
Model-Based Reinforcement Learning
with an Approximate, Learned Model

Leonid Kuvayev Rich Sutton

Department of Computer Science
University of Massachusetts

Amherst, MA 01003

Abstract: Model-based reinforcement learning, in which a model of the
environment's dynamics is learned and used to supplement direct learning
from experience, has been proposed as a general approach to learning and
planning. We present the �rst experiments with this idea in which the model
of the environment's dynamics is both approximate and learned online. These
experiments involve the Mountain Car task, which requires approximation of
both value function and model because it has continuous state variables. We
used models of the simplest possible form, state-aggregation or \grid" models,
and CMACs to represent the value function. We �nd that model-based
methods do indeed perform better than model-free reinforcement learning.
Keywords: Reinforcement learning, planning, model-based learning, function
approximation, CMAC networks.

1 Introduction

The most impressive successes of reinforcement learning so far have all used
extensive o�ine experience with a model or simulation of the task in order
to attain a high level of performance (Tesauro 1992), (Crites & Barto 1996),
(Zhang & Dietterich 1995). In these cases the model could be assumed com-
pletely known a priori, but models can also be useful even if they must be
learned. Several researchers have demonstrated that reinforcement learning
can be signi�cantly accelerated if a model of the environment's dynamics is
learned online and used to supplement direct learning from experience (Sut-
ton 1990), (Moore & Atkeson 1993), (Peng & Williams 1992). However, all

1



prior work in which the model was learned used simple table-lookup methods
to represent the model. These methods did not involve any generalization
or transfer between states. Although they can be used for moderately large
problems (Moore & Atkeson 1993) demonstrated their e�ectiveness for prob-
lems with tens of thousands of states), really large problems require the use
of generalizing function approximators to represent the model.

The switch from table-lookup approaches to those based on function ap-
proximators has been found to be a signi�cant one for model-free reinforce-
ment learning (Boyan &Moore 1995), (Sutton 1996), (Tsitsiklis & Roy 1994).
While a wide class of methods have been proven convergent for the table-
lookup case, many of these, including Q-learning and dynamic programming
methods, appear to be unstable when simple function approximators are used
(Baird 1995), (Gordon 1995). Other methods, such as the Sarsa algorithm
we use here (Rummery & Niranjan 1994), (Singh & Sutton 1996) appear not
to have these problems (Tsitsiklis & Roy 1996).

It is possible that model-based reinforcement learning will generalize nat-
urally and easily to the use of learned, approximate environmental models,
but this is by no means certain. Model-free methods have the advantage that
they are not a�ected by modeling errors. They always learn directly from real
experience, which, however noisy or rare, is always a true sample of the real
system. Whenever learning is done from an approximate model there arises
the danger that modeling errors will permanently harm performance. In this
and other respects the case of model-based learning in which the model is
inherently approximate is a critical test of the idea of model-based learning.

In this paper we present the �rst experimental tests of model-based re-
inforcement learning with approximate learning models. We present a new
algorithm for learning with both exact and approximate models and study
the intricacies of using approximate models.

2 Model-Free Learning

In these experiments we used the Sarsa model-free algorithm both as a basis
for comparison and as the underlying algorithm for the model-based method.
Although closely related to Q-learning (Watkins 1989), Sarsa was preferred
here because of its better convergence assurances in the case of approximate
value functions (Tsitsiklis & Roy 1996). Empirically, we also found sarsa

2



to perform slightly better than Q-learning (consistent with the larger study
by (Rummery & Niranjan 1994). We used the sarsa algorithm exactly as
given in (Sutton 1996) and (Singh & Sutton 1996), except that actions were
selected not according to an �-greedy policy, but according to the Boltzmann
distribution. The probability of selecting action a in state s was determined
from its action value, Q(s; a) as

eQ(s;a)=TP
b2Actions e

Q(s;b)=T

where T is a \temperature" parameter, controlling the degree of exploration.
In all of our experiments we used T = 1:0.

3 Learning a Model

We propose to learn the model of the environment while obtaining on-line
experience and then use this model to facilitate learning. Given a state and
action, the model of the environment predicts the next state. The mapping
can be learned from observing actual state transitions. In the case of discrete
state space the transitions can be stored in the lookup table. However we
also experimented with the continuous state space task, hence the mapping
of a state and action to a next state needs to be approximated. The simplest
approach using state aggregation was implemented. That is, a �ne grid was
laid over the 2-dimensional state space, and each real state represented by
the grid box within which it fell. For any given box, the observed next
states may fall in several di�erent boxes. The model stores all observed next
boxes along with their frequencies of occurrence. When the model is used
to generate hypothetical next states, one of the previously observed boxes
is drawn with probabilities according to the observed frequencies. For the
purposes of computing the action (Q) values of the new box, it was taken to
be the continuous state at the lower corner of the cell.

4 Using a Model

The simple way of using the model is implemented in Dyna algorithm (Sutton
1990). The model updates are selected randomly among the updates already

3



experienced in reality. To implement this method we choose state-action
pairs randomly among all legal pairs and then discard the ones that have
not yet been seen. The method does not distinguish between more and less
relevant updates, all updates have an equal chance to be executed.

There are other methods for choosing updates more e�ectively, e.g. Priori-
tized Sweeping (Moore & Atkeson 1993) and Focused Dyna (Peng &Williams
1992) where the updates are selected based on the prediction di�erence and
the closeness to the starting state. All updates are gathered in the queue
and the ones that have the biggest di�erence or the ones that are nearest to
the starting state are updated �rst. These methods were more e�ective than
Dyna on grid world tasks.

4.1 Trajectory Model Updates

We propose an intuitive method called Trajectory Model Updates that also
outperforms Dyna. The idea is to select updates by generating hypothetical
trajectories through the state space. For every real step we take k hypothet-
ical steps. The start and goal states of the hypothetical trajectory are the
same as of the real one. If after a hypo step the goal is reached then the next
step proceeds from the start state. The rewards and the Boltzmann action
selection are the same for hypothetical and real experiences. Thus, we can
think of them as of two parallel processes where one is the real exploration
and the other one is a hypo exploration. The latter has k times more updates
than a real exploration. The di�erence between there processes is that when
a hypothetical exploration attempts a transition that is not in the model the
hypo trial is reset to the start state. Also if the model is not accurate the
hypothetical exploration may make transitions that are not possible in the
real world.

The complete Trajectory Model Updates algorithm is as follows:

1. Initially: w(t) := 0, 8t 2 T iles; ssim = s0, asim =policy(ssim)

2. Start of Trial: s := s0, a :=policy(s)

3. Take action a; observe reward, r, and next state s0

4. a0 := policy(s)

4



5. Learn:
� := r +

P
t02T iles(s0;a0)w(t

0)�
P

t2T iles(s;a)w(t)
w(t) := w(t) + �

L
� �;8t 2 T iles(s; a)

6. Update Model: Add a new observation s0 to a list of past observations
kept in the hash table entry m(s; a). If s0 is already in the table then
increment the number of times s0 has been observed by 1

7. Sample Model:
Repeat K times

take action asim;
use model to compute the predicted next state, s0sim, and reward, r

0;
if s0sim is the terminal state

set ssim := s0; asim := policy(ssim)
go to the beginning of the loop

a0sim :=policy(ssim);
learn: � := r +

P
t02T iles(s0

sim;a0

sim)w(t
0)�

P
t2T iles(ssim;asim)w(t)

w(t) := w(t) + �
L
� �;8t 2 T iles(ssim; asim)

8. Loop: a := a0; s := s0; if s0 is the terminal state, go to 2, else go to 3

This algorithm is similar to Experience Replay algorithm (Lin 1993) only
instead of replaying a past experience we generate a new one using a model
of the world and the same action selection mechanism that we use for the
real experiences. Experience replay idea is fruitful when model is unavailable
and cannot be learned. In this case the accumulated past experiences provide
a surrogate model. However, if the model could be learned, the hypothet-
ical experiences should better cover the state space and thus provide more
e�cient learning.

5 Grid World

To evaluate the potential of these model-based learning methods we exper-
imented with a simple maze task taken from (Peng & Williams 1992). The
maze is shown on Figure 1. A trial begins at the Start state and terminates
at the Goal state. Each move has penalty of -1. Hitting the wall does not
produce a movement. The learning rate, 0.5, was the same as in Peng and
Williams' paper.

5



S

G

Figure 1: A maze navigation task. Each step bears a penalty of -1. Reach-
ing the goal state terminates the trial. Hitting a wall does not produce a
movement.

We compared two model-based methods and a model-free sarsa algorithm.
For each real step the model-based methods executed k = 10 hypothetical
steps. A model for the maze world was easy to learn since all transitions were
deterministic and a model constituted a table lookup. Both model-based
methods did 11 times more updates and outperformed model-free method
nearly 10 times (cf. Figure 2). After 100 trials a model was learned per-
fectly. Out of the two model-based methods, Trajectory Updates slightly
beat Random Updates. The �rst algorithm used more focused updates and
thus achieved a faster convergence than a latter one. Once converged, both
methods exhibited the stable performance due to the accurate model and
table lookup function. We will see a more signi�cant di�erence in the case
with an approximate model.

6 The Mountain Car Task and an Approxi-

mate Model

For the experiments with an approximate model we used the Mountain Car
task (Moore 1990). In this task a car starts at the bottom of a mountain and
drives along a mountain track. The goal is to overpass the mountain top,
but the motor is too weak to drive directly to the top. Instead, the car must
�rst backup from the goal, then drive forward at full thrust. The version of

6



0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200 250 300 350 400 450 500

A
vg

 S
te

ps
 p

er
 T

ria
l

Trials

Model-free Learning, k = 0
Random Model Updates, k = 10

Trajectory Model Updates, k = 10

Figure 2: Learning curves of model-free and model-based algorithms for a
maze task averaged over 30 trials. k is the number of model-based updates for
one real update. A model of the maze is learned quickly and soon becomes the
perfect model. Both model-based methods outperformed model-free method
nearly 10 times.

7



this task that we used in these experiments are the same as that used by
(Boyan & Moore 1995). The details of the task are given below.

There are two continuous state variables, the position of the car, xt, and
the velocity of the car, vt. The valid ranges are �1 � xt � 1 and �2 � vt � 2.
The equations describing the system are:

qt =

(
2 � x+ 1 if x < 0

1
(1+5x2t)

3=2 if x � 0 at =
ft

m �
q
1 + q2t

�
g � qt

1 + q2t

xt+1 = xt + vt ��t+
a ��t2

2
vt+1 = vt + a ��t

m = 1, g = 9:81, and �t = 0:03

The force, ft, can take three distinct values -4, 0, or +4 corresponding to
the three actions, reverse thrust, no thrust, or forward thrust. If xt+1 or vt+1
go out of range, then they are reset to the boundary value. The trial starts
at the bottom of the mountain with x0 = �0:5 and v0 = 0. Reward is -1 on
all time steps. The trial terminates with the �rst position value that exceeds
xt+1 > 0:5.

We used a simple CMAC network to represent the approximate value
function, as described by (Sutton 1996). CMAC networks require less mem-
ory than table lookup approaches and possess excellent convergence speed
and solution quality, e.g. see (Albus 1981), (Miller, Glanz, & Kraft 1990).
We have also obtained satisfactory results with backpropagation networks,
but they always learn much slower than CMAC networks, particularly in the
initial stages of training.

In this paper's experiments we used a CMAC consisting of 5 tilings, each
a simple 9 by 9 grid. The total number of tiles was 9 � 9 � 5 = 405. Each
tiling was o�set from the previous by one-tenth of the width of a tile in each
direction, giving a uniform spacing.

6.1 The Experiments

First we repeated the same experiment as we did for a maze task. Only this
time the model was never perfect due to the continuity of the state space.
Results are shown on Figure 3. Model-based methods did not have as much
advantage as in the case with the exact model. Despite 6 times more up-
dates, model-based methods converged only twice as fast as the model-free

8



0

100

200

300

400

500

600

700

800

900

1000

0 50 100 150 200

A
vg

 S
te

ps
 to

 G
oa

l

Trials

Model-free Learnig, k = 0
Random Model Updates, k = 5

Trajectory Model Updates, k = 5

Figure 3: The learning curves for model-free and model-based algorithms.
The trials are averaged over 30 runs. Trajectory model updates are the most
e�cient way to use an approximate model.

method. Again Trajectory Model Updates outperformed Random Updates.
Convergence speed was approximately the same but the �rst method con-
verged to a more optimal solution.

Next we describe the experiments using Trajectory Model Updates that
will shed some light on the intricacies of the learning with an approximate
model. To compare the e�ect of the grid resolution for the model we designed
the following experiment. We ran the algorithm for repeated epochs each
of 20 trials. The model continued to improve across epochs, but the value
functions was reset to zero at the beginning of each epoch. The improvement
in average performance over epochs shown in Figure 4 thus shows the ability
of a better and better model to induce better and better performance. Results
are shown for models of two di�erent grid resolutions. The high resolution
100�100 model is learned slower but shows more accurate performance. The
low resolution 33�33 model is learned much more quickly but can not model
the system as accurately. In either case it is clear that a good model enables
much better performance than is possible without a model (cf. Figure 1).

Finally, Figure 5 compares the performance of the model-free and the

9



50

100

150

200

250

300

350

400

0 5 10 15 20 25 30 35 40 45 50

A
vg

 S
te

ps
 p

er
 T

ria
l

Epochs (each of 20 trials)

33x33
100x100

Figure 4: Learning during each epoch is better and better as the model im-
proves over epochs, with the higher-resolution model improving more slowly
but ultimately being better. Note that all these performances are better
than those attainable without a model (i.e., best performance from Figure 1
is about 500 steps per trial). For this experiment, K = 10.

10



50
100
150
200
250
300
350
400
450
500
550

0 2 4 6 8 10

A
vg

 S
te

ps
 p

er
 T

ria
l

Number of Model Steps, K

first 20 trials
first 500 trials

Figure 5: Performance versus K, where K = 0 corresponds to model-free
learning. Performance improves slightly as the number of model steps is
increased.

model-based methods. For the model-free method, we used the optimal pa-
rameters found in the earlier study. We varied the number of model steps,
K, from 0 to 10. Performance is shown averaged over the �rst 20 and �rst
500 trials. These data are averages over 30 runs.

The �rst data point, with K = 0, corresponds to a model-free Sarsa al-
gorithm. Performance improves signi�cantly after adding only a few model
steps. The improvement stops with additional model steps since the model
is scarce and inaccurate in the beginning and does not supply a useful infor-
mation.

7 Conclusions and Future Work

These experiments are just the �rst steps in evaluating the e�ectiveness of
model-based methods in reinforcement learning with approximate, learned
models. We have found signi�cant performance improvements with the model
based methods. In particular, model-based methods tend to consume a great
deal of memory. This is exacerbated by the grid-like models we used in these
experiments. However, the speedup of several times during the convergence
well justi�es the extra memory costs.

11



We proposed a Trajectory Model Updates algorithm and compared it
against the other well-known model-based algorithm Dyna. The proposed
method showed a faster and more optimal convergence on tasks with exact
and approximate models.

This study could be augmented with additional comparison with algo-
rithms, such as Prioritized Sweeping (Moore & Atkeson 1993), Focused Dyna
(Peng & Williams 1992), and Experience Replay (Lin 1993) on a bigger con-
tinuous task. In principle, the use of models should produce dramatic, easy,
and immediate performance improvements. We would like to �nd a test prob-
lem and modeling methodology which clearly demonstrates this potential.

References

Albus, J. 1981. Brain, Behavior, and Robotics. Byte Books.

Baird, L. C. 1995. Residual algorithms: Reinforcement learning with func-
tion approximation. In Proceedings of the Machine Learning Conference.
San Francisco, CA: Morgan Kaufman.

Boyan, J., and Moore, A. 1995. Generalization in reinforcement learn-
ing: Safely approximating the value function. In NIPS-7. San Mateo, CA:
Morgan Kaufmann.

Crites, R., and Barto, A. 1996. Improving elevator performance using
reinforcement learning. In DS Touretzky, M. M., and Hasselmo, M., eds.,
Advances in Neural Information Processing Systems 8. Cambridge, MA:
MIT Press.

Gordon, G. 1995. Stable function approximation in dynamic programming.
In Proceedings of the Machine Learning Conference.

Lin, L.-J. 1993. Scaling up reinforcement learning for robot control. In
Proceedings of the Tenth International Conference on Machine Learning,
182{189.

Miller, W.; Glanz, F.; and Kraft, L. 1990. Cmac: An associative neural
network alternative to backpropagation. In Proceedings of the IEEE, 78,
1561{1567.

Moore, A., and Atkeson, C. 1993. Prioritized sweeping: Reinforcement
learning with less data and less time. Machine Learning 13:103{130.

12



Moore, A. 1990. Acquisition of dynamic control knowledge for a robotic
manipulator. In Proceedings of the 7th International Conference on Machine

Learning. Morgan Kaufmann.

Peng, J., and Williams, R. 1992. E�cient learning and planning within the
dyna framework. In Proceedings of the Second International Conference on

Simulation of Adaptive Behavior: From Animals to Animats, 281{290.

Rummery, G., and Niranjan, M. 1994. On-line q-learning using connec-
tionist systems. Technical Report CUED/F-INFENG/TR 166, Cambridge
University.

Singh, S., and Sutton, R. 1996. Reinforcement learning with replacing
eligibility traces. Machine Learning 22:123{158.

Sutton, R. 1990. Integrated architecture for learning, planning, and reacting
based on approximating dynamic programming. In Seventh International

Conference on Machine Learning. Morgan-Kaufmann.

Sutton, R. 1996. Generalization in reinforcement learning: Successful ex-
amples using sparse coarse coding. In Advances in Neural Information Pro-

cessing Systems 8. MIT Press.

Tesauro, G. 1992. Practical issues in temporal di�erence learning. Machine

Learning 8:257{277.

Tsitsiklis, J., and Roy, B. V. 1994. Feature-based methods for large-scale
dynamic programming. Technical Report LIDS-P2277, MIT, Cambridge,
MA.

Tsitsiklis, J., and Roy, B. V. 1996. An analysis of temporal-di�erence
learning with function approximation. Technical Report LIDS-P2322, MIT,
Cambridge, MA.

Watkins, C. 1989. Learning with delayed rewards. Ph.D. Dissertation,
Cambridge University.

Zhang, W., and Dietterich, T. 1995. A reinforcement learning approach to
job-shop scheduling. In Proceedings of IJCAI-95.

13


