
University of Massachusetts, Amherst Technical Report Number 98-70 1

Macro-Actions in Reinforcement Learning: An Empirical

Analysis

Amy McGovern and Richard S. Sutton

{amy|rich@cs.umass.edu}
Computer Science Department

University of Massachusetts, Amherst

Amherst, MA 01003

November 22, 2005

Abstract

Several researchers have proposed reinforcement learning methods that obtain ad-
vantages in learning by using temporally extended actions, or macro-actions, but none
has carefully analyzed what these advantages are. In this paper, we separate and an-
alyze two advantages of using macro-actions in reinforcement learning: the effect on
exploratory behavior, independent of learning, and the effect on the speed with which
the learning process propagates accurate value information. We empirically measure
the separate contributions of these two effects in gridworld and simulated robotic envi-
ronments. In these environments, both effects were significant, but the effect of value
propagation was larger. We also compare the accelerations of value propagation due
to macro-actions and eligibility traces in the gridworld environment. Although eligi-
bility traces increased the rate of convergence to the optimal value function compared
to learning with macro-actions but without eligibility traces, eligibility traces did not
permit the optimal policy to be learned as quickly as it was using macro-actions.

1 Introduction

Many problems in artificial intelligence are too large to be solved practically at the level

of the most primitive actions. One strategy for overcoming this difficulty is to combine

smaller actions into larger, temporally-extended actions, thus reducing the effective length

of the solutions. For example, Korf (1985), Laird et al. (1986), and Iba (1989) have studied

the use of macro-operators, or fixed sequences of actions treated as single larger actions.

They and others have shown that searching with macro-operators can yield solutions much

more quickly than when search is restricted to primitive actions.

The work described in this paper is part of an ongoing effort to understand how we

can achieve something similar in the realm of reinforcement learning and Markov decision

processes. This framework is appealing because the temporally extended actions are not

limited to open-loop sequences, but can be closed-loop subpolicies that are conditional on

environmental events.

Many researchers have explored issues related to temporally extended actions, modu-

larity and hierarchy in reinforcement learning (e.g., Lin, 1993; Kaelbling, 1993; Dayan &

Hinton, 1993; Singh, 1992). Recently, several researchers have focused on a representation

of temporally extended actions as the combination of a policy and a termination condition

(e.g., McGovern, Sutton, & Fagg 1997; Parr & Russell, 1997; Precup, Sutton, & Singh,

1998; Dietterich, 1998; Hauskrecht et al., 1998; Huber & Grupen, 1997). Some of this re-

search has extended the theory of reinforcement learning with temporally extended actions

and some has proposed new methods for learning and planning with such actions. In this

paper, we use the term macro-actions to refer to temporally extended actions, whereas

Sutton, Precup, & Singh (1998) use the term options. Options may be either multiple

step policies or primitive actions while macro-actions are restricted to temporally extended

actions. This paper focuses on analyzing the effects of macro-actions in accelerating (or

decelerating) learning.

2 Reinforcement Learning and Macro-actions

Reinforcement learning is a collection of methods for approximating optimal solutions to

stochastic sequential decision problems (Sutton & Barto, 1998). A reinforcement learning

2

system does not not require a teacher to specify correct actions. Instead, the learning agent

tries different actions and observes the consequences to determine which are best. More

specifically, in the reinforcement learning framework, a learning agent interacts with an

environment at some discrete time scale t = 0, 1, 2, 3, At each time step t, the environ-

ment is in some state, st. The agent chooses an action, at, which causes the environment

to transition to state st+1 and to emit a reward, rt+1. The next state and reward depend

only on the preceding state and action, but they may depend on it in a stochastic fashion.

The objective is to learn a (possibly stochastic) mapping from states to actions called a

policy, π, which maximizes the cumulative discounted reward received by the agent. More

precisely, the objective is to choose action at, for all t ≥ 0, so as to maximize the expected

return, E
{∑∞

i=0 γirt+i+1
}
, where γ ∈ [0, 1) is a discount-rate parameter.

A common solution strategy is to approximate the optimal action-value function, Q∗,

which maps state-action pairs (s, a) to the maximal expected return that can be obtained

starting in state s and taking action a:

Q∗(s, a) = max
π

E {rt+1 + γrt+2 + · · · |st = s, at = a} .

In this paper we use a method to approximate Q∗ known as one-step tabular Q-learning

(Watkins, 1989). In this method, the approximation to Q∗ is represented by a table with an

entry, Q(s, a), for each state-action pair. After each transition from state st to state st+1,

under action at and with reward rt+1, the estimated action value Q(st, at) is updated by:

Q(st, at) ← Q(st, at) + α
[
rt+1 + γ max

a
Q(st+1, a)−Q(st, at)

]
, (1)

where α is a positive step-size parameter.

Macro-actions are policies with termination conditions. On each time step, the agent

can choose either a macro-action or a primitive action, unless it is already executing a

macro-action. Once the agent has chosen a macro-action, it selects the primitive actions in

accordance with the macro-action’s policy until the macro-action’s termination condition

is satisfied. For example, walking from the lab to the cafeteria could be a macro-action.

This macro-action enables the walker to skip thinking or planning at the level of muscle

movements or even at the level of gross body movements. If a pile of snow is encountered

along the way, the walker can safely change the primitive actions of walking to keep from

falling while still executing the macro-action of going to the cafeteria.

3

To provide for learning when to select macro-actions, we extend the notion of the optimal

action-value function, Q∗, to include macro-actions. That is, for each state s and macro-

action m we define a macro value Q∗(s,m), as the maximal expected return given that

we start in state s and take macro-action m. This definition naturally leads to an update

rule: Upon each termination of a macro-action, its value is updated using the cumulative

discounted reward received while executing the macro-action and the maximum value at

the resulting state. More precisely, after a multi-step transition from state st to state st+n

using macro-action m, the approximate action value Q(st,m) is updated by:

Q(st,m) ← Q(st,m) + α
[
r + γn max

a
Q(st+n, a)−Q(st,m)

]
, (2)

where the max is taken over both actions and macro-actions, and

r = rt+1 + γrt+2 + · · ·+ γn−1rt+n.

This is a discrete-time version of the Semi-Markov Decision Process Q-learning method

studied by Bradtke & Duff (1996) and proven to converge by Parr (1998). The algorithm

that we focus on in this paper performs update (2) as well as the conventional Q-learning

update for each primitive action given by (1). We call the resulting algorithm Macro Q-

learning (McGovern, Sutton, & Fagg, 1997).

3 Illustrative Example

As an illustration of the effects of macro-actions on learning, consider the two gridworld

environments shown inset in Figure 1. The task in each case is to travel from the start

state labeled “S” to the goal state labeled “G” as quickly as possible. Each gridworld is

11 states long, 11 states high, and is surrounded by four walls. There are four primitive

actions, up, down, right, and left, which have stochastic effects: 75% of the time each

action causes motion in the named direction, and 25% of the time each action causes a

motion in one of the three other directions. In any event, if the movement would take the

agent into a wall, then the agent remains in the same state. There are also four macro-

actions: macro-up, macro-down, macro-right, macro-left. Each macro-action takes the

corresponding primitive-action as many steps as needed (possibly zero) until the agent

4

20 40 60 80 1000

100

200

300

400

Q

Macro Q

G

S

Episodes Episodes

Steps
per

Episode

20 40 60 80 1000

100

300

500

700

Q

MacroQ

G

S

Edge-goal Center-goal

Figure 1: Comparison of Q-learning and Macro Q-learning on two gridworld navigation

tasks. Each line is averaged over 30 runs.

reaches a wall. The macro-action terminates just before hitting the wall. Note that one

gridworld has the goal at the edge of the grid whereas the other has the goal in the center.

We applied Q-learning and Macro Q-learning to both environments. In both cases, ac-

tions were selected according to the ε-greedy method (Sutton & Barto, 1998). The learning

parameters were α = 0.05, ε = 0.05, and γ = 0.9. Figure 1 shows the number of primitive

steps used to transition from the start state to the goal state for 100 episodes of each al-

gorithm. An episode consists of one trajectory from the start state to the goal state. Each

data point is an average over 30 runs, where a run is a fixed number of episodes starting with

a different random seed. In the edge-goal environment, Macro Q-learning converged to the

optimal policy much faster (approximately five episodes) than Q-learning (approximately

50 episodes). However, in the center-goal environment, Q-learning converged much more

quickly (approximately 40 episodes) than Macro Q-learning (greater than 100 episodes).

This experiment demonstrates the intuitive idea that macro-actions will sometimes help

and sometimes hinder learning, depending on their appropriateness to the task. In the next

two sections we isolate and evaluate two different hypotheses about how macro-actions af-

fect the rate of learning. The first hypothesis is that macro-actions influence the exploratory

behavior of the agent such that more relevant states are visited more often. The second hy-

pothesis is that the macro-action backup propagates correct value information more widely

5

Without Macro-Actions With Macro-Actions

2000

8000

2000

8000

Figure 2: State-visitation histograms for the gridworld environment when randomly selecting

from the primitive actions (left) or both primitive and macro-actions (right).

and more rapidly. We analyze these two effects first in these gridworld environments and

then in a larger simulated robot task.

4 Hypothesis 1: Effect on Exploration

We first consider the hypothesis that macro-actions bias the behavior of the agent to

spend more time in relevant states, i.e., states that are closer to the goal. In the case of

the gridworlds described above, we hypothesize that the macro-actions cause the learner to

spend the majority of its time near the edges of the grid.

To examine this effect independently of learning effects, we measured how often each

state was visited when primitive actions and macro-actions were selected at random. We

used the same gridworlds as described above (Section 3) but with no goal state. Each agent

started in the lower left hand corner state, chose an action at random, and transitioned

to a neighboring state. This continued for 500,000 steps. Figure 2 shows two histograms

indicating how often each state was visited on average when actions were selected randomly

from the primitives (left panel) and from both the primitives and the macro-actions (right

panel) for the 500,000 steps. These histograms average over 30 runs. In the case with only

primitive actions, all states were visited equally often, whereas with the macro-actions the

6

edge states were visited much more often than the other states.

This difference in exploratory behavior, independent of learning, explains part of the

performance differences between Q-learning and Macro Q-learning observed in the experi-

ment described in Section 3. When macro-actions were taken, the goal state in the edge-goal

gridworld was visited on average about 5556 times out of 500,000 steps. With only primi-

tive actions, this state was visited only about 4097 times. However, this difference does not

seem large enough to fully explain the dramatic performance differences shown in Figure

1. Another possibility is that the Macro Q-learning algorithm may be more efficient at

learning the value function than conventional Q-learning.

5 Hypothesis 2: Effect on Value Propagation

Our second hypothesis about the effect of macro-actions on learning is that they affect

the rate at which correct action-values propagate through the state space. In one-step Q-

learning, values propagate backwards one time step per backup. However, when backing

up macro values, value information can propagate over several time steps. When a macro-

action takes the agent to a good (or bad) state, the macro value for the state in which the

macro-action was chosen is updated immediately with useful information even though that

state may be many primitive actions away from the good state.

To examine the effect that macro-actions have on the rate of value propagation indepen-

dent of behavior, we compared the propagation rate for Q-learning and Macro Q-learning

when operating on exactly the same experience. This experience was generated by the

random selection among both primitive and macro-actions as described in the experiment

in Section 4. Each algorithm was applied separately to this experience. By applying each

algorithm to the same behavior, we eliminate any effect due to state visitation differences,

and the effect of macro-actions on value propagation can be seen more clearly.

Figure 3 shows two snapshots of the average value propagation for the two algorithms.

The first row shows the values after the goal has been reached twice, and the second row

shows the values after the goal has been reached 13 times. Each graph is the average over

30 runs. After the goal state had been reached only twice, Macro Q-learning, on average,

had already learned non-zero values for states all the way back to the start state. This is

shown in the first row of Figure 3. In fact, the greedy policy formed by evaluating Macro

7

Q-learning Macro Q-learning

After reaching the

goal twice

G

S

G

S

After reaching the

goal 13 times

G

S

G

S

Figure 3: Comparison of the propagation of state values by Q-learning and Macro Q-learning

for the same behavior early and late during learning. Circle area is proportional to the

maximum of the action values (Q-learning) or action and macro values (Macro Q-learning)

in that state.

Q-learning’s value function at this point was already effective in bringing it to the goal.

In contrast, Q-learning had only learned a few action values, and its greedy policy was

not effective in bringing it from the start state to the goal state. After reaching the goal

13 times, Macro Q-learning had good value information on all but 3 states in the average

case, while Q-learning was missing values for 39 states. Also, the values were propagated

differently by the two algorithms. While Q-learning spread the values backwards from the

goal almost uniformly on average, Macro Q-learning first spread the information around

8

the edges of the grid, and then into the center.

Clearly, adding macro values to the backup equation affects the propagation rate of

value information. This can lead to faster convergence to the optimal policy. In the next

section we discuss how this effect compares to the effect of eligibility traces.

6 Comparison with Eligibility Traces

Eligibility traces are a well-known mechanism for speeding value propagation in rein-

forcement learning. Each state-action pair is marked as eligible for backup with a trace

indicating how recently it has been experienced. Then, on each step, the values of all

state-action pairs are updated in proportion to their eligibility traces at the time. Because

many recent state-action pairs may have non-zero traces, value information is propagated

backwards many steps and may become accurate more quickly. In these experiments we

use standard replacing eligibility traces (Singh & Sutton, 1996).

Figure 4 compares the performance of Q-learning and Macro Q-learning with the el-

igibility trace method known as Watkins’s Q(λ) (Watkins, 1989; Sutton & Barto, 1998)

on the edge-goal gridworld, when processing the same random experience as used in the

experiment described in Section 5. Again, by using a fixed behavior, we isolate the effect

of the algorithm on value propagation from any effects of experience. For Q(λ) we used a

variety of values for the trace parameter, λ ∈ [0, 1], which determines the duration of the

traces, that is, how quickly they fade away, or how far back values propagate during a single

episode. We used λ values to produce half-lives of 2, 4, 8, 16, 32, and 64 time steps, and

also λ = 1, corresponding to infinite-length traces.

We evaluated Q(λ) Macro Q-learning, and Q-learning in two ways. To evaluate the

convergence to the optimal action-value function, we calculated the optimal action-value

function, Q∗, using Dynamic Programming and summed the absolute differences between

the optimal action-value function and the current learned value function after each time the

goal was reached. To evaluate the optimal policy, we froze the value function and evaluated

it greedily. This was done after each time the agent reached the goal state. Figure 4 shows

the results of these experiments.

Q(λ) with λ > 0 converged to the optimal policy faster than one-step Q-learning, but

Macro Q-learning was faster still (Figure 4, left panel). However, Q(λ) with λ > 0 converged

9

10 20 30 40 50 600

100

200

300

400

Macro Q-learning

Q

Q(λ)

Episodes

Steps/Episode
under the

greedy policy

0 20 40 60 80
10

15

20

25

Episodes

Q

Q(λ)
Macro Q-learning

2 steps

4 steps

8 steps
16,32
64,∞

Total
RMS Error

from Q*

Figure 4: Comparison with Q(λ) on the edge-goal task, with experience held constant (ran-

dom selection among both primitive and macro-actions). Averages over 30 runs.

to the optimal action values more quickly than either Q-learning or Macro Q-learning (Fig-

ure 4, right panel), and Macro Q-learning converged more quickly than one-step Q-learning.

Q(λ) learned the optimal value function more quickly because it disseminated the value in-

formation at an even more rapid rate than Macro Q-learning. However, it accomplished this

at the cost of the policy. Macro Q-learning learned values for the edge states first (as shown

in Section 5). Because these states are on the path from the start state to the goal state,

Macro Q-learning learned correct action-values for the relevant states faster than Q(λ) and

was able to learn the optimal policy more quickly.

With appropriate macro-actions, convergence to the optimal policy and the optimal

action-value function can be faster than learning without macro-actions. Combining eligi-

bility traces with macro-actions may produce an even more efficient algorithm.

7 A Larger Illustration

As a larger illustration of these effects we used a continuous two-dimensional (x-y plane)

simulated robot foraging task. The circular robot inhabits a world with two rooms, one

door, and one food object as shown in Figure 5. Each room is 10 feet by 10 feet with

a 3 foot wide doorway. The robot is able to discern which room it is in. The robot has

10

simulated sonars to sense the distance to the nearest wall in each of five fixed directions,

three forward and two back. The forward sonars are fixed at 0o, 30o, and − 30o from the

heading of the robot. The back sonars are at −135o and 135o from the robot’s heading.

The robot can also sense the direction and distance to the doorway from any point in the

room, and to the food object if it is within 10 feet of the robot. When food comes within

a smaller distance of the robot (2 feet), it is consumed and the agent receives a reward of

+1 (otherwise the reward is zero). After the food is consumed, it re-appears in the middle

of the room that the robot is not in. All experiments in this world use a starting position

(x, y) = (5, 1). The first piece of food starts in the same room as the robot.

The robot uses simple inertial dynamics, with friction and inelastic collisions with the

walls. There are 13 possible primitive actions. On each step, the robot can either lin-

early accelerate in the direction in which it is oriented (to one of 3 positive and 3 neg-

ative degrees), apply an angular acceleration (to one of 3 positive and 3 negative de-

grees), or apply no acceleration at all. The available discrete linear and rotational ac-

celerations are [−0.03,−0.02,−0.01, 0.01, 0.02, 0.03]. Two macro-actions are also available:

orient-to-door and forward-until-wall. The former activates a PD (position and

derivative) controller to turn the robot to face the doorway. The latter activates a PD

controller to go forward unless the sonars indicate a wall nearby. The PD controllers for the

macro-actions can only select from the set of available primitive actions. To do this, they

round the continuous suggested move to the nearest available primitive action. Both PD

controllers were critically damped. The orient-to-door controller used a position gain of

0.04 and a velocity gain of 0.4 while the forward-until-wall controller used a position

gain of 0.0225 and a velocity gain of 0.3.

The robot’s equations of the motion are as follows:

xt+1 = xt + vt cos θt

yt+1 = yt + vt sin θt

vt+1 = (1− µ)vt + at

θt+1 = θt + θ̇t

θ̇t+1 = (1− µ)θ̇t + θ̈t

where (xt, yt) are the global coordinates of the robot at time t, at is the linear acceleration,

11

Simulated Environment

sonars

food

food sensing
radius

Figure 5: The simulated robotic foraging task.

θ̈t is the rotational acceleration, µ = 0.1 is the coefficient of friction, θt ∈ [0, 2π] is the

robot’s absolute angle of orientation, vt is the robot’s linear speed, and θ̇t is the robot’s

directional velocity. If the robot chooses a rotational acceleration, at is set to zero. Likewise,

if the robot accelerates linearly, θ̈t is set to zero. The robot has a maximum linear speed

and rotational velocity (0.5 and π
8 respectively) past which positive accelerations have no

effect. The linear speed v is further constrained to be non-negative. The rotational velocity

may be either positive (clockwise) or negative (counter-clockwise). The robot’s position is

constrained only by the walls of the world. Collisions with the walls are inelastic, which

means that if a robot’s new position (xt+1, yt+1) at time t + 1 intersects a wall, the robot

remains at position (xt, yt) and its linear speed and rotational velocity are set to zero.

Although the simulator had complete and perfect knowledge of the robot’s state, the

robot could only see egocentric information: the sonar readings, the food sensors, the

doorway sensors, its linear speed, rotational velocity, and the room number. Because the

state space is continuous, we used a tile-coding function approximator, also known as a

CMAC (Albus, 1981 and Sutton & Barto, 1998). The robot had 10 tilings over different

subsets of the available information as summarized in Table 1.

We structured the experiments in this robotic domain to be similar to those presented

earlier with the gridworlds. The first set of experiments compared the online performance

12

of Tilings Variables Size

1 room color, door distance, door angle, forward sonar dis-

tances, linear speed, rotational velocity, food eaten in cur-

rent room

172, 800

1 all 5 sonar distances, room number, linear speed, rota-

tional velocity, food eaten in current room

180, 000

8 activation in each π
4 slice of the robot’s food sensors, linear

speed, rotational velocity, all 5 sonar distances

81, 000 each

Table 1: Tile coding for the simulated robot experiments

of Macro Q-learning to Q-learning for one million steps. The parameters were α = 0.05,

ε = 0.15, and γ = 0.9. Figure 6 (left panel) shows the cumulative reward received by each

method. Both curves are averages over 30 runs. Figure 6 (right panel) also shows the

cumulative reward received using random behavior for one million steps with and without

macro-actions. Although both learning methods outperformed their respective random

behaviors, Macro Q-learning converged to a solution for finding food much more quickly

than did Q-learning. This is in accord with what we found in the gridworld domain where

Macro Q-learning with appropriate macro-actions vastly outperformed Q-learning. The

robot’s two macro-actions cut the learning time in half.

The second set of experiments examined the behavior for one million steps when the

actions were selected randomly from the primitive actions and from both the primitive and

macro-actions. The two right panels in Figure 7 show a projection of the first 100,000

steps of one such trajectory onto the two spatial dimensions. We cannot simply present a

histogram of state visitation in this task, as we did for the gridworlds, because the state

space here is of higher dimension. Nevertheless, it is clear that here, as in the gridworlds,

the macro-actions have a large influence on the initial exploratory behavior.

With macro-actions, the robot more often crosses between the two rooms and travels

with a higher speed. This is shown graphically in Figure 8. The left panel shows the

average number of time steps that the robot spent in the first room for each 100,000 steps

of the million-step random walk taken with and without macro-actions. These numbers

13

Online learning performance Random performance

0 1 2 3 4 5 6 7 8 9 10

x 105

0

50

100

150

200

250

300

350

400

Macro Q−learning

Q−learning

Timesteps

C
um

ul
at

iv
e

R
ew

ar
d

0 1 2 3 4 5 6 7 8 9 10

x 105

0

50

100

150

200

250

300

350

400

Random with
Macro−actions

Random with
primitives

Timesteps

C
um

ul
at

iv
e

R
ew

ar
d

Figure 6: The left panel shows cumulative reward for online Macro Q-learning and Q-

learning. The right panel shows the cumulative reward for random behavior with and without

macro-actions on the same scale as the left-hand graph.

are all averages over 30 runs. Although the overall means do not differ by much (44% for

macro-actions and 48% without macro-actions), the visitations over time are different for

each random walk. For example, without macro-actions the robot remained in the room in

which it started for 66% of the first 100,000 steps of its random trajectory, whereas with

macro-actions it spent only about 45% of those steps in the initial room. The right hand

panel of Figure 8 shows the total number of steps that the robot spent in the first room

for each of the 30 runs. The random walks with only primitive actions have more variance

and tend to spend more time in the first room than when macro-actions are used. When

macro-actions are added to the set of available actions, there is less variation across runs.

The results of the experiments with random behavior show that the use of macro-

actions affected the exploratory behavior of the agent in both the gridworld and in the

more complicated continuous domain. In the gridworld, the macro-actions caused a non-

uniform visitation of the states, whereas in the robotic domain, they caused a more uniform

initial visitation of the world.

The final experiments examined the effect of macro-actions on learning independent of

behavior. To do this, both Macro Q-learning and Q-learning were applied to the fixed set

14

Without Macro-actions With Macro-actions

Figure 7: These graphs show the position of the robot during a random walk.

of experiences generated from the million-step random walks using both macro-actions and

primitive actions. The parameters of this experiment were the same as in the previous set

of experiments in this world. In the similar gridworld experiment, we were able to examine

the value function for each state directly and measure how quickly values were backed up.

Because the state space in the robotic domain is continuous and multi-dimensional, we

could not examine it in the same way. Instead, we examined the value function indirectly

by freezing the values and evaluating the behavior. Every 50,000 steps, the value-function

was frozen and the resulting ε-greedy (ε = 0.01) policy was executed for 5,000 steps. Figure

9 shows the cumulative reward achieved by Macro Q-learning and Q-learning over the 20

evaluations. It is clear that backing up values for both macro-actions and primitive actions

leads to faster convergence to a good foraging policy. This agrees with the results found

in the gridworld experiments (Section 5) where learning with macro-actions caused the

value information to propagate more rapidly through the state space than did learning with

primitive actions only.

8 Conclusions

Our experiments in the simulated robot task are broadly consistent with those obtained

in the gridworld tasks, and in our earlier work (McGovern, Sutton, & Fagg, 1997). We

have verified and demonstrated the hypothesis that macro-actions may either speed or

slow learning depending on their appropriateness to the task. More importantly, we have

separated the effect of macro-actions into components and measured them independently.

15

Visitations to room 1 per 100,000 steps All visitations to room 1

1 2 3 4 5 6 7 8 9 10
4

4.5

5

5.5

6

6.5

7
x 104

Time grouped by 100,000 steps

V
is

its
 to

 ro
om

 1

Primitive actions

Macro−actions

0 5 10 15 20 25 30
3

3.5

4

4.5

5

5.5

6

6.5
x 105

Run

To
ta

l v
is

its
 to

 ro
om

 1

Primitive actions

Macro−actions

Figure 8: The left panel shows the average number of time steps that the random walks spent

in the first room over each 100,000 time slice. The dashed line in the middle represents the

50% line. The right panel shows the total number of steps over all one million steps that

the robot spent in the first room for both types of random walks.

In particular, we have analyzed the contributions to performance of macro-actions’ effects

on exploratory behavior and on value propagation, both of which can be substantial. Value

propagation can also be accelerated through the use of eligibility traces; we have assessed

this effect and compared it to the effect of macro-actions. An obvious extension would be

to combine macro-action methods with eligibility traces to obtain the advantages of both.

Although all of our results are empirical, we believe this is not inappropriate. Today’s

understanding of temporally abstract actions is limited; we need more empirical experience

before we can answer, or even ask, the most important questions.

Acknowledgments

The authors wish to thank Andrew Barto, Andrew Fagg, Doina Precup, Paul Utgoff,

and all the members of the ANW group for comments and discussions. This work was sup-

ported in part by the National Physical Science Consortium, Lockheed Martin, Advanced

Technology Labs, NSF grant ECS-9511805, AFOSR grant AFOSR-F49620-96-1-0254, and

16

Learning over fixed experience

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

25

Macro Q−learning

Q−learning

Evaluation

C
um

ul
at

iv
e

R
ew

ar
d

Figure 9: Cumulative reward for both algorithms when learning over fixed experience.

NSF grant IRI-9503687.

References

[Albus, 1981] Albus, J. S. (1981). Brain, Behavior, and Robotics. Byte Books.

[Bradtke and Duff, 1995] Bradtke, S. J. and Duff, M. O. (1995). Reinforcement learning

methods for continuous-time markov decision problems. In Advances in Neural Informa-

tion Processing Systems 7. MIT Press.

[Dayan and Hinton, 1993] Dayan, P. and Hinton, G. E. (1993). Feudal reinforcement learn-

ing. In Advances in Neural Information Processing Systems 5, pages 271–278. Morgan

Kaufmann.

[Dietterich, 1998] Dietterich, T. G. (1998). Hierarchical reinforcement learning with the

MAXQ value function decomposition. In Proceedings of the 15th International Conference

on Machine Learning ICML’98, San Mateo, CA. Morgan Kaufmann.

[Hauskrecht et al., 1998] Hauskrecht, M., Meuleau, N., Boutilier, C., Kaelbling, L. P., and

Dean, T. (1998). Hierarchical solution of Markov decision processes using macro-actions.

17

In Proceedings of the Fourteenth Annual Conference on Uncertainty in Artificial Intelli-

gence.

[Huber and Grupen, 1997] Huber, M. and Grupen, R. A. (1997). Learning to coordinate

controllers - reinforcement learning on a control basis. In Proceedings of the International

Joint Conference on Artificial Intelligence.

[Iba, 1989] Iba, G. A. (1989). A heuristic approach to the discovery of macro-operators.

Machine Learning, 3:285–317.

[Kaelbling, 1993] Kaelbling, L. P. (1993). Hierarchical learning in stochastic domains: Pre-

liminary results. In Proceedings of the Tenth International Conference on Machine Learn-

ing ICML’93, pages 167–173, San Mateo, CA. Morgan Kaufmann.

[Korf, 1985] Korf, R. E. (1985). Macro-operators: A weak method for learning. Artificial

Intelligence, 26:35–77.

[Laird et al., 1986] Laird, J. E., Rosenbloom, P. S., and Newell, A. (1986). Chunking in

Soar: The anatomy of a general learning mechanism. Machine Learning, 1:11–46.

[Lin, 1993] Lin, L. J. (1993). Reinforcement Learning for Robots using Neural Networks.

PhD thesis, Carnegie Mellon University, School of Computer Science.

[McGovern et al., 1997] McGovern, A., Sutton, R. S., and Fagg, A. H. (1997). Roles of

macro-actions in accelerating reinforcement learning. In Proceedings of the 1997 Grace

Hopper Celebration of Women in Computing, pages 13–18.

[Parr, 1998] Parr, R. (1998). Hierarchical Control and learning for Markov decision pro-

cesses. PhD thesis, University of California at Berkeley.

[Parr and Russell, 1997] Parr, R. and Russell, S. (1997). Reinforcement learning with hier-

archies of machines. In Proceedings of Advances in Neural Information Processing Systems

10. MIT Press.

[Precup et al., 1998] Precup, D., Sutton, R. S., and Singh, S. (1998). Theoretical results on

reinforcement learning with temporally abstract behaviors. In Proceedings of the Tenth

European Conference on Machine Learning, ECML’98. Springer-Verlag.

18

[Singh, 1992] Singh, S. P. (1992). Reinforcement learning with a hierarchy of abstract

models. In Proceedings of the Tenth National Conference on Artificial Intelligence, pages

202–207, Menlo Park, CA. AAAI Press/MIT Press.

[Singh and Sutton, 1996] Singh, S. P. and Sutton, R. S. (1996). Reinforcement learning

with replacing eligibility traces. Machine Learning, 22:123–158.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning.

An Introduction. MIT Press, Cambridge, MA.

[Sutton et al., 1998] Sutton, R. S., Precup, D., and Singh, S. (1998). Between MDPs and

Semi-MDPs: learning, planning, and representing knowledge at multiple temporal scales.

Technical Report 98-74, University of Massachusetts, Amherst.

[Watkins, 1989] Watkins, C. J. C. H. (1989). Learning from delayed rewards. PhD thesis,

Cambridge University, Cambridge, England.

19

