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Abstract

We develop an off-policy actor–critic algorithm for learning an optimal policy from a
training set composed of data from multiple individuals. This algorithm is developed with a
view toward its use in mobile health.
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1 Mobile Health
In the behavioral health communities there is increasing interest in, and use of, mobile devices to
deliver treatments that target behavior change. Mobile devices can be used to provide treatment
when, where, and in the amount desired (Litvin et al., 2013; Kumar et al., 2013). Increasingly
scientists are looking to passive sensing (wearable devices, GPS, activity on the smartphone) and
self-report of internal states to individualize the intervention to the person in terms of when, how and
where to deliver treatment. Examples of internal states include level of craving and the perceived
need for assistance. Thus, scientists are developing treatment policies that encode, on the basis of
the passive and active sensor measures, sequential decisions regarding when, how and where to
deliver treatment. These treatment policies, also known as, Just-in-Time Adaptive Interventions
(Spruijt-Metz and Nilsen, 2014), dynamic tailoring (Kennedy et al., 2012), and intelligent real-time
therapy (Kelly et al., 2012), are being used to intervene on physical activity (King et al., 2013),
eating disorders (Bauer et al., 2012), alcohol use (Witkiewitz et al., 2014; Gustafson et al., 2014),
mental illness (Depp et al., 2010; Ben-Zeev et al., 2013), obesity/weight management (Patrick et al.,
2009) and other chronic disorders (Granholm et al., 2012; Kristjansdottir et al., 2013). In these
applications, and throughout much of mobile health, the treatment policies, e.g., decision rules that
input these measures and output when, how and which treatment to deliver are formulated using
domain expertise.

The main contribution of this paper is the development of an off-policy, batch, actor–critic
algorithm for use in learning treatment policies from a training set composed of data from multiple
individuals. Actor–critic algorithms have a long history in sequential decision making (Barto et al.,
1983; Grondman et al., 2012) primarily in the on-policy, online, setting. These algorithms have been
used in health, for example for on-policy, online glucose regulation in Type 1 diabetes (Daskalaki
et al., 2013). The first off-policy, online actor–critic algorithm was developed by Degris et al.
(2012) and has been deployed in robotic demonstrations (Gordon and Breazeal, 2014). All of these
algorithms are designed to learn using one long sequence of interactions. In contrast, Silver et al.
(2013) developed a on-policy, online temporal-difference algorithm for learning a policy based on
sequences of interactions with multiple individuals. Here too, we learn a policy from data from
multiple individuals; to our knowledge, this paper is the first off-policy, batch, actor–critic algorithm
for such use. We develop this algorithm with a view towards mobile health. We will provide a
first evaluation of the algorithm via a series of experiments and illustrate its use with data from
a smartphone study aimed at reducing heavy drinking and smoking. Here we consider learning
treatment policies that maximize the average reward.

1.1 Markov Decision Process and Average Reward
Consider a Markov decision process (MDP), with finite state space S and finite action space,
A. At time t, let St be the random variable denoting the state, At be the action, and Rt+1 be
the reward. The probability of the MDP transitioning to state s0 from state s under action a is
p (s0|s, a) = P {St+1 = s0|St = s, At = a}. The expected reward given that the system occupies
state s and action a is taken is r(s, a) = E (Rt+1|St = s, At = a); we assume r(s, a) is bounded
over all state, action pairs. We use ⇡ to denote a generic stationary policy; ⇡(a|s) is the probability
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that At = a given St = s under policy ⇡. Throughout we assume that, for all policies considered,
the Markov decision process is irreducible and aperiodic. Let d⇡(s) denote the stationary probability
of the Markov chain, S0, S1, . . ., being in state s under policy ⇡. Let E⇡ denote the expectation of
(St, At, St+1, Rt+1) under the steady state distribution, d⇡.

The average reward is given by,

⌘⇡ = lim
n!1

(1/n)E⇡

"
nX

t=0

Rt+1

���S0 = s0

#

=
X

s

d⇡(s)
X

a

⇡(a|s)r(s, a).

Under the irreducible assumption the above is independent of s0 (Yu and Bertsekas, 2009). The
differential value of the state s under policy ⇡ is

V ⇡(s) = lim
n!1

E⇡

"
nX

t=0

(Rt+1 � ⌘⇡)
���S0 = s

#
.

The Bellman equation is given by

V ⇡(s) =
X

a

⇡(a|s)
(
r(s, a)� ⌘⇡ +

X

s0

p(s0|s, a)V ⇡(s0)

)

for all states, s. Note that neither r(s, a), nor p(s0|s, a) depend on ⇡. Under the irreducible
assumption, V ⇡ is the unique solution of this equation up to the addition of a constant, independent
of s; the Bellman equation gives rise to a class of V ⇡ differing one from another by a constant. A
consequence of this is that in the critic algorithm to follow we need only learn one of these versions
of V ⇡.

Here we aim to learn stochastic treatment policies. One reason for this, is due to evidence that
some variation in actions help prevent/retard the development of habituation (user ignores action)
(e.g., Epstein et al., 2009). This evidence supporting variation may be partially due to the fact
that the MDP is an approximation to the underlying complex behavioral processes (indeed some
parts of the state space may be yet unknown)and thus even though theoretically the optimal policy
should be deterministic, variation may have desirable effects. Furthermore here we aim to learn
low-dimensional parametric stochastic treatment policies so as to facilitate information exchange
with mobile health scientists.

1.2 Training Data
The training data consists of n individuals; we assume that the data for each individual follows
an MDP in which the actions are selected according to a fixed behavior policy, µ(a|s) 2 (0, 1) for all
a 2 A, s 2 S . On each individual we observe a trajectory D = {S0, A0, R1, S1, A1, R2, . . . , ST , AT , RT+1}.
S0 is distributed according to an initial state distribution, d0. We assume that the trajectories are
independent across individuals and that they are identically distributed. Let Eµ (Pµ) denote the
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expectation of (probability concerning) {S0, A0, R1, S1, A1, R2, . . . , ST , AT , RT+1} under the be-
havior policy µ. Assume that the importance weight ⇡(a|s)/µ(a|s) takes values in [0, b] for some b,
finite and positive. Then, the Bellman equation implies that the average reward for policy ⇡ can be
written as

⌘⇡ = Eµ [⇢
⇡
t {Rt+1 � V ⇡(St) + V ⇡(St+1)}] (1)

for all t, where ⇢⇡t = ⇡(At|St)/µ(At|St).
The Bellman equation implies that V ⇡ satisfies

0 = Eµ [⇢
⇡
t (Rt+1 � ⌘⇡ + V ⇡(St+1)� V ⇡(St)) ft] (2)

for ft = f(St) for any f , a vector of bounded functions of state and for all t.

2 Batch, Off-Policy Actor–Critic Algorithm
Consider a class of parameterized policies, ⇡✓(a|s) for ✓ 2 Rq. The policies are differentiable in ✓

at all states, actions (s, a). For example in the experiments below, ⇡✓(a|s) = e�✓T �(s,a)
P

a0 e
�✓T �(s,a0) , where

�(s, a) is a q by 1 vector of features of the state and action and the parameter ✓ indexes the class of
policies. In the mobile health settings we envision, there will be only a small number of possible
actions and for interpretability, the dimension q will likely be small as well.

We aim to learn the value of ✓ that maximizes the average reward subject to stochastic-
ity constraints. In particular, for at least (1 � ↵)% of the states, the probability of selecting
an action in a given state should be at least p0 probability and no more than 1 � p0 probabil-
ity. This goal is operationalized here by aiming to learn argmax✓2⇥ ⌘⇡✓ subject to 1 � ↵ 
T�1

PT
t=1 Pµ [p0  ⇡✓(a|St)  1� p0, 8a] � 1� ↵.

In the following actor–critic algorithm, the actor algorithm improves the parameters of the
policy resulting in an updated policy. The critic algorithm learns an off-policy estimate of both the
differential value function and the average reward for the updated policy. The estimated differential
value and estimated average reward are then used by the actor algorithm to again update the policy.
In the next section, we develop and discuss the critic algorithm. In the subsequent section, we
develop the actor algorithm and combine the two in Algorithm 2.

2.1 The Critic Algorithm
Here we discuss off-policy, batch learning of the average reward and differential value function for
a given policy, ⇡. We consider linear approximations for V ⇡(s), specifically vTf(s) for f a p⇥ 1
vector of bounded features of the state. Thus, an algorithm for learning the average reward, ⌘, and
the parameters indexing the differential value, v, may be based on (2) and (1):

0 = Eµ

⇥
⇢⇡t
�
Rt+1 � ⌘ + vTft+1 � vTft

�⇤

0 = Eµ

⇥
⇢⇡t
�
Rt+1 � ⌘ + vTft+1 � vTft

�
ft
⇤
, (3)
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where ft = f(St). Note that these equations only involve the value of the feature vector f(s) up to
an additive constant. Here we consider feature vectors centered by their empirical mean, e.g., the
feature vectors are constrained to satisfy

PT
t=0 Pn[ft] = 0 where Pn[ft] = 1/n

Pn
i=1 f(Sit) and Sit

is the ith individual’s state at time t.
Define zt = (1, fT

t )
T and �t(⌘, v) = Rt+1 � ⌘ + vTft+1 � vTft. With this notation (3) can be

written as

Eµ [⇢
⇡
t �t(⌘, v)zt] = 0 (4)

for all t. Recall D = {S0, A0, R1, S1, A1, R2, . . . , ST , AT , RT+1}. An empirical version of (4) is

Pn

"
TX

t=0

⇢⇡t �t(⌘, v)zt

#
= 0, (5)

where Pn[g(D)] = 1/n
Pn

i=1 g(Di) in which Di represents the ith individual’s trajectory of states
and actions. The above can, in turn, be written as

b̂⇡ � Â⇡
⇣⌘
v

⌘
= 0

where Â⇡ = Pn

PT
t=0 ⇢

⇡
t

⇣
1
ft

⌘⇣
1

ft�ft+1

⌘T
�

and b̂⇡ = Pn

hPT
t=0 ⇢

⇡
t

⇣
1
ft

⌘
Rt+1

i
.

We use penalization to control the overfitting due to the high-dimensionality of the features and
to ensure uniqueness of the solution as follows. Given a tuning parameter, �c � 0, we minimize a
“penalized" norm of the empirical version of (4),

���
���b̂⇡ � Â⇡

⇣⌘
v

⌘���
���
2

2
+ �c||v||22 (6)

for ⌘̂ and v̂. The minimizer of this equation satisfies

⇣
Â⇡

⌘T

b̂⇡ =

⇢⇣
Â⇡

⌘T

Â⇡ + �cĨp+1

�✓
⌘̂

v̂

◆
(7)

where Ĩp+1 =
⇣

0 0Tp
0p Ip

⌘
. In the experiments below we select the tuning parameter �c by cross-

validation (Hastie et al., 2009). The critic algorithm is shown in Algorithm (1).

2.2 The Actor and Actor–Critic Algorithms
Recall from (1) that the average reward under policy ⇡✓ is given by Eµ [⇢

⇡✓
t {Rt+1 + V ⇡✓(St+1)� V ⇡✓(St)}]

for all t. The critic algorithm approximates the differential value by a linear approximation, i.e.,
V ⇡✓(s) = vT✓ f(s). Thus a possible objective function for the actor algorithm is

J(✓) = Pn

"
TX

t=0

⇢⇡✓
t

�
Rt+1 + v̂T✓ ft+1 � v̂T✓ ft

�
#
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Algorithm 1 Critic Algorithm
Input: ✓, D = {Di, i = 1, . . . , n}, f, µ
⇡ = ⇡✓

⇢ = ⇡/µ
Select �c to minimize the first term in (6) via k-fold cross validation
Calculate Â⇡, b̂⇡ from D, f, ⇢
Solve for

�
⌘
v

�
in

⇣
Â⇡

⌘T

b̂⇡ =

⇢⇣
Â⇡

⌘T

Â⇡ + �cĨp+1

�⇣⌘
v

⌘

to obtain
�
⌘̂
v̂

�

Output: J(✓) = ⌘̂

where v̂✓ is provided by the critic. That is v̂✓ is given by v̂ from (7) for ⇡ = ⇡✓. See Maei (2013) for
a similar objective function in the off-policy discounted horizon setting.

Because J(✓) is not concave and tends to be flat for large entries in ✓, we use a quadratic penalty
to stabilize the optimization, namely

J(✓)� �a✓
T⌃✓, (8)

where ⌃ is a matrix (here we use ⌃ = Pn

PT
t=1 �(St, At)�T (St, At)) and �a � 0 is a tuning

parameter. This penalty shrinks ✓ toward zero so that the estimated policy is shrunk toward a
uniform policy over actions. The tuning parameter on the penalty, �a, is selected to ensure that
the learned treatment policy will, for (1 � ↵)% of the states, select each action with at least p0
probability, e.g., 0.05, and no more than 1� p0 probability.

The actor algorithm performs the maximization of (8) over ✓ 2 Rq. In the experiments and
the data example below, the solution to the maximization is computed using the Broyden-Fletcher-
Goldfarb-Shanno (BFGS) algorithm with multiple random starting values to avoid local maxima.
We use the implementation of BFGS with a finite-difference approximation to the gradient in the
optim function of R (https://stat.ethz.ch/R-manual/R-devel/library/stats/html/optim.html). The
BFGS algorithm is iterative, repeatedly calling the critic algorithm to obtain J(✓) for different
values of ✓.

The actor algorithm is represented by the maximization steps in the batch, off-policy, actor–critic
algorithm given in Algorithm 2. Note that if p0 is less than 1/K where K is the number of possible
actions and ⌃ is full rank then the while loop will terminate. This will occur because a very large
tuning parameter, �a will lead to a solution for ✓̂ that is close to a vector of 0’s and in this case
⇡✓̂(a|s) is approximately equal to 1/K for all states, s and actions a.
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Algorithm 2 Batch, Off-Policy, Actor–Critic Algorithm
Input: D, f, µ, ⌃, p0, �min

a , � > 0
�a = �min

a

Actor Step: ✓̂ = argmax✓
�
J(✓)� �a✓T⌃✓

 

while mina T�1
PT

t=1 Pn

⇥
1p0⇡✓̂(a|St)1�p0

⇤
< 1� ↵ do

�a = �a +�
Actor Step: ✓̂ = argmax✓

�
J(✓)� �a✓T⌃✓

 

end while
Output: ⇡✓̂

3 Experiments
We first use a series of experiments to examine the finite sample performance of the actor–critic
algorithm. Second we apply the actor–critic algorithm to a data set concerning a mobile health
intervention for college students who drink heavily and smoke cigarettes (Witkiewitz et al., 2014).
In both cases the actions are binary, coded to take values in {0, 1}. Here, a = 1 means providing
the active treatment, e.g., sending an intervention to the subject’s mobile device, and a = 0 means
no treatment. We restrict to classes of policies of the form ⇡✓(1|s) =

�
1 + exp(✓T�(s))

 �1 where
✓ 2 Rq. In these experiments, the critic algorithm uses 2-fold cross-validation (other choices of the
number of folds are possible: (Hastie et al., 2009)) to select �c.

3.1 Simulated Experiments
Define ⇡opt to be the solution to max✓2Rq ⌘⇡✓ subject to T�1

PT
t=1 Pµ [p0  ⇡✓(1|St)  1� p0] �

1 � ↵. Throughout we set p0 = ↵ = .05. We use the performance of ⇡opt as a gold standard in
assessing the performance of the actor–critic algorithm; ⇡opt is computed by approximating ⌘⇡✓

using the generative model and optimizing ⌘⇡✓ using the BFGS algorithm with an exact penalty
to enforce the constraint (Bertsekas, 2014). To form a clinically relevant baseline for comparison
we also consider the constant policy ⇡const(1|s) ⌘ 1 for all s. The constant policy aligns with the
common perspective that more treatment leads to better patient outcomes, however, such a policy
risks over-burdening the patient potentially leading to poor average reward.

We compare the proposed actor–critic algorithm, with the use of the optimal policy, ⇡opt, and the
constant policy ⇡const in terms of average reward. For any policy ⇡ we calculate the average reward,
⌘⇡, using a large independent test set generated using ⇡. We measure of the performance of the
actor–critic algorithm via Eµ [⌘⇡b✓ ]; note ⌘⇡b✓ depends on the training data via b✓, thus the expectation,
Eµ.

In the experiments the subjects’ trajectories {S0, A0, R1, S1, A1, R2, . . . , ST , AT , RT+1} are
i.i.d. and are simulated as follows. The behavior policy selects the action coded 1 with probability .6
throughout (i.e., µ(1|s) = .6 for all states s). The state, St, is a p1 ⇥ 1 vector. For ⇢ 2 (0, 1) define
AR(⇢) to be the p1 ⇥ p1 matrix (AR(⇢))ij = ⇢|i�j|. In the following class of generative models, the
evolution of all of the states except the “burden" state, St,3, is according to a stochastic linear system.
The burden, St,3, is generated so that when treated, the burden increases approximately linearly
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with slope 0.5 and when not treated, the treatment burden decreases approximately geometrically
with rate 0.90; in particular E[St,3|St�1,3 = s3, At�1 = 1] = 0.95s3 + 0.5 whereas E[St,3|St�1,3 =
s3, At�1 = 0] = 0.9s3. The initial state and action are generated by S0 ⇠ Normalp1 {0,AR(0.5)}
and for t � 1,

⇠t ⇠ Normalp1+1(0, I),

Ut ⇠ Uniform[0, 1]2,

St,1 = 0.5St�1,1 + 2⇠t,1,

St,2 = 0.25St�1,2 + 0.125At�1 + 2⇠t,2,

St,3 = 0.9St�1,3 + 0.1St�1,3Ut,1At�1 + Ut,2At�1,

St,j = 0.25St�1,j + ⇠j, j = 4, . . . , p1,

Rt+1 = 10 + 0.25St,1At(0.04 + 0.02St,1 + 0.02St,2)

�⌧St,3 + 0.16⇠t,p1+1.

This class of models is indexed by the number of state variables, p1 and ⌧ where ⌧ represents the
impact of burden St,3 on the reward. Note that in this generative model, St,3 does not influence how
the current action (At) impacts the reward, but rather leads to an overall reduction in the current
reward regardless of the the present action At. With the exception of the noise variables, St,j, j � 4,
the effect sizes in the generative model are loosely based on the BASICS-Mobile data presented in
the next section.

We use a linear approximation to the differential value of the form vTf(s). The feature vector,
f is constructed from state s 2 Rp1 using a special case of multivariate adaptive regression
splines (Friedman, 1991). In particular, define cj,k, k = 1, . . . , 10 to be the sample deciles of the
jth component of the state vector. The feature vector, f consists of the vector of all singletons
and pairwise products of piecewise linear splines in the set: {(sj � cj,k)+, (cj,k � sj)+, j =
1, . . . , p1, k = 1, . . . , 10} (note (u)+ = max(0, u)). Thus, p, the dimension of the feature vector, f
is on the order 600p21. To reduce computation we exclude, from f , basis functions that are zero for
more than 80% of the observed states in the training set. As mentioned previously, these features
are centered to have empirical mean zero as the differential value is only defined up to an additive
constant.

In all simulated experiments we use training sets of n = 25 individuals observed over T = 25
time points. The average reward is calculated for a policy ⇡ by averaging the rewards from the last
9,000 elements a trajectory of length 10,000 under the policy ⇡. Expectations with respect to the
distribution underlying the training set, Eµ, are approximated using 100 Monte Carlo replicated
training sets.

We consider the following experiments to illustrate different aspects of the actor–critic algorithm:

(S1) In this example, the state vector, St has dimension p1 = 3, and each member in the policy
class has q = 4 parameters, an intercept plus coefficients of St,1, St,2, St,3. The burden effect
parameter, ⌧ ranges from 0.20 to 0.60; as ⌧ moves across this range, the performance of the
constant policy decreases by approximately 50%. The purpose of this example is to assess
how well the proposed actor–critic algorithm learns a policy with average reward that tracks
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the average reward of the optimal policy as the effect of burden changes. Also this example
illustrates the effect of burden on the constant (always treat) policy relative to the learned and
optimal policies. A brief description of how the optimal policy is computed was given at the
beginning of Section 3.1. Figure (1) shows Eµ [⌘⇡✓̂ ], the gold standard, and the constant policy.
Recall Eµ [⌘⇡✓̂ ] is approximated by an average of 100 ⌘⇡✓̂’s learned from 100 Monte-Carlo
replications of the training set. Tick marks indicate the 5th and 95th percentiles over the 100
⌘⇡✓̂ ’s. In this example the average reward of the proposed algorithm tracks the gold standard
closely while the constant policy performs poorly, especially as burden increases.

(S2) In this example the burden effect ⌧ = 0.4; the dimension of the state vector, St ranges from
p1 = 3 to p1 = 10, and each member in the policy class has q = 4 parameters, an intercept
plus coefficients of St,1, St,2, St,3. Thus, in this example, when p1 > 3, there are additional
noise variables used to approximate the differential value but these variables are not used
in the policy class. This example reflects our perspective that in mobile health scientists
are accustomed to identifying important variables that might enter policies based on their
expertise, but do not have experience in identifying important variables for the differential
value. The optimal policy is the same as in (S1) for ⌧ = 0.4. Figure (2) provides the results.
The average reward for the proposed algorithm tracks the gold standard (which is unaffected
by noise variables) and remains stable as the number of noise variables added to the model
increases.

(S3) In this example ⌧ = 0.4, p1 ranges from 3 to 10, and q = p1 + 1. This example represents
the setting where noise variables are included in both the policy and the approximation to
the differential value. The optimal policy is the same as in (S2). Figure (3) shows that
the proposed algorithm is relatively robust to noise variables in the policy even in data-
impoverished settings with both T and n small.

(S4) In this example ⌧ = 0.4 and we consider the setting where p1 = 3 but one of the three state
variables, St,1, St,2, St,3, have been omitted from the policy (q = 3). The optimal policy
which includes an intercept and St,1, St,2, St,3 is the same as in (S1) when ⌧ = 0.4. Figure
(4) illustrates that omitting the state variable, encoding burden, St,3, generally reduces the
median outcome but also reduces variability. We conjecture that this is due to the fact that in
the generative model for Rt+1, St,3 does not interact with the action, At.

3.2 BASICS-Mobile
BASICS-Mobile is a mobile intervention targeting smoking and heavy episodic drinking by college
students (Witkiewitz et al., 2014). Mobile interventions are attractive because of their ability to
provide feedback about drinking or smoking as the person goes about his/her daily life. This
intervention contained treatment modules targeting drinking as well as smoking. These modules
contained 1-3 mobile phone screens of content and are interactive in that the student answers brief
questions with responses from the system tailored to their answers. Example modules are a module
that provides feedback about smoking, comparing the student’s smoking level with the smoking
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levels of similar students and a module that provides strategies to help the student recognize urges
to smoke and strategies for managing smoking urges.

An interesting question that arises in this setting is when to provide treatment modules. The
modules can be burdensome often encouraging students to think about something that they might not,
at the time, be receptive to thinking about. Students may be less responsive to a treatment module
if for example, they are already feeling burdened by the mobile intervention or if they are feeling
depleted, depressed or stressed out in the moment. These latter âĂIJself-control demandsâĂİ include
the need to regulate mood, control thoughts or deal with stress and may decrease a studentâĂŹs
willingness to complete the module. In the following we use the actor–critic algorithm to learn a
proposal for a treatment policy that would pinpoint when to provide treatment modules.

The study enrolled 29 students; we use data from n = 27 students, omitting data from two
students with large amounts of missing data. All other missing data was singly imputed with the
fitted value from a local polynomial regression of the state variable on time t. The study lasted
14 days and on the afternoon and evening of each day, treatment modules may be provided, thus,
there are T = 28 time points per student. To be available to receive a treatment module a student
must first complete a list of self-report questions. For each student and at each time point define the
availability indicator, It = 1 if the student is available, that is, the student completes the self-report
questions, and It = 0 otherwise. Students completed the self-report questions 86% of the time in
this study and thus were available for a treatment module at 85% of the time points. If a student is
available at a time point then the student may be provided a treatment module (At = 1) or a general
informational/health module (At = 0). So At can only occur at a time t, if It = 1. A treatment
module is delivered, i.e., At = 1, approximately 2/3 (.68) of the times that It = 1. Because it
is not feasible to provide treatment modules when It = 0, the class of policies is of the form
⇡✓(1|s) = It

�
1 + exp(✓T�(s))

 �1, where �(s) is a feature vector.
Consistent with the discussion above indicating that it might not be beneficial to provide a

treatment module at each time point, the measurements that we include in the policy should act
as proxies for self-control demands and treatment burden. One of the self-report questions is a
measure of self-control demands: “how much do you feel that you need to control or fix your mood,”
coded as 0-4 (not at all to very much). In the policy we include the change from the prior time to
the current time in self-control demands, deltacontrol: an indicator coded by 1 for increase
and 0 otherwise. As a proxy for treatment burden we use past availability; recall availability is
coded by 1 if the student completes the self-report questions and by 0 otherwise. A student who is
feeling burdened by the intervention may ignore the requests by the mobile device to answer the
questions or may stop midway through the questions. In the policy we include, burden: coded by
1 if It�1 = 1 and 0 otherwise.

In addition to the above two measurements, the state vector at each time t consists of a further six
measurements: (i) smoke: the average number of cigarettes smoked per hour since the last report;
(ii) pastsmoke: smoke at the preceding time point; (iii) pasttxt: an indicator of treatment at
the last time point, e.g., At�1 if It = 1 and 0 otherwise; (iv) urge: student reported agreement with
the statement “I have a strong urge for a cigarette now,” coded 0-4 (strongly disagree to strongly
agree) (v) pasturge: urge at the preceding time point; and lastly (vi) current availability, It.

The feature vector indexing the policy contains an intercept, deltacontrol and burden
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Table 1: Coefficients indexing estimated optimal policy for BASICS-Mobile data. A student with
no increase in self-control demands and who is not indicating burden is recommended treatment
with probability 0.75 whereas a student who has experienced an increase in self-control demands
and who is indicating burden is recommended treatment with probability .51.

VARIABLE b✓
INTERCEPT 0.45
DELTACONTROL -0.42
BURDEN 0.63

(e.g. q = 3). In a similar manner to the simulated experiments, the tuning parameter, �c is selected
so that

P28
t=1 Pn[.05⇡✓(1|St).95

T
It=1]P28

t=1 Pn[It=1]
� .95. The differential value is approximated by a linear

combination of MARS basis functions as in the experiments; all eight variables are used to construct
the basis functions. The reward is the negative of smoke measured subsequent to treatment.

The coefficients indexing the learned policy are displayed in Table (1). Under the learned
policy a student with no increase in self-control demands and who is not indicating burden is
recommended treatment with probability 0.75 whereas a student who has experienced an increase
in self-control demands and who is indicating burden is recommended treatment with probability
.51. This proposed policy is consistent with the above discussion that students feeling self-control
demands and/or experiencing treatment burden are less receptive to a treatment module and thus
delivering a treatment module is less likely to be useful in reducing smoking.
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Figure 1: Average reward for simulation setting (S1). The actor–critic algorithm (solid) tracks the
gold standard (dotted). As burden increases the performance of the constant policy (dashed line)
decreases rapidly.
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Figure 2: Average for simulation setting (S2); recall that ⌧ = 0.4 is fixed. As the number of noise
variables in the approximation for the differential value increases the performance actor–critic
algorithm (solid) does not appear to deteriorate. There are no noise variables in the policy.
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Figure 3: Average for simulation setting (S3); recall that ⌧ = 0.4 is fixed. The addition of noise
variables into the policy as well as in the approximation to the differential value only moderately
increases the variability, across training sets, in the average reward of the learned policy.
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Figure 4: Average for simulation setting (S4); recall that ⌧ = 0.4 is fixed. Omitting the state St,3

is associated with a decrease in the median average award as well as a decrease in the variability,
across training sets, of the average reward of the learned policy.
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4 Discussion and Future Directions
This work represents a first start toward learning policies from training data sets. The robustness
of results to the use of noise variables in approximating the differential value is promising and
indicates that perhaps this approximation can be automated. Such would reduce the burden and
enable domain scientists to focus on which information should be in the state and which state
information should be part of the policy. Critical generalizations include incorporating baseline data
(e.g. gender, severity of disorder, genetics) into the algorithm and providing measures of confidence
for the ✓ parameters in the policy so that domain scientists can decide whether potentially expensive
variables should be collected in order to roll out the policy. Also measures of confidence would
enable domain scientists to test behavioral theories.
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