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Abstract

A new family of gradient temporal-difference learning
algorithms have recently been introduced by Sutton,
Maei and others in which function approximation is
much more straightforward. In this paper, we intro-
duce the GQ(λ) algorithm which can be seen as exten-
sion of that work to a more general setting including
eligibility traces and off-policy learning of temporally
abstract predictions. These extensions bring us closer
to the ultimate goal of this work—the development
of a universal prediction learning algorithm suitable
for learning experientially grounded knowledge of the
world. Eligibility traces are essential to this goal be-
cause they bridge the temporal gaps in cause and effect
when experience is processed at a temporally fine reso-
lution. Temporally abstract predictions are also essen-
tial as the means for representing abstract, higher-level
knowledge about courses of action, or options. GQ(λ)
can be thought of as an extension of Q-learning. We ex-
tend existing convergence results for policy evaluation
to this setting and carry out a forward-view/backward-
view analysis to derive and prove the validity of the new
algorithm.

Introduction
One of the main challenges in artificial intelligence (AI)
is to connect the low-level experience to high-level rep-
resentations (grounded world knowledge). Low-level
experience refers to rich signals received back and forth
between the agent and the world. Recent theoretical
developments in temporal-difference learning combined
with mathematical ideas developed for temporally ab-
stract options, known as intra-option learning, can be
used to address this challenge (Sutton, 2009).

Intra-option learning (Sutton, Precup, and Singh,
1998) is seen as a potential method for temporal-
abstraction in reinforcement learning. Intra-option
learning is a type of off-policy learning. Off-policy
learning refers to learning about a target policy while
following another policy, known as behavior policy. Off-
policy learning arises in Q-learning where the target
policy is a greedy optimal policy while the behavior
policy is exploratory. It is also needed for intra-option
learning. Intra-option methods look inside options and
allow AI agent to learn about multiple different options

simultaneously from a single stream of received data.
Option refers to a temporally course of actions with a
termination condition. Options are ubiquitous in our
everyday life. For example, to go for hiking, we need
to consider and evaluate multiple options such as trans-
portation options to the hiking trail. Each option in-
cludes a course of primitive actions and only is excited
in particular states. The main feature of intra-option
learning is its ability to predict the consequences of each
option policy without executing it while data is received
from a different policy.

Temporal difference (TD) methods in reinforcement
learning are considered as powerful techniques for pre-
diction problems. In this paper, we consider predictions
always in the form of answers to the questions. Ques-
tions are like “If of follow this trail, would I see a creek?”
The answers to such questions are in the form of a single
scalar (value function) that tells us about the expected
future consequences given the current state. In general,
due to the large number of states, it is not feasible to
compute the exact value of each state entry. One of the
key features of TD methods is their ability to generalize
predictions to states that may not have visited; this is
known as function approximation.

Recently, Sutton et al. (2009b) and Maei et al. (2009)
introduced a new family of gradient TD methods in
which function approximation is much more straightfor-
ward than conventional methods. Prior to their work,
the existing classical TD algorithms (e.g.; TD(λ) and
Q-learning) with function approximation could become
unstable and diverge (Baird, 1995; Tsitsiklis and Van
Roy, 1997).

In this paper, we extend their work to a more gen-
eral setting that includes off-policy learning of tempo-
rally abstract predictions and eligibility traces. Tempo-
rally abstract predictions are essential for representing
higher-level knowledge about the course of actions, or
options (Sutton et al., 1998). Eligibility traces bridge
between the temporal gaps when experience is processes
at a temporally fine resolution.

In this paper, we introduce the GQ(λ) algorithm
that can be thought of as an extension to Q-learning
(Watkins and Dayan, 1989); one of the most popular
off-policy learning algorithms in reinforcement learning.



Our algorithm incorporates gradient-descent ideas orig-
inally developed by Sutton et al. (2009a,b), for option
conditional predictions with varying eligibility traces.
We extend existing convergence results for policy evalu-
ation to this setting and carry forward-view/backward-
view analysis and prove the validity of the new algo-
rithm.

The organization of the paper is as follows: First, we
describe the problem setting and define our notations.
Then we introduce the GQ(λ) algorithm and describe
how to use it. In the next sections we provide derivation
of the algorithm and carry out analytical analysis on the
equivalence of TD forward-view/backward-view. We
finish the paper with convergence proof and conclusion
section.

Notation and background
We consider the problem of policy evaluation in finite
state-action Markov Decision Process (MDP). Under
standard conditions, however, our results can be ex-
tended to MDPs with infinite state–action pairs. We
use a standard reinforcement learning (RL) framework.
In this setting, data is obtained from a continually
evolving MDP with states st ∈ S, actions at ∈ A, and
rewards rt ∈ <, for t = 1, 2, . . ., with each state and
reward as a function of the preceding state and action.
Actions are chosen according to the behavior policy b,
which is assumed fixed and exciting, b(s, a) > 0,∀s, a.
We consider the transition probabilities between state–
action pairs, and for simplicity we assume there is a
finite number N of state–action pairs.

Suppose the agent find itself at time t in a state–
action pair st, at. The agent likes its answer at
that time to tell something about the future sequence
st+1, at+1, . . . , st+k if actions from t + 1 on were taken
according to the option until it terminated at time t+k.
The option policy is denoted π : S × A → [0, 1] and
whose termination condition is denoted β : S → [0, 1].

The answer is always in the form of a single number,
and of course we have to be more specific about what we
are trying to predict. There are two common cases: 1)
we are trying to predict the outcome of the option; we
want to know about the expected value of some function
of the state at the time the option terminates. We call
this function the outcome target function, and denote
it z : S → <, 2) we are trying to predict the transient;
that is, what happens during the option rather than
its end. The most common thing to predict about the
transient is the total or discounted reward during the
option. We denote the reward function r : S ×A → <.
Finally, the answer could conceivably be a mixture of
both a transient and an outcome. Here we will present
the algorithm for answering questions with both an out-
come part z and a transient part r, with the two added
together. In the common place where one wants only
one of the two, the other is set to zero.

Now we can start to state the goal of learning more
precisely. In particular, we would like our answer to
be equal to the expected value of the outcome target

function at termination plus the cumulative sum of the
transient reward function along the way:

Qπ(st, at) (1)

≡ E
[
rt+1 + γrt+2 + · · ·+ γk−1rt+k + zt+k | π, β

]
,

where γ ∈ (0, 1] is discount factor and Qπ(s, a) de-
notes action value function that evaluates policy π given
state-action pair s, a. To simplify the notation, from
now on, we drop the superscript π on action values.

In many problems the number of state-action pairs
is large and therefore it is not feasible to compute the
action values for each state-action entry. Therefore, we
need to approximate the action values through gener-
alization techniques. Here, we use linear function ap-
proximation; that is, the answer to a question is always
formed linearly as Qθ(s, a) = θ>φ(s, a) ≈ Q(s, a) for all
s ∈ S and a ∈ A, where θ ∈ <n is a learned weight
vector and φ(s, a) ∈ <n indicates a state–action feature
vector. The goal is to learn parameter vector θ through
a learning method such as TD learning.

The above (1) describes the target in a Monte Carlo
sense, but of course we want to include the possibility
of temporal-difference learning; one of the widely used
techniques in reinforcement learning. To do this, we
provide an eligibility-trace function λ : S → [0, 1] as
described in Sutton and Barto (1998). We let eligibility-
trace function, λ, to vary over different states.

In the next section, first we introduce GQ(λ); a gen-
eral temporal-difference learning algorithm that is sta-
ble under off-policy training, and show how to use it.
Then in later sections we provide the derivation of the
algorithm and convergence proof.

The GQ(λ) algorithm
In this section we introduce the GQ(λ) algorithm for
off-policy learning about the outcomes and transients of
options, in other words, intra-option GQ(λ) for learning
the answer to a question chosen from a wide (possibly
universal) class of option-conditional predictive ques-
tions.

To specify the question one provides four functions:
π and β, for the option, and z and r, for the target
functions. To specify how the answers will be formed
one provides their functional form (here in linear form),
the feature vectors φ(s, a) for all state–action pairs, and
the eligibility-trace function λ. The discount factor γ
can be taken to be 1, and thus ignored; the same effect
as discounting can be achieved through the choice of β.

Now, we specify the GQ(λ) algorithm as follows: The
weight vector θ ∈ <n is initialized arbitrarily. The sec-
ondary weight vector w ∈ <n is initialized to zero. An
auxiliary memory vector known as the eligibility trace
e ∈ <n is also initialized to zero. Their update rules
are

θt+1 = θt + αθ,t

[
δtet − κt+1(w>t et)φ̄t+1

]
, (2)

wt+1 = wt + αw,t
[
δtet − (w>t φt)φt

]
, (3)



and
et = φt + (1− βt)λtρtet−1, (4)

where,

δt = rt+1 + βt+1zt+1 + (1− βt+1)θ>t φ̄t+1 − θ>t φt, (5)

φ̄t =
∑
a

π(st, a)φ(st, a),

ρt =
π(st, at)
b(st, at)

, κt = (1− βt)(1− λt),

φt is an alternate notation for φ(st, at), and αθ,t > 0,
αw,t > 0, are constant or decreasing step-size parame-
ters for θ and w weights respectively. Here, δt, can be
seen as one-step TD error.

In the next section we introduce a Bellman error ob-
jective function and later show that the GQ(λ) algo-
rithm follows its gradient-descent direction and even-
tually converges to what that can be described as the
fixed-point of TD(λ) under off-policy training.

Objective function
The key element in this paper is to extend the
mean-square projected Bellman error objective function
(MSPBE), first introduced by Sutton et al. (2009b),
to the case where it incorporates eligibility traces and
option-conditional probabilities. We start with an off-
policy, λ-weighted version of the projected-Bellman-
error objective function:

J(θ) = ‖ Qθ −ΠTλβπ Qθ ‖2D (6)

where Qθ = Φθ ∈ <N is the vector of approximate ac-
tion values for each state–action pair, Φ is an N × n
matrix whose rows are the state–action feature vectors
φ(s, a), Π = Φ(Φ>DΦ)−1Φ>D is a projection matrix
that projects any point in the action value space into
the linear space of approximate action values, D is an
N × N diagonal matrix whose diagonal entries corre-
spond to the frequency with which each state–action
pair is visited under the behavior policy, Tλβπ is a λ-
weighted state–action version of the affine N ×N Bell-
man operator for the target policy π with termination
probability β, and finally the norm, ‖ v ‖2D, is defined
as v>Dv . The operator Tλβπ takes as input an arbi-
trary vector Q ∈ <N and returns a vector giving for
each state–action pair the expected corrected λ-return
if the Markov decision process was started in that state-
action pair, actions were taken according to π, and Q
was used to correct the return truncations. When Qθ
is used for the corrections we can write

Tλβπ Qθ(s, a) = Eπ
[
gλβt | st = s, at = a

]
, (7)

where gλβt is the λ-return (while following behavior pol-
icy) starting from state-action pair st, at :

gλβt = rt+1 + βt+1zt+1 (8)

+(1− βt+1)
[
(1− λt+1)θ>φt+1 + λt+1g

λ
t+1

]
,

where φt is an alternate notation for φ(st, at).
It would be easier to work with this objective function

if we write it in terms of statistical expectations. To do
this, first, let’s consider the following identities:

Eπ
[
δλβt | st = s, at = a

]
= Tλβπ Qθ(s, a)−Qθ(s, a),

where
δλβt ≡ g

λβ
t − θ>φt, (9)

Eπ
[
δλβt φt

]
=

∑
s,a

Dsa,saφ(s, a)Eπ
[
δλβt | st = s, at = a

]
= Φ>D(Tλβπ Qθ −Qθ),

and

Eb
[
φφ>

]
=
∑
s,a

Dsa,saφ(s, a)φ>(s, a) = Φ>DΦ.

Note that Dsa,sa indicates the diagonal entry of matrix
D and corresponds to the frequency with which state-
action pair s, a, is visited under the behavior policy b.
Here, Eπ[.] =

∑
s,aDsa,saEπ[. | s, a] because the data

has been generated and observed according to the be-
havior policy.

Given identities above, one can follow similar steps
as in Sutton et al. (2009); as follows, to show that the
objective function can be written in terms of statistical
expectations:

J(θ)

= ‖ Qθ −ΠTλβπ Qθ ‖2D
= ‖ Π(Tλβπ Qθ −Qθ) ‖2D
= (Π(Tλβπ Qθ −Qθ))>D(Π(Tλβπ Qθ −Qθ))
= (Tλβπ Qθ −Qθ)>Π>DΠ(Tλβπ Qθ −Qθ)
= (Tλβπ Qθ −Qθ)>D>Φ(Φ>DΦ)−1Φ>D(Tλβπ Qθ −Qθ)
= (Φ>D(Tλβπ Qθ −Qθ))>(Φ>DΦ)−1Φ>D(Tλβπ Qθ −Qθ)

= Eπ
[
δλβφ

]> Eb
[
φφ>

]−1 Eπ
[
δλβφ

]
, (10)

where we have used the identity Π>DΠ =
D>Φ(Φ>DΦ)−1Φ>D.

In our off-policy setting, however, we cannot work
with expectations conditional on π; we need to convert
them to expectations conditional on b (the behavior pol-
icy) which we can then directly sample from. To do this,
we introduce an off-policy version of the multi-step TD
error, δλβρt ,

δλβρt ≡ gλβρt − θ>t φt, (11)

where

gλβρt ≡ rt+1 + βt+1zt+1 (12)

+(1− βt+1)[(1− λt+1)θ>φ̄t+1 + λt+1ρt+1g
λβρ
t+1 ],



is off-policy λ-return and

φ̄t =
∑
a

π(st, a)φ(st, a) and ρt =
π(st, at)
b(st, at)

.

The next theorem makes this transformation very sim-
ple.

Theorem 1. Transforming conditional expectations.
Let b and π denote the behavior and target policies re-
spectively, and δλβ, δλβρ are defined in equations (9
,11), then

Eπ
[
δλβt φt

]
= Eb

[
δλβρt φt

]
. (13)

Proof. First, we show Eb
[
gλβρt | st, at

]
=

Eπ
[
gλβt | st, at

]
. To do this, let’s write gλβρt (12)

in the following compact form:

gλβρt = ζt+1 + κt+1θ
>φ̄t+1 + (1− βt+1)λt+1ρt+1g

λβρ
t+1 ,

where ζt ≡ rt + βtzt, and κt ≡ (1 − βt)(1 − λt). Now
consider the identity Eb

[
φ̄t | st, at

]
= Eπ[φt | st, at] as

we expand the term Eb
[
gλβρt | st, at

]
, thus we have

Eb
[
gλβρt | st, at

]
= Eb

[
ζt+1 + κt+1θ

>φ̄t+1 | st, at
]

+Eb
[
(1− βt+1)λt+1ρt+1g

λβρ
t+1 | st, at

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+Eb
[
(1− βt+1)λt+1ρt+1g

λβρ
t+1 | st, at

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+
∑
st+1

P(st+1|st, at)
∑
at+1

b(st+1, at+1)
π(st+1, at+1)
b(st+1, at+1)

×(1− βt+1)λt+1Eb
[
gλβρt+1 |st+1, at+1

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+
∑
st+1

P(st+1|st, at)
∑
at+1

π(st+1, at+1)

×(1− βt+1)λt+1Eb
[
gλβρt+1 |st+1, at+1

]
= Eπ

[
ζt+1 + κt+1θ

>φt+1|st, at
]

+Eπ
[
(1− βt+1)λt+1Eb

[
gλβρt+1 |st+1, at+1

]
| st, at

]
,

which as it continues to roll out, and as a result, gives
us Eb

[
gλβρt | st, at

]
= Eπ

[
gλβt | st, at

]
. From definitions

of δλβt and δλβρt , it is immediate that Eπ
[
δλβt φt

]
=

Eb
[
δλβρt φt

]
.

Thus, the objective function J(θ) in Equation (10)
can be written in the following form

J(θ) = Eb
[
δλβρφ

]> Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
, (14)

in which the expectations are conditioned over behav-
ioral policy.

Derivation of GQ(λ) algorithm:
forward-view/backward-view analysis

We derive GQ(λ) algorithm based on gradient-descent
in the J(θ) objective function (14). Thus, we update
the modifiable parameter θ proportional to − 1

2∇J(θ).
Note that all the gradients in this paper are with respect
to the main weight vector θ, and so are denoted simply
by ∇, thus we have

−1
2
∇J(θ)

= −1
2
∇
(
Eb
[
δλβρφ

]>Eb
[
φφ>

]−1 Eb
[
δλβρφ

])
= −

(
∇Eb

[
δλβρφ

])>Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= −∇Eb

[
δλβρφ>

]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= −Eb

[
(∇δλβρ)φ>

]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= −Eb

[(
∇gλβρ − φ

)
φ>
]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
=

(
Eb
[
φφ>

]
− Eb

[
∇gλβρφ>

])
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
= Eb

[
δλβρφ

]
− Eb

[
∇gλβρφ>

]
Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
≈ Eb

[
δλβρφ

]
− Eb

[
∇gλβρφ>

]
w, (15)

where, in the final expression, we assume that we have
a quasi-stationary estimate w ∈ <n such that

w ≈ Eb
[
φφ>

]−1 Eb
[
δλβρφ

]
. (16)

Because the expectations in the final expression (15)
are not known, to update the modifiable parameter θ,
we use stochastic gradient-descent approach; that is,
we sample from the final expression (15) and update θ
along this sample direction, where it yields the following
forward-view algorithm:

θt+1 = θt + αθ,t

(
δλβρt φt −∇gλβρt φ>twt

)
, (17)

where αθ,t is a sequence of positive step-size parameters.
The desired approximation for w (16), is the solution
to a least-squares problem, which can be found incre-
mentally with linear complexity by the LMS algorithm
that uses δλρt as its target. The standard algorithm for
doing this is the following forward-view algorithm

wt+1 = wt + αw,t

(
δλβρt − w>t φt

)
φt, (18)

where αw,t is another sequence of positive step-size pa-
rameters. Note that w fixed-point in the above expres-
sion is Eb

[
φφ>

]−1 Eb
[
δλβρφ

]
.



We now turn to converting these forward-view algo-
rithms to backward-view forms that are more conve-
nient for low-memory mechanistic implementation. For
the first term in equation (17); that is, δλβρt φt, which is
called forward-view version of TD update, we can sub-
stitute δtet (backward-view TD update), just as in con-
ventional TD(λ) algorithm (Sutton and Barto ,1998).
This has been shown in the following theorem:

Theorem 2. Equivalence of TD forward-view and
backward-view. The forward-view description of TD
update is equivalent to the mechanistic backward-view;
that is,

Eb
[
δλβρt φt

]
= Eb[δtet] , (19)

where δλβρt is multi-step TD error, δt is one-step TD
error and et denotes eligibility trace defined in equations
(11, 4,5) respectively.

Proof. We start by finding a recursive way of writing
the multi-step off-policy TD error. Let ζt = rt + βtzt,
then

δλβρt

= gλβρt − θ>t φt
= ζt+1 + (1− βt+1)

[
(1− λt+1)θ>t φ̄t+1

+λt+1ρt+1g
λρ
t+1

]
− θ>t φt

= ζt+1 + (1− βt+1)θ>t φ̄t+1 − θ>t φt
−(1− βt+1)λt+1θ

>
t φ̄t+1 + (1− βt+1)λt+1ρt+1g

λβρ
t+1

= δt

−(1− βt+1)λt+1θ
>
t φ̄t+1 + (1− βt+1)λt+1ρt+1g

λβρ
t+1

+(1− βt+1)λt+1

(
−ρt+1θ

>
t φt+1 + ρt+1θ

>
t φt+1

)
= δt + (1− βt+1)λt+1ρt+1

(
gλβρt+1 − θ>t φt+1

)
+(1− βt+1)λt+1θ

>
t

(
ρt+1φt+1 − φ̄t+1

)
= δt + (1− βt+1)λt+1ρt+1δ

λβρ
t+1

+(1− βt+1)λt+1θ
>
t

(
ρt+1φt+1 − φ̄t+1

)
.

Note that the last part of the above equation has ex-
pected value of vector zero under the behavior policy
because

Eb[ρtφt | st] =
∑
a

b(st, a)
π(st, a)
b(st, a)

φ(st, a)

=
∑
a

π(st, a)φ(st, a) ≡ φ̄t.

Putting all these together, we can write the TD update
(in expectation) in a simple way in terms of eligibility

traces which leads to backward-view:

Eb
[
δλβρt φt

]
= Eb

[(
δt + (1− βt+1)λt+1ρt+1δ

λβρ
t+1

)
φt

]
+Eb

[
(1− βt+1)λt+1θ

>(ρt+1φt+1 − φ̄t+1

)
φt
]

= Eb[δtφt] + Eb
[
(1− βt+1)λt+1ρt+1δ

λβρ
t+1φt

]
+ 0

= Eb[δtφt] + Eb
[
(1− βt)λtρtδλβρt φt−1

]
= Eb[δtφt] + Eb[(1− βt)λtρt

(
δt + (1− βt+1)λt+1ρt+1

×δλβρt+1 + (1− βt+1)λt+1θ
>(ρt+1φt+1 − φ̄t+1

) )
φt−1]

= Eb[δtφt] + Eb[(1− βt)λtρtδtφt−1]

+Eb
[
(1− βt)λtρt(1− βt+1)λt+1ρt+1δ

λβρ
t+1φt−1

]
+ 0

= Eb[δt (φt + (1− βt)λtρtφt−1)]

+Eb
[
(1− βt−1)λt−1ρt−1(1− βt)λtρtδλβρt φt−2

]
...

= Eb
[
δt

(
φt + (1− βt)λtρtφt−1

+(1− βt)λtρt(1− βt−1)λt−1ρt−1φt−2 + · · ·
)]

= Eb[δtet] , (20)

where et = φt+(1−βt)λtρtet−1, which gives us a back-
ward view algorithm for the TD(λ) update.

For the second term of the gradient update (15),
we can use the following trick: we take the gra-
dient of the forward-backward relationship just es-
tablished in theorem 2; that is, ∇Eb

[
δλβρt φt

]
=

∇Eb[δtet], then Eb
[
∇δλβρt φ>t

]
= Eb

[
∇δte>t

]
, and

consequently we get, Eb
[
∇gλβρt φ>t

]
− Eb

[
φtφ
>
t

]
=

Eb
[(

(1− βt+1)φ̄t+1 − φt
)
e>t
]
. By arranging the terms

and using Equation (4), and Eb[ρtφt | st = s] = φ̄t , we
get

Eb
[
∇gλβρt φ>t

]
= Eb

[
φtφ
>
t

]
+ Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
φte
>
t

]
= Eb

[
φtφ
>
t

]
+ Eb

[
(1− βt+1)φ̄t+1e

>
t

]
−Eb

[
φt (φt + (1− βt)λtρtet−1)>

]
= Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
(1− βt)λtρtφte>t−1

]
= Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
(1− βt)λtφ̄te>t−1

]
= Eb

[
(1− βt+1)φ̄t+1e

>
t

]
− Eb

[
(1− βt+1)λt+1φ̄t+1e

>
t

]
= Eb

[
(1− βt+1)(1− λt+1)φ̄t+1e

>
t

]
. (21)

Returning now to the forward-view equation for up-
dating θ (17), it should be clear that for the first term



we can substitute δtet, based on (19), just as in conven-
tional TD(λ), and for the second term we can substitute
based on (21), thus the backward-view update is as fol-
lows:

θt+1 = θt + αθ,t

[
δtet − κt+1(e>twt)φ̄t+1

]
, (22)

where κt = (1 − βt)(1 − λt). The forward-view algo-
rithm for w, (18), is particularly simple to convert to a
backward-view form. The first term is again the same
as the conventional linear TD(λ) update, and the sec-
ond term is already in a suitable mechanistic form. The
simplest backward-view update is

wt+1 = wt + αw,t

[
δtet − (w>t φt)φt

]
. (23)

Convergence of GQ(λ)
In this section, we show that GQ(λ) converges with
probability one to the TD(λ) fixed-point under stan-
dard assumptions. The TD(λ) fixed-point, θ∗, is a point
which satisfies in

0 = Eb[δtet] = −Aθ∗ + b, (24)

where

A = Eb
[
et
(
φt − (1− βt+1)φ̄t+1)

)>]
, (25)

b = Eb[(rt+1 + βt+1zt+1) et] . (26)

Theorem 3. Convergence of GQ(λ). Consider the
GQ(λ) iterations (2,3,4) with step-size sequences αθ,t
and αw,t satisfing αθ,t, αw,t > 0,

∑∞
t=0 αθ,t =∑∞

t=0 αw,t = ∞,
∑∞
t=0 α

2
θ,t,

∑∞
t=0 α

2
w,t < ∞ and that

αθ,t
αw,t

→ 0 as t → ∞. Further assume that φt is a

Markov process with a unique invariant distribution and
that the φt, et, zt, and rt sequences have uniformly
bounded second moments. Assume that A (25) and
C = Eb

[
φtφ
>
t

]
are non-singular matrices. Then the

parameter vector θt converges with probability one to
the TD(λ) fixed-point θ∗ (24).

Proof. We use Lemma 6.7 (Bertsekas and Tsitsiklis
1996) that can be applied here and follow the proof
of convergence for the TDC algorithm in Sutton et
al. (2009b). For the brevity, we have omitted the
proof.

Conclusion
The GQ(λ) algorithm, which has been introduced
in this paper, incorporates varying eligibility traces
and option-conditional probabilities for policy evalu-
ation. To derive GQ(λ), we carried out a forward-
view/backward-view analysis. We extended the exist-
ing convergence results to show that GQ(λ) is guaran-
teed to converge to the TD(λ) fixed-point. GQ(λ) is a
general gradient TD method for off-policy learning and
as such can be seen as extension of Q-learning. GQ(λ)
is able to learn about temporally abstract predictions,

which makes it suitable to use for learning experientially
grounded knowledge. In addition, GQ(λ) is online, in-
cremental and its computational complexity scales only
linearly with the size of features. Thus, it is suitable for
large-scale applications. Our work, however, is limited
to policy evaluation. Interesting future works is to ex-
tend GQ(λ) for control problems and gather extensive
empirical data on large-scale real-world applications.
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