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Abstract

Discounted reinforcement learning is fundamentally incompatible with function
approximation for control in continuing tasks. It is not an optimization problem in
its usual formulation, so when using function approximation there is no optimal
policy. We substantiate these claims, then go on to address some misconceptions
about discounting and its connection to the average reward formulation. We en-
courage researchers to adopt rigorous optimization approaches, such as maximiz-
ing average reward, for reinforcement learning in continuing tasks.

1 Introduction

Reinforcement learning (RL) is a paradigm in which an agent learns to interact with an environment
in order to maximize reward [Sutton and Barto, 2018]. Many interesting RL problems concern
continuing tasks in which the agent lives and learns over a single lifetime, rather than experiencing
a sequence of distinct episodes. Some examples of continuing tasks include routing internet packets,
managing the inventory in a warehouse, and controlling the temperature in a data center.

In continuing tasks, it is common practice to value immediate rewards more highly than rewards
further in the future — this is called temporal discounting. One reason is that the sum of future
rewards (which is finite for episodic tasks) can grow to infinity as the agent and environment con-
tinually interact. With discounting the sum of the infinitely many future rewards remains bounded
even when the length of the interaction does not.!

In this paper, we take the position that this common practice has serious conceptual flaws and should
be carefully reconsidered. The straightforward formulation of discounted reinforcement learning is
fundamentally incompatible with large-scale reinforcement learning in continuing tasks. Moreover,
these issues are inherent to the very idea of discounting and cannot be avoided by minor modifica-
tions of the problem formulation.

For continuing tasks, we will first argue that discounted reinforcement learning is not an optimiza-
tion problem, and that this makes it incompatible with function approximation. A standard optimiza-
tion problem is defined by a set of feasible solutions and an objective function that describes the
quality of each feasible solution with a real number. The feasible solutions in RL are policies and,
at least for episodic tasks, the natural objective function is the sum of rewards over an episode. With
continuing tasks, however, optimality under discounting is not defined as maximizing an objective

*This work was partially done during an internship at Huawei Technologies.

I"The notion of discounting discussed here is one that leads to a finite sum of future rewards. This occurs with
geometric discounting, for instance, but not hyperbolic discounting [Fedus et al., 2019], which is applicable
only in finite-horizon episodic problems.
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function. Instead, a policy is usually considered optimal if, in every state, it achieves a higher dis-
counted sum of future rewards than any other policy — for a fixed discount rate y, an optimal policy
" satisfies

v2.(s) = vy(s), for all states s and policies 7. (1)

These inequalities produce a partial order on the set of policies: some pairs of policies may be
incomparable with each other, because each achieves a higher value in some states but a lower value
in others. This is not a problem with tabular representations, which can represent any possible
policy — in their foundational work, Bellman and Dreyfus [1959] proved the existence of a policy
that maximizes value at every state simultaneously. With function approximation, on the other hand,
a partial ordering is not enough to identify an optimal policy.

1.1 There is no optimal representable policy with discounting and function approximation

In many RL problems the state or action spaces are so large that policies cannot be represented as
a table of action probabilities for each state. In such domains we often resort to a compact policy
representation that cannot represent every possible policy. In most cases the optimal policy defined
by (1) will no longer be representable, so the agent cannot hope to learn it. Instead, the agent should
find the best representable policy.

However, without an objective function there is usually no representable policy that is unambigu-
ously better than all the other representable policies. In general, for every representable policy there
will be another policy that has a higher value in some states but a lower value in others, so the partial
order will not be able to identify any policy as optimal — the notion of “best representable policy”
is not well-defined. See Singh et al. [1994] for illustrative examples.

If we had an explicit objective function we would be able to compare any two policies, creating a
total order over the policy space. Regardless of the choice of policy representation, the total ordering
provided by an explicit objective function would guarantee the existence of an optimal representable
policy. This is why there is no issue with defining optimal policies for episodic tasks, where the sum
of rewards is a natural and explicit objective function.

In the rest of this paper we will address the question of choosing an appropriate objective function
for continuing tasks. We will find that discounting is hard to incorporate into a meaningful objective
function. Many common choices do not capture the continuing nature of the task, whereas others
are formally equivalent to undiscounted objectives. Indeed, we will be forced to conclude that
discounting is not just a technical problem with the above definition of optimality. Rather, there
is a fundamental mismatch between continuing tasks and discounting that cannot be ignored when
function approximation is required.

We now argue that function approximation and continuing tasks are indispensable for reinforcement
learning, which makes this problem setting important.

1.2 Continuing control with function approximation is the problem that matters for AI

Reinforcement learning with tabular representations has served us well to build intuition, construct
algorithms, and analyze their properties, but the world we live in is too large to be represented
by tables of values or action probabilities. Furthermore, it is crucial to generalize across similar
states and actions. Function approximation serves both these purposes and is necessary for agents
to compactly represent complex worlds and make sense of their complexity.

Continuing tasks are those in which the agent-environment interaction does not naturally break down
into episodes. Lifelong learning follows this paradigm, because an agent living and learning over a
lifetime does not usually have the ability to reset to a pre-defined initial state. Additionally, many
interesting RL tasks being studied today involve extremely long episodes and the challenges that
come with them, such as sparse rewards and credit assignment over long time horizons. Such tasks
are episodic in name only, and should be thought of as continuing tasks in spirit. In particular,
solutions that fundamentally rely on episodes are likely to fare worse than those that fully embrace
the continuing task setting.

Function approximation is necessary in large-scale reinforcement learning, whereas discounting is
not. We believe that whole-heartedly adopting optimization approaches for control in continuing
tasks (for example, average reward) is the most appropriate direction for our discipline.
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1.3 Paper organization

After covering some background in Section 2, we describe an alternative continuing task formula-
tion in Section 3 which has a well-defined objective — maximizing the average reward per step —
making it suitable for use with function approximation. We discuss its equivalence with the time-
average of the discounted value function, and the resulting misconception that common discounted
algorithms maximize the average reward irrespective of the choice of the discount factor. We sum-
marize the arguments in Section 4 and give pointers to the existing literature involving the average
reward formulation.

2 Background

A Markov decision process (MDP) consists of a finite set of states S and a finite set of actions A
that can be performed in those states. When the agent takes an action in a state, the agent transitions
to another state and receives a scalar reinforcement signal called the reward. Formally, an MDP
can be represented by M = (S, A, P, r, 1p), where upon performing action a in state s the agent
receives reward r(s, a) in expectation and transitions to state s” with probability P,(s, s”). Note that
the transition probabilities and rewards are independent of the agent’s history before reaching state
s (the Markov assumption). The agent’s initial state is distributed according to ug.

A policy 7 : S X A — [0, 1] gives, for every state in an MDP, a probability distribution over actions
to be taken in that state. A policy & acting in an MDP (S, A, P, r, uo) produces a Markov reward
process (S, Px, 7z, Ho), Where P : 8 X 8§ — [0, 1] is the transition probability and r, : S — R is
the reward function:

Pr(s,s") = Z n(s,a) Py(s, s),
aeA

re(s) = Z (s, a)r(s,a).

acA

Average reward

The average reward of a policy is an intuitively straightforward quantity — it is the reward the agent
receives on average every time step as it acts in an environment. We define the average reward
more formally as follows. Under certain mild conditions, a Markov reward process has a so-called
stationary distribution over states, d(s), that satisfies

dn(s") = ) dn(s) Pa(s, ") for every s’ € S.
seS

In other words, if the agent’s state is distributed according to the stationary distribution and it acts
according to its policy, then its next state will also follow the stationary distribution. Furthermore,
under additional mild conditions, the state distribution converges to d.(s) over the long run regard-
less of the starting state so:

dr(s) = TIEBO Pr(St = s), where Sy = 5o and S;+1 ~ Pr(S;, ) for all time steps ¢.

In continuing tasks, d.(s) measures the fraction of time the agent spends in state s. Frequently
visited states have higher values of d, and if d,(s) = O then s is called a transient state: it is only
visited a finite number of times and never again.

The average reward of a policy is simply defined as the average one-step reward, weighted by the
proportion of time spent in each state while following that policy:

F(m) = " dr(s) rals). @)

seS

For the purposes of this paper, we only consider stationary Markov policies, which do not change
with time and depend only on the current state, not previous history. For more details on MDPs and
average reward, refer to Puterman [1994].



3 An Optimization Objective for Continuing Tasks

We would like to find an objective for continuing tasks that is analogous to the sum of rewards in
episodic tasks. Such an objective should be a function that quantifies the performance of each policy
by a single number, so that any policy can be compared with any other and our goal of finding the
best policy amongst any class of policies becomes well-defined.

The founding principle of reinforcement learning is that an agent acts to maximize reward not just
in the present, but also over its future lifetime, which is potentially infinite in continuing tasks. The
optimality definition of (1) captures this idea — v2(s) represents the future reward (though not
infinitely far in the future) which the agent seeks to maximize at every state s.

A natural objective function, therefore, is the weighted average of v (s) with each state weighted by
u(s) — maximizing Y u(s) vi(s). The choice of u determines which states the agent prefers when it
cannot act optimally in every state simultaneously. We could contemplate evaluating policies using
their discounted value from the start state (setting u = uo, the initial state distribution), but this gives
undue importance to the early part of an agent’s lifetime, going against the never-ending nature of
the task. Indeed, the start states may never be revisited in a continuing task, so they do not deserve
special treatment. Moreover, the states experienced by a long-lived agent might not even be close
to the start states, so it seems nonsensical to ask the agent to maximize short-term reward at those
states.

The objective can be made more meaningful in two ways — either by making u representative of the
states the agent will actually experience over its lifetime, or by using a longer-term future reward.
The first corresponds to setting 4 = dr; we saw in Section 2 that d(s) is proportional to how
frequently the agent visits state s. The second alternative corresponds to increasing the discount rate
v — 1. We will see in Sections 3.1 and 3.2 that both these alternatives are, in fact, equivalent to the
average reward objective, and give the optimization problem

arg max Z de(s)rz(s) = argmaxi(m), (using (2))
mell

mell ses

where IT is the set of representable policies. This objective function captures a core tenet of rein-
forcement learning — that the agent’s actions should cause it to visit states where it can earn large
rewards. In continuing tasks, the agent should find policies that cause it to frequently visit these
highly rewarding states.

Another alternative is to set u to be an arbitrary weighting of states that is neither the initial state
distribution nor the stationary distribution.? If we let y — 1, then the choice of u is unimportant and
the objective is still the average reward (see Section 3.2). For a fixed y < 1, on the other hand, we
are maximizing the short-term future reward at a set of states that must somehow be communicated
to the agent (just like the reward, this is additional information that the agent would not otherwise
observe). In other words, the agent is being evaluated not on the continuing MDP, but rather on
another MDP with the same state transition probabilities P but a different start state distribution .
Such an objective function could be useful in certain applications, but it represents an extension of
the RL framework (similarly to off-policy objectives) and is beyond the scope of this paper.

3.1 The average reward objective in terms of discounted values

Interestingly, the average reward 7(r) has several equivalent formulations. While we defined it as an
average of the one-step reward weighted by the stationary distribution, it is equivalent to a weighted
average of the discounted values:

D dn(s) rals) = (1= ) D dals) v (s), forall0 <y < 1. 3)

seS seS

Intuitively, if the initial state is sampled from d, then all future states will have the same distribution
and the expected reward on every future time step will be 7(rr). Effectively, the stationary distribution
allows any weighted average over time (in this case, the normalized value function (1—y)v%(s)) to be
replaced with a weighted average over states [Singh et al., 1994; Sutton and Barto, 2018]. Indeed, the

ZWhite [2017] discusses weightings based on the stationary distribution but with an additional “interest
function”. For the purposes of this paper, these are generalizations of average reward.



same equivalence holds for any state-independent temporal discounting scheme (not just geometric)
as long the discount factors sum to a constant; the (1 — ) factor is replaced by the reciprocal of
that constant. This equivalence does not hold for hyperbolic discounting [Fedus et al., 2019], for
example, because the sum of discount factors diverges.

Theoretically, the definition in (3) implies that the policy that maximizes the average of future dis-
counted values (weighted by the stationary distribution, but with any discount factor) also maximizes
average reward. The discount rate thus becomes a hyper-parameter of the algorithm, rather than a
parameter specifying the optimization objective [Sutton and Barto, 2018].

Greedily maximizing discounted future value does not maximize average reward

At this point, it would be easy to conclude that any algorithm that maximizes discounted value must
also maximize average reward regardless of the discount factor, which seems absurd on the face of
it. We should indeed be skeptical — common algorithms like Q-learning or Sarsa estimate an action-
value function Q”(s, a) and behave (close to) greedily with respect to it. Such a local greedification
will not in general correspond to maximizing the average discounted value over time.

As an example, consider the two-choice MDP in Figure 1. State O is the only state with a choice
between two actions: left and right. Choosing left leads to an immediate reward of +1, and right
leads to a delayed reward of +2. For small discount factors, the immediate reward from going left
appears much more appealing than the discounted delayed reward. When the discount factor is
increased sufficiently, the right action becomes more appealing instead. For algorithms based on the
local greedification operator, the discount factor is not just a hyper-parameter of the algorithm — it
actually changes the problem being solved.

Y left  right Y

2 1 > 5 6
+1
( 0 )
+2
3 4 L 8 7
~_ 7 ~_ —
Figure 1: The two-choice MDP. This is a continuing MDP with only one action in every state

except state 0. Action left in state 0 gives an immediate reward of +1 and action right leads to a
delayed reward of +2 after five time steps.

Acting greedily with respect to a (discounted) value function is ultimately a solution method, not
a problem definition. We have previously argued that the discounted objective does not define a
meaningful optimization problem under function approximation. Although we cannot rule out the
possibility that discounting may form part of an algorithm for control in continuing tasks,? the danger
lies in naively transplanting algorithms from the episodic discounted setting to continuing tasks just
because the discounted future rewards are finite in both cases. Discounting should not be the only
(or even the first) algorithmic approach we consider when we set out to solve continuing RL tasks.

3.2 Increasing y — 1 does not solve the problem

Inspired by the previous example, one might consider using a discounted algorithm but taking the
limit as y — 1. Depending on how this limit is interpreted, however, it is either equivalent to the
average reward or algorithmically impractical.

Consider an optimal policy arg max, lim,—,1-(1 — y)vX(so). This objective does indeed avoid the
issues that come with a finite (discounted) time horizon. Furthermore, it is bounded, being the
weighted average of bounded rewards. Unsurprisingly, Bishop et al. [2014] show that this quantity
is equivalent to average reward; it is independent of the start state sp.

3For example, an algorithm might estimate v2 and maximize the right-hand side of the equivalence (3).
Because of that equivalence, y would simply be a tuning parameter of the algorithm. It would have no effect
on the objective being maximized, average reward. [Sutton and Barto, 2018, §10.4]



Unfortunately, that objective function contains a limit, making it hard to optimize in practice. In-
stead, algorithms find optimal policies for increasing discount factors — they exchange the maxi-
mization with the limit — lim,_,;- arg max (1 — y)vy(so) for some start state so.

In theory, the limiting policy does indeed exist and maximizes average reward; it is called the
Blackwell-optimal policy n*. In fact, this policy satisfies the optimality criterion (1) for every state
s as long as y > ", a critical discount rate that depends on the particular MDP. Intuitively, in
any given MDP, making a decision that is optimal over a sufficiently large horizon is equivalent to
optimizing average reward. Crucially, this horizon depends on the MDP and how long it takes for
actions to have consequences (in terms of reward), which is not known beforehand. The critical
discount rate is related to the maximum mixing time of the MDP. [Puterman, 1994]

There are two major obstacles to exploiting this theory to use discounted-value algorithms as
average-value algorithms for real-world RL problems. First, most algorithms that learn discounted
value functions become increasingly unstable as y increases to 1. Second, it is hard to estimate the
critical discount factor, because it is intimately tied to the unknown dynamics of the environment.
Denis [2019] discusses these issues more thoroughly. Thus, to ensure we find an optimal policy we
cannot settle for any fixed y < 1, forcing us into the y =~ 1 regime where our algorithms become
unusable. Algorithms that optimize the average reward objective do not rely on a discount factor
and automatically make decisions at the appropriate time horizon.

3.3 Maximizing average reward is algorithmically feasible

The average reward formulation has been long studied, and there are several dynamic programming
algorithms for finding optimal average reward policies; see Puterman [1994] and Bertsekas [2005].
Schwartz [1993] proposed the first reinforcement learning algorithm to maximize the undiscounted
average reward, variants of which were reviewed by Mahadevan [1996]. Of particular interest is
RVI Q-learning [Abounadi et al., 2001], a simple Q-learning-like algorithm with convergence guar-
antees. Furthermore, policy gradient methods are especially promising since the gradient of the
average reward objective has an elegant closed-form expression [Sutton et al., 2000]. Konda and
Tsitsiklis [1999] have proposed an actor-critic method for average reward.

4 Conclusions

Discounting in continuing reinforcement learning tasks raises serious conceptual problems that be-
come especially acute in the presence of function approximation. The key messages from this paper
are as follows:

* Discounted reinforcement learning is not an optimization problem. In continuing tasks, the
usual formulation does not correspond to the maximization of any objective function over a set
of policies.

* Function approximation is therefore incompatible with discounting. Not being an optimiza-
tion problem, the best representable policy is not well-defined in continuing tasks.

» Average reward reinforcement learning is an optimization problem. There is always an
optimal representable policy even with function approximation.

* Greedily maximizing discounted future value does not maximize average reward. Common
algorithms like Sarsa or Q-learning do not optimize the average reward, and they find different
policies depending on the discount factor.

* Increasing y — 1 does not solve the problem. The discount factor must be increased beyond
a critical point which is problem-specific and cannot be determined a priori. Moreover, most
algorithms become increasingly unstable as y approaches unity.

There are many open problems in average reward RL. While several relatively simple convergent
algorithms exist, further advances are needed in fundamental model-free and model-based learning
as well as topics like multi-step learning, off-policy learning, and options. Many of the recent
advances in optimization can be applied to improve algorithms for average reward.
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