taken to be of a linear form:

yt = u(yt−1, at−1, ot,Wt) = σ(Wtxt), (1)

wherext ∈ <m is anm-vector of features created from(yt−1, at−1, ot), Wt is ann ×
m matrix (whose elements are sometimes referred to as weights), andσ is then-vector
form of either the identity function or the S-shaped logistic functionσ(s) = 1

1+e−s . The
feature vector is an arbitrary vector-valued function ofyt−1, at−1, andot. For example,
in the simplest case the feature vector is a unit basis vector with the location of the one
communicating the current state. In a partially observable environment, the feature vector
may be a combination of the agent’s action, observations, and predictions from the previous
time step. The overall updateu defines the answer network.

The question network consists of a set oftarget functions, zi : O×<n → <, andcondition
functions, ci : A × <n → [0, 1]n. We definezi

t = zi(at, ot+1, ỹt+1) as the target for
predictionyi

t.
2 Similarly, we defineci

t = ci(at, yt) as the condition at timet. The learning
algorithm for each componentwij

t of Wt can then be written

wij
t+1 = wij

t + α
(
zi
t − yi

t

)
ci
t

∂yi
t

∂wij
t

, (2)

whereα is a positive step-size parameter. Note that the targets here are functions of the
observation and predictions exactly one time step later, and that the conditions are functions
of a single primitive action. This is what makes this algorithm suitable only for learning
about one-step TD relationships. By chaining together multiple nodes, Sutton and Tanner
(2005) used it to predictk steps ahead, for various particular values ofk, and to predict the
outcome of specific action sequences (as in PSRs, e.g., Littman et al., 2002; Singh et al.,
2004). Now we consider the extension to temporally abstract actions.

3 Option-extended TD networks

In this section we present our intra-option learning algorithm for TD networks with op-
tions and eligibility traces. As suggested earlier, each node’s outgoing link in the question

2The quantitỹy is almost the same asy, and we encourage the reader to think of them as identical
here. The difference is thatỹ is calculated by weights that are one step out of date as compared toy,
i.e., ỹt = u(yt−1, at−1, ot,Wt−1) (cf. equation 1).

network will now correspond to an option applying over possibly many steps. The policy
of the ith node’s option corresponds to the condition functionci, which we think of as a
recognizerfor the option. It inspects each action taken to assess whether the option is being
followed: ci

t = 1 if the agent is acting consistently with the option policy andci
t = 0 other-

wise (intermediate values are also possible). When an agent ceases to act consistently with
the option policy, we say that the option hasdiverged. The possibility of recognizing more
than one action as consistent with the option is a significant generalization of the original
idea of options. If no actions are recognized as acceptable in a state, then the option cannot
be followed and thus cannot be initiated. Here we take the set of states with at least one
recognized action to be the initiation set of the option.

The option-termination functionβ generalizes naturally to TD networks. Each nodei is
given a corresponding termination function,βi : O×<n → [0, 1], whereβi

t = βi(ot+1, yt)
is the probability of terminating at timet.3 βi

t = 1 indicates that the option has terminated
at timet; βi

t = 0 indicates that it has not, and intermediate values ofβ correspond to soft
or stochastic termination conditions. If an option terminates, thenzi

t acts as the target, but
if the option is ongoing without termination, then the node’s own next value,ỹi

t+1, should
be the target. The termination function specifies which of the two targets (or mixture of the
two targets) is used to produce a form of TD error for each nodei:

δi
t = βi

tz
i
t + (1− βi

t)ỹ
i
t+1 − yi

t. (3)

Our option-extended algorithm incorporates eligibility traces (see Sutton & Barto, 1998)
as short-term memory variables organized in ann × m matrix E, paralleling the weight
matrix. The traces are a record of the effect that each weight could have had on each node’s
prediction during the time the agent has been acting consistently with the node’s option.
The componentseij of the eligibility matrix are updated by

eij
t = ci

t

[
λeij

t−1(1− βi
t) +

∂yi
t

∂wij
t

]
, (4)

where0 ≤ λ ≤ 1 is the trace-decay parameter familiar from the TD(λ) learning algorithm.
Because of theci

t factor, all of a node’s traces will be immediately reset to zero whenever
the agent deviates from the node’s option’s policy. If the agent follows the policy and the
option does not terminate, then the trace decays byλ and increments by the gradient in the
way typical of eligibility traces. If the policy is followed and the option does terminate,
then the trace will be reset to zero on the immediately following time step, and a new trace
will start building. Finally, our algorithm4 updates the weights on each time step by

wij
t+1 = wij

t + α δi
t eij

t . (5)

4 Fully observable experiment

This experiment was designed to test the correctness of the algorithm in a simple gridworld
where the environmental state is observable. We applied an options-extended TD network
to the problem of learning to predict observations from interaction with the gridworld envi-
ronment shown on the left in Figure 1. Empty squares indicate spaces where the agent can
move freely, and colored squares (shown shaded in the figure) indicate walls. The agent is
egocentric. At each time step the agent receives from the environment six bits representing

3The fact that the option depends only on the current predictions, action, and observation means
that we are considering onlyMarkovoptions.

4This algorithm is limited to predicting theoutcomeof options. We do not discuss the straightfor-
ward modification of (3) needed to predict a cumulative quantity while the option is executing, such
as the reward part of an option model, to save space and because we do not use it in this paper.

Figure 1: The test world (left) and the question network (right) used in the experiments.
The triangle in the world indicates the location and orientation of the agent. The walls
are labeled R, O, Y, G, and B representing the colors red, orange, yellow, green and blue.
Note that the left wall is mostly blue but partly green. The right diagram shows in full the
portion of the question network corresponding to the red bit. This structure is repeated,
but not shown, for the other four (non-white) colors. L, R, and F are primitive actions, and
Forward and Wander are options.

There are three possible actions: A ={F, R, L}. Actions were selected according to a fixed
stochastic policy independent of the state. The probability of the F, L, and R actions were
0.5, 0.25, and 0.25 respectively. L and R cause the agent to rotate 90 degrees to the left or
right. F causes the agent to move ahead one square with probability 1 − p and to stay in
the same square with probability p. The probability p is called the slipping probability. If
the forward movement would cause the agent to move into a wall, then the agent does not
move. In this experiment, we used p = 0, p = 0.1, and p = 0.5.

In addition to these primitive actions, we provided two temporally abstract options,
Forward and Wander. The Forward option takes the action F in every state and termi-
nates when the agent senses a wall (color) in front of it. The policy of the Wander option
is the same as that actually followed by the agent. Wander terminates with probability 1
when a wall is sensed, and spontaneously with probability 0.5 otherwise.

We used the question network shown on the right in Figure 1. The predictions of nodes 1, 2,
and 3 are estimates of the probability that the red bit would be observed if the corresponding
primitive action were taken. Node 4 is a prediction of whether the agent will see the red bit
upon termination of the Wander option if it were taken. Node 5 predicts the probability of
observing the red bit given that the Forward option is followed until termination. Nodes 6
and 7 represent predictions of the outcome of a primitive action followed by the Forward
option. Nodes 8 and 9 take this one step further: they represent predictions of the red bit if
the Forward option were followed to termination, then a primitive action were taken, and
then the Forward option were followed again to termination.

We applied our algorithm to learn the parameterW of the answer network for this question
network. The step-size parameter α was 1.0, and the trace-decay parameter λ was 0.9. The
initial W0, E0, and y0 were all 0. Each run began with the agent in the state indicated in
Figure 1 (left). In this experiment σ(·) was the identity function.
For each value of p, we ran 50 runs of 20,000 time steps. On each time step, the root-mean-
squared (RMS) error in each node’s prediction was computed and then averaged over all the
nodes. The nodes corresponding to the Wander option were not included in the average
because of the difficulty of calculating their correct predictions. This average was then

Figure 1: The test world (left) and the question network (right) used in the experiments.
The triangle in the world indicates the location and orientation of the agent. The walls
are labeled R, O, Y, G, and B representing the colors red, orange, yellow, green and blue.
Note that the left wall is mostly blue but partly green. The right diagram shows in full the
portion of the question network corresponding to the red bit. This structure is repeated,
but not shown, for the other four (non-white) colors.L, R, andF are primitive actions, and
Forward andWander are options.

the color it is facing (red, green, blue, orange, yellow, or white). In this first experiment
we also provided6 × 6 × 4 = 144 other bits directly indicating the complete state of the
environment (square and orientation).

There are three possible actions:A ={F, R, L}. Actions were selected according to a fixed
stochastic policy independent of the state. The probability of theF, L, andR actions were
0.5, 0.25, and 0.25 respectively.L andR cause the agent to rotate 90 degrees to the left or
right. F causes the agent to move ahead one square with probability1 − p and to stay in
the same square with probabilityp. The probabilityp is called theslipping probability. If
the forward movement would cause the agent to move into a wall, then the agent does not
move. In this experiment, we usedp = 0, p = 0.1, andp = 0.5.

In addition to these primitive actions, we provided two temporally abstract options,
Forward andWander . TheForward option takes the actionF in every state and termi-
nates when the agent senses a wall (color) in front of it. The policy of theWander option
is the same as that actually followed by the agent.Wander terminates with probability 1
when a wall is sensed, and spontaneously with probability 0.5 otherwise.

We used the question network shown on the right in Figure 1. The predictions of nodes 1, 2,
and 3 are estimates of the probability that the red bit would be observed if the corresponding
primitive action were taken. Node 4 is a prediction of whether the agent will see the red bit
upon termination of theWander option if it were taken. Node 5 predicts the probability of
observing the red bit given that theForward option is followed until termination. Nodes 6
and 7 represent predictions of the outcome of a primitive action followed by theForward
option. Nodes 8 and 9 take this one step further: they represent predictions of the red bit if
theForward option were followed to termination, then a primitive action were taken, and
then theForward option were followed again to termination.

We applied our algorithm to learn the parameterW of the answer network for this question
network. The step-size parameterα was 1.0, and the trace-decay parameterλ was 0.9. The
initial W0, E0, andy0 were all 0. Each run began with the agent in the state indicated in
Figure 1 (left). In this experimentσ(·) was the identity function.

0

0.4

0 5000 10000 15000 20000
0

0.4

0 100000 200000 300000

Figure 2: Learning curves in the fully-observable experiment for each slippage probability
(left) and in the partially-observable experiment (right).

itself averaged over the 50 runs and bins of 1,000 time steps to produce the learning curves
shown on the left in Figure 2.

For all slippage probabilities, the error in all predictions fell almost to zero. After approx-
imately 12,000 trials, the agent made almost perfect predictions in all cases. Not surpris-
ingly, learning was slower at the higher slippage probabilities. These results show that our
augmented TD network is able to make a complete temporally-abstract model of this world.

5 Partially observable experiment

In our second experiment, only the six color observation bits were available to the agent.
This experiment provides a more challenging test of our algorithm. To model the envi-
ronment well, the TD network must construct a representation of state from very sparse
information. In fact, completely accurate prediction is not possible in this problem with
our question network.

In this experiment the input vector consisted of three groups of 46 components each, 138
in total. If the action was R, the first 46 components were set to the 40 node values and the
six observation bits, and the other components were 0. If the action was L, the next group
of 46 components was filled in in the same way, and the first and third groups were zero. If
the action was F, the third group was filled. This technique enables the answer network as
function approximator to represent a wider class of functions in a linear form than would
otherwise be possible. In this experiment, σ(·) was the S-shaped logistic function. The
slippage probability was p = 0.1.

As our performance measure we used the RMS error, as in the first experiment, except that
the predictions for the primitive actions (nodes 1-3) were not included. These predictions
can never become completely accurate because the agent can’t tell in detail where it is
located in the open space. As before, we averaged RMS error over 50 runs and 1,000 time
step bins, to produce the learning curve shown on the right in Figure 2. As before, the RMS
error approached zero.

Node 5 in Figure 1 holds the prediction of red if the agent were to march forward to the
wall ahead of it. Corresponding nodes in the other subnetworks hold the predictions of the
other colors upon Forward. To make these predictions accurately, the agent must keep
track of which wall it is facing, even if it is many steps away from it. It has to learn a sort
of compass that it can keep updated as it turns in the middle of the space. Figure 3 is a
demonstration of the compass learned after a representative run of 200,000 time steps. At
the end of the run, the agent was driven manually to the state shown in the first row (relative

Figure 2: Learning curves in the fully-observable experiment for each slippage probability
(left) and in the partially-observable experiment (right).

For each value ofp, we ran 50 runs of 20,000 time steps. On each time step, the root-mean-
squared error (RMSE) in each node’s prediction was computed and then averaged over
all the nodes. The nodes corresponding to theWander option were not included in the
average because of the difficulty of calculating their correct predictions. This average was
then itself averaged over the 50 runs and bins of 1,000 time steps to produce the learning
curves shown on the left in Figure 2.

For all slippage probabilities, the error in all predictions fell almost to zero. After approx-
imately 12,000 trials, the agent made almost perfect predictions in all cases. Not surpris-
ingly, learning was slower at the higher slippage probabilities. These results show that our
augmented TD network is able to make a complete temporally-abstract model of this world.

5 Partially observable experiment

In our second experiment, only the six color observation bits were available to the agent.
This experiment provides a more challenging test of our algorithm. To model the envi-
ronment well, the TD network must construct a representation of state from very sparse
information. In fact, completely accurate prediction is not possible in this problem with
our question network.

In this experiment the input vector consisted of three groups of 46 components each,138
in total. If the action wasR, the first 46 components were set to the 40 node values and the
six observation bits, and the other components were 0. If the action wasL, the next group
of 46 components was filled in in the same way, and the first and third groups were zero. If
the action wasF, the third group was filled. This technique enables the answer network as
function approximator to represent a wider class of functions in a linear form than would
otherwise be possible. In this experiment,σ(·) was the S-shaped logistic function. The
slippage probability wasp = 0.1.

We measured performance by the RMSE, as in the first experiment, except that the predic-
tions for the primitive actions (nodes 1-3) were not included. These predictions can never
become completely accurate because the agent can’t tell in detail where it is located in
the open space. As before, we averaged RMSE over 50 runs and 1,000 time step bins to
produce the learning curve shown on the right in Figure 2. The RMSE approached zero.

Node 5 in Figure 1 holds the prediction of red if the agent were to march forward to the wall
ahead of it. Corresponding nodes in the other subnetworks hold the predictions of the other
colors uponForward . To make these predictions accurately, the agent must keep track of
which wall it is facing, even if it is many steps away from it. It has to learn a sort of compass

1

O Y R B G O Y R B G

O Y R B G

O Y R B G

O Y R B G

O Y R B G

O Y R B G

O Y R B G

O Y R B G

O Y R B G

O Y R B G O Y R B G

O Y R B GO Y R B G

Figure 3: An illustration of part of what the
agent learns in the partially observable envi-
ronment. The second column is a sequence
of states with (relative) time index as given by
the first column. The sequence was generated
by controlling the agent manually. On steps
1-25 the agent was spun clockwise in place,
and the trajectory after that is shown by the
line in the last state diagram. The third and
fourth columns show the values of the nodes
corresponding to 5 and 8 in Figure 1, one for
each color-observation bit.

time index t = 1). On steps 1-25 the
agent was spun clockwise in place. The
third column shows the prediction for
node 5 in each portion of the question
network. That is, the predictions shown
are for each color-observation bit at ter-
mination of the Forward option. At
t = 1, the agent is facing the orange
wall and it predicts that the Forward
option would result in seeing the orange
bit and none other. Over steps 2-5 we
see that the predictions are maintained
accurately as the agent spins despite the
fact that its observation bits remain the
same. Even after spinning for 25 steps
the agent knows exactly which way it is
facing. While spinning, the agent cor-
rectly never predicts seeing the green bit
(after Forward), but if it is driven up
and turned, as in the last row of the fig-
ure, the green bit is accurately predicted.

The fourth column shows the prediction
for node 8 in each portion of the question
network. Recall that these nodes cor-
respond to the sequence Forward, L,
Forward. At time t = 1, the agent
accurately predicts that Forward will
bring it to orange (third column) and also
predicts that Forward, L, Forward
will bring it to green. The predictions
made for node 8 at each subsequent step
of the sequence are also correct.

These results show that the agent is able
to accurately maintain its long term pre-
dictions without directly encountering
sensory verification. How much larger
would the TD network have to be to han-
dle a 100x100 gridworld? The answer is
not at all. The same question network
applies to any size problem. If the lay-
out of the colored walls remain the same,
then even the answer network transfers
across worlds of widely varying sizes.
In other experiments, training on succes-
sively larger problems, we have shown
that the same TD network as used here
can learn to make all the long-term pre-
dictions correctly on a 100x100 version
of the 6x6 gridworld used here.

Figure 3: An illustration of part of what the
agent learns in the partially observable envi-
ronment. The second column is a sequence
of states with (relative) time index as given by
the first column. The sequence was generated
by controlling the agent manually. On steps
1-25 the agent was spun clockwise in place,
and the trajectory after that is shown by the
line in the last state diagram. The third and
fourth columns show the values of the nodes
corresponding to 5 and 8 in Figure 1, one for
each color-observation bit.

that it can keep updated as it turns in
the middle of the space. Figure 3 is a
demonstration of the compass learned af-
ter a representative run of 200,000 time
steps. At the end of the run, the agent
was driven manually to the state shown
in the first row (relative time indext =
1). On steps 1-25 the agent was spun
clockwise in place. The third column
shows the prediction for node 5 in each
portion of the question network. That
is, the predictions shown are for each
color-observation bit at termination of
the Forward option. At t = 1, the
agent is facing the orange wall and it pre-
dicts that theForward option would re-
sult in seeing the orange bit and none
other. Over steps 2-5 we see that the pre-
dictions are maintained accurately as the
agent spins despite the fact that its obser-
vation bits remain the same. Even after
spinning for 25 steps the agent knows ex-
actly which way it is facing. While spin-
ning, the agent correctly never predicts
seeing the green bit (afterForward),
but if it is driven up and turned, as in the
last row of the figure, the green bit is ac-
curately predicted.

The fourth column shows the prediction
for node 8 in each portion of the question
network. Recall that these nodes cor-
respond to the sequenceForward , L,
Forward . At time t = 1, the agent
accurately predicts thatForward will
bring it to orange (third column) and also
predicts thatForward , L, Forward
will bring it to green. The predictions
made for node 8 at each subsequent step
of the sequence are also correct.

These results show that the agent is able
to accurately maintain its long term pre-
dictions without directly encountering
sensory verification. How much larger
would the TD network have to be to han-
dle a 100x100 gridworld? The answer is
none at all. The same question network
applies to any size problem. If the lay-
out of the colored walls remain the same,
then even the answer network transfers
across worlds of widely varying sizes.
We have used the same TD network to
make all long-term predictions correctly
on a 100x100 version of this problem.

6 Conclusion

Our experiments show that option-extended TD networks can learn effectively. They can
learn facts about their environments that are not representable in conventional TD net-
works or in any other method for learning models of the world. One concern is that our
intra-option learning algorithm is an off-policy learning method incorporating function ap-
proximation and bootstrapping (learning from predictions). The combination of these three
is known to produce convergence problems for some methods (see Sutton & Barto, 1998),
and they may arise here. A sound solution may require modifications to incorporate impor-
tance sampling (see Precup, Sutton & Dasgupta, 2001). In this paper we have considered
only intra-option eligibility traces—traces extending over the time span within an option
but not persisting across options. Tanner and Sutton (2005) have proposed a method for
inter-option traces that could perhaps be combined with our intra-option traces.

The primary contribution of this paper is the introduction of a new learning algorithm for
TD networks that incorporates options and eligibility traces. Our experiments are small
and do little more than exercise the learning algorithm, showing that it does not break
immediately. More significant is the greater representational power of option-extended
TD networks. Options are a general framework for temporal abstraction, predictive state
representations are a promising strategy for state abstraction, and TD networks are able
to represent compositional questions. The combination of these three is potentially very
powerful and worthy of further study.

Acknowledgments

The authors gratefully acknowledge the ideas and encouragement they have received from
Mark Ring, Brian Tanner, Satinder Singh, Doina Precup, and other members of the rlai.net
group. This research was supported in part by iCore, NSERC, and Alberta Ingenuity.

References

Jaeger, H. (2000). Observable operator models for discrete stochastic time series.Neural Computation, 12(6):1371-1398. MIT
Press.

Littman, M., Sutton, R. S., & Singh, S. (2002). Predictive representations of state. In T. G. Dietterich, S. Becker and Z. Ghahra-
mani (eds.),Advances In Neural Information Processing Systems 14, pp. 1555-1561. MIT Press.

Precup, D., Sutton, R. S., & Dasgupta, S. (2001). Off-policy temporal-difference learning with function approximation. In
C. E. Brodley, A. P. Danyluk (eds.),Proceedings of the Eighteenth International Conference on Machine Learning, pp. 417-424.
San Francisco, CA: Morgan Kaufmann.

Rafols, E. J., Ring, M., Sutton, R.S., & Tanner, B. (2005). Using predictive representations to improve generalization in reinforce-
ment learning. To appear inProceedings of the Nineteenth International Joint Conference on Artificial Intelligence.

Rivest, R. L., & Schapire, R. E. (1987). Diversity-based inference of finite automata. InProceedings of the Twenty Eighth Annual
Symposium on Foundations of Computer Science, (pp. 78–87). IEEE Computer Society.

Singh, S., James, M. R., & Rudary, M. R. (2004). Predictive state representations: A new theory for modeling dynamical systems.
In Uncertainty in Artificial Intelligence: Proceedings of the Twentieth Conference in Uncertainty in Artificial Intelligence, (pp.
512–519). AUAI Press.

Sutton, R. S., & Barto, A. G. (1998).Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

Sutton, R. S., Precup, D., Singh, S. (1999). Between MDPs and semi-MDPs: A framework for temporal abstraction in reinforce-
ment learning.Artificial Intelligence, 112, pp. 181-211.

Sutton, R. S., & Tanner, B. (2005). Temporal-difference networks. To appear inNeural Information Processing Systems
Conference 17.

Tanner, B., Sutton, R. S. (2005) Temporal-difference networks with history. To appear inProceedings of the Nineteenth Interna-

tional Joint Conference on Artificial Intelligence.

