Center for Systems Science, Yale University

101

Model-Based Reinforcement Learning
with an Approximate, Learned Model

Leonid Kuvayev
Department of Computer Science
University of Massachusetts
Amherst, MA 01003
kuvayev@cs.umass.edu

Abstract

Model-based reinforcement learning, in which a
- model of the environment’s dynamics is learned and
used to supplement direct learning from experience,
has been proposed as a general approach to learning
and planning. We present the first experiments with
this idea in which the model of the environment’s dy-
namics is both approximate and learned online. These
experiments involve the Mountain Car task, which re-
quires approximation of both value function and model
- because it has continuous state variables. We used
models of the simplest possible form, state-aggregation
or “grid” models, and CMACs to represent the value
function. We find that model-based methods do in-
deed perform better than model-free reinforcement
learning on this task, but only slightly.

1 INTRODUCTION

The most impressive successes of reinforcement learn-
ing so far have all used extensive offline experience
with a model or simulation of the task in order to at-
tain a high level of performance (Tesauro, 1992; Crites
& Barto, 1996; Zhang & Dietterich, 1995). In these
cases the model could be assumed completely known
a priori, but models can also be useful even if they
must be learned. Several researchers have demon-
strated that reinforcement learning can be significantly
accelerated if a model of the environment’s dynam-
ics is learned online and used to supplement direct
learning from experience (Sutton, 1990, 1991; Moore
& Atkeson, 1993; Peng & Williams, 1993). However,
all prior work in which the model was learned used
simple table-lookup methods to represent the model.
These methods did not involve any generalization or
transfer between states. Although they can be used
for moderately large problems (Moore and Atkeson
(1993) demonstrated their effectiveness for problems
with tens of thousands of states), really large problems
require the use of generalizing function approximators
to represent the model.

The switch from table-lookup approaches to those
based on function approximators has been found to be
a significant one for model-free reinforcement learn-
ing (Boyan & Moore, 1995; Sutton, 1996; Tsitiklis
& Van Roy, 1994). While a wide class of methods
have been proven convergent for the table-lookup case,

Richard S. Sutton
Department of Computer Science
University of Massachusetts
Amherst, MA 01003
rich@cs.umass.edu

many of these, including Q-learning and dynamic pro-
gramming methods, appear to be unstable when even
simple function approximators are used (Baird, 1995;
Gordon, 1995). Other methods, such as the Sarsa algo-
rithm we use here (Rummery & Niranjan, 1994; Singh
and Sutton, 1996) appear not to have these problems
(Tsitsiklis & Van Roy, 1996).

It is possible that model-based reinforcement learn-
ing will generalize naturally and easily to the use of
learned, approximate environmental models, but this
is by no means certain. Model-free methods have the
advantage that they are not affected by modeling er-
rors. They always learn directly from real experience,
which, however noisy or rare, is always a true sample
of the real system. Whenever learning is done from an
approximate model there arises the danger that mod-
eling errors will permanently harm performance. In
this and other respects the case of model-based learn-
ing in which the model is inherently approximate is a
critical test of the idea of model-based learning.

In this paper we present the first experimental tests
of model-based reinforcement learning with approx-
imate learning models. We use a standard testbed
problem, the Mountain Car task. Because this prob-
lem has continuous state variables, true table-lookup
methods are impossible (there are an infinite number
of states). The following sections describe the task and .
the model-free and model-based methods we apply to
it.

2 THE MOUNTAIN CAR TASK

For our experiments we used the Mountain Car task
(Moore, 1990). In this task a car starts at the bottom
of a mountain and drives along a mountain track. The
goal is to overpass the mountain top, but the motor is
too weak to drive directly to the top. Instead, the car
must first backup from the goal, then drive forward at
full thrust. The version of this task that we used in
these experiments are the same as that used by Boyan
and Moore (1995). The details of the task are given
below.

There are two continuous state variables, the posi-
tion of the car, z¢, and the velocity of the car, v;. The
valid ranges are —1 < z; <1 and -2 < v < 2. The
equations describing the system are:

102 Proceedings of the Ninth Yale Workshop on Adaptive and Learning Systems

2-z4+1 ifz<0
9= ifz>0

1
@57

— fe _ 9
m-\/1+¢? 1+¢}

at

a-At?
2g+1=zg+’vg'At+

Ve41 =‘U¢+G'At
m=1, g =9.81, and At = 0.03

The force, f, can take three distinct values -4, 0, or
+4 corresponding to the three actions, reverse thrust,
no thrust, or forward thrust. If z;4; or v;4; go out
of range, then they are reset to the boundary value.
The trial starts at the bottom of the mountain with
zo = —0.5 and vg = 0. Reward is -1 on all time steps.
The trial terminates with the first position value that
exceeds z¢41 > 0.5.

3 REINFORCEMENT LEARNING
AND FUNCTION
APPROXIMATION

We used a simple CMAC network to represent the
approximate value function, as described by Sutton
(1996). CMAC networks require less memory than
table lookup approaches and possess excellent conver-
gence speed and solution quality (e.g., see Albus, 1981;
Miller et al., 1990). We have also obtained satisfac-
tory results with backpropagation networks, but they
always learn much slower than CMAC networks, par-
ticularly in the initial stages of training.

In this paper’s experiments we used a CMAC con-
sisting of 10 tilings, each a simple 10 by 10 grid. The
total number of tiles was 10-10-10 = 1000. Each tiling
was offset from the previous by one-tenth of the width
of a tile in each direction, giving a uniform spacing.
We also experimented with a 5-tiling CMAC network
and obtained similar results with some loss of stability.

4 MODEL-FREE LEARNING

In these experiments we used the Sarsa model-free al-
gorithm both as a basis for comparison and as the
underlying algorithm for the model-based method. Al-
though closely related to Q-learning (Watkins, 1989),
Sarsa was preferred here because of its better con-
vergence assurances in the case of approximate value
functions (Tsitsiklis & Van Roy, 1996). Empirically,
we also found sarsa to perform slightly better than
Q-learning (consistent with the larger study by Rum-
mery, 1995). We used the sarsa algorithm exactly as
given in (Sutton, 1996) and (Singh & Sutton, 1996),
except that actions were selected not according to an

1000 T
900
800
700
600 r
500 r

400 1 1 1 1 1 1 1 1
02040608 1 12141618 2
- Alpha

Avg Steps per Trial

Figure 1: Convergence speed at various step sizes.

e-greedy policy, but according to the Boltzmann distri-
bution. The probability of selecting action a in state
s was determined from its action value, Q(s,a) as

£Q(8,a)/T
e@(8,0)/T

EbEAch'aru

where T is a “temperature” parameter, controlling the

degree of exploration. In all of our experiments we
used T = 0.2.

The first experiment evaluated the performance of
this model-free method as a function of the step-size
parameter, a. For each value of a we allowed learning
to occur over 20 trials and measured the average steps
per trial over the run. Results averaged over 30 runs
are shown in Figure 1. The mean and standard error
are shown for each values of a. Best performance is
attained in the neighborhood of o = 1.6. This value
was used in all further experiments for both model-free
and model-based methods.

5 MODEL-BASED LEARNING

We propose to learn thé model of the environment
while obtaining on-line experience and then use this
model to facilitate learning. Given a state and action
the model of the environment predicts the next state.
The mapping can be learned from observing actual
state transitions. In the case of discrete state space the
transitions can be stored in the lookup table. However
in our study the state space is continuous, hence the
mapping of a state and action to a next state needs to
be approximated. The simplest approach using state
aggregation was implemented. That is, a fine grid was
laid over the 2-dimensional state space, and each real
state represented by the grid box within which it fell.
For any given box, the observed next states may fall in
several different boxes. The model stores all observed
next boxes along with their frequencies of occurrence.
When the model is used to generate hypothetical next
states, one of the previously observed boxes is drawn
with probabilities according to the observed frequen-
cies. For the purposes of computing the action (Q)
values of the new box, it was taken to be the continu-
ous state at the lower corner of the cell. The complete

Center for Systems Science, Yale University

model-based Sarsa algorithm is as follows:

L. Initially: w(t) := 0, Vt € Tiles,s,im = so,
Qsim =P01i€y(3;im)
2. Start of Trial: s = 3o, a :=policy(s)

3. Take action a; observe reward, r, and next state

3’

4. a' := policy(s)
5. Learn:
€ toa=
T+ zt'ETilu(l’,a’) w(tl) - EteTt’let(c,u) ‘LU(t)
w(t) :=w(t) + § - ¢, Vt € Tiles(s, a)
6. Update Model: Add a new observation s’ to a list
of past observations kept in the hash table entry

m(s,a). If ' is already in the table then increment
the number of times, s’ has been observed, by 1

7. Sample Model:
Repeat K times
take action a,ipm;
use model to compute the predicted next state,
8,im, and reward, r';
if s, is the terminal state
set S,im = 80, Gsim = policy(s,im)
go to the beginning of the loop
Qim =policy(s,im);)
learn: €:=1r+ z"ET“GI(I:‘-m.G'"-M) ‘IU(t) -

ZteTt’lu(a,;m.u,;m) w(t)
w(t) ;= w(t) + § - €,Vt € Tiles(s,im, Grim)
8. Loop: a :=a';s := s'; if s’ is the terminal state,
go to 2, else go to 3

To gain confidence in the model-based approach and
to compare the effect of the grid resolution for the
model we designed the following experiment. We ran
the algorithm for repeated epochs each of 20 trials.
The model continued to improve across epochs, but

the value functions was reset to zero at the beginning -

of each epoch. The improvement in average perfor-
mance over epochs shown in Figure 2 thus shows the
ability of a better and better model to induce better
and better performance. Results are shown for models
of two different grid resolutions. The high resolution
100 x 100 model is learned slower but shows more ac-
Curate performance. The low resolution 30 x 30 model
is learned much more quickly but can not model the
system as accurately. In either case it is clear that a
good model enables much better performance than is
Possible without a model (cf. Figure 1).

Finally, Figure 3 compares the performance of the
model-free and the model-based methods. For the
model-free method, we used the optimal parameters
found in the earlier study. We varied the number of
model steps, K, from 0 to 10. Performance is shown
averaged over the first 20 and first 500 trials. These
data are averages over 30 runs.

The first data point, with K = 0, corresponds to
@ model-free Sarsa algorithm. Performance increases

103
400 N T T T T T T T T T
33x33 —
350 i 100x100 -------]
T 300 |
=
& 250 | o
[72]
&
) 200 H |
o
>
<C

150

100

50 L 1] 1 1 1 1 1 1
0 5 10 1520 25 30 35 40 45 50
Epochs (each of 20 trials)

Figure 2: Learning during each epoch is better and
better as the model improves over epochs, with the
higher-resolution model improving more slowly but
ultimately being better. Note that all these perfor-
mances are better than those attainable without a
model (i.e., best performance from Figure 1 is about
500 steps per trial). For this experiment, K = 10.

600 : : , .
first 20 trials —
] first 500 trials -
500]
:(——u B -
= 400
)
Q.
a 300 + 1
2
U) v
2 200 |
100 B "‘5 -t O R Feen. £t I':
0 ! L ! L

0 2 4 6 8 10
Number of Model Steps, K

Figure 3: Performance versus K, where K = 0 corre-
sponds to model-free learning.

104 Proceedings of the Ninth Yale Workshop on Adaptive and Learning Systems

4000 T T T

3500 K0 — -
3000 .
2500]
2000 !
1500
1000

500

Avg Steps Per Trial

0 50 100 150 200

Trials
4000 T . T
3500 K=1 — 1
3000 .
2500 -
2000 | -

Avg Steps Per Trial

1500 t 1

1000 § .

500 7
O A 4 i

0 50 100 150 200

Trials

Figure 4: The learning curves for model-free (top) and
model-based (bottom) algorithms.

significantly for the model-based methods. In addi-
tion, the model-based methods appeared to be more
stable, as shown in the learning curves in Figure 4.

6 CONCLUSIONS AND FUTURE
WORK

These experiments are just the first steps in evaluating
the effectiveness of model-based methods in reinforce-
ment learning with approximate, learned models. On
the one hand, we have found significant performance
improvements with the model based methods. On the
other, we have been impressed by the resilience of the
model-free methods. It was not easy to beat them
on this task, and they are much simpler. In partic-
ular, model-based methods tend to consume a great
deal of memory. This is exacerbated by the grid-like
models we used in these experiments. Our plans for
the immediate future are to experiment with more so-
phisticated models, using CMAC networks or local-
weighted regression methods, and to experiment with
other tasks. In principle, the use of models should
produce dramatic, easy, and immediate performance
improvements. We would like to find a test prob-
lem and modeling methodology which clearly demon-
strates this potential.

Acknowledgements

We thank Andrew Moore, for suggesting this direc-
tion of research, and all the members of the Adaptive
Networks Group at the University of Massachusetts

for helpful feedback and discussions. This work was
supported by the National Science Foundation under
grant EC5-9511805 to Andrew Barto and Richard Sut-
ton.

References

Albus, J. S. (1981). Brain, Behavior, and Robotics,
chapter 6, pages 139-179. Byte Books.

Baird, L. C. (1995). Residual Algorithms: Reinforce-
ment Learning with Function Approximation. Proc.
ML95. Morgan Kaufman, San Francisco, CA.

Boyan, J. A. & Moore, A. W. (1995). Generaliza-
tion in reinforcement learning: Safely approximating
the value function. NIPS-7. San Mateo, CA: Morgan
Kaufmann.

Gordon, G. (1995). Stable function approximation in
dynamic programming. Proc. ML95.

Crites, R. H. & Barto, A. G. (1995). Improving ele-
vator performance using reinforcement learning. Pre-
sented at NIPS'95. To appear in Proceeding NIPS-8.

Miller, W. T., Glanz, F. H., & Kraft, L. G. (1990).
CMAC: An associative neural network alternative to
backpropagation. Proc. of the IEEE, 78, 1561-1567.

Moore, A.W., Atkeson, C.G. (1993). Prioritized
sweeping: Reinforcement learning with less data and
less real time, Machine Learning 13, 103-130.

Peng, J., Williams, R.J. (1993). Efficient learning and
planning within the Dyna framework, Adaptive Be-
havior 1, 437-454.

Rummery, G.A. (1994). Problem Solving with Rein-
forcement Learning. Cambridge University PhD The-
sis.

Rummery, G. A. & Niranjan, M. (1994). On-line Q-
learning using connectionist systems. Technical Re-
port CUED/F-INFENG/TR 166, Cambridge Univer-
sity Engineering Dept.

Singh, S. P. & Sutton, R. S. (1996). Reinforcement
learning with replacing eligibility traces. Machine
Learning.

Sutton, R. (1990). Integrated architectures for learn-
ing, planning, and reacting based on approximating
dynamic programming,” Proceedings of the Seventh
International Conference on Machine Learning, pp.
216-224.

Sutton, R. (1991). Dyna, an integrated architecture
for learning, planning and reacting,” Working Notes
of the 1991 AAAI Spring Symposium on Integrated
Intelligent Architectures and SIGART Bulletin, 2, pp.
160-163.

Sutton, R. (1996). Generalization in Reinforcement
Learning: Successful Examples Using Sparse Coarse
Coding. Advances in Neural Information Processing
Systems 8, MIT Press.

Center for Systems Science, Yale University

Tesauro, G. J. (1992). Practical issues in temporal
difference learning. Machine Learning, 8(3/4), 257-
2717.

Tsitsiklis, J. N. & Van Roy, B. (1994). Feature-based
methods for large-scale dynamic programming. Techi-
cal Report LIDS-P2277, MIT, Cambridge, MA 02139.

Tsitsiklis, J. N. & Van Roy, B. (1996). An analysis of
temporal-difference learning with function approxima-
tion. Techical Report LIDS-P2322, MIT, Cambridge,
MA 02139. .

Watkins, C. J. C. H. (1989). Learning from Delayed
Rewards. PhD thesis, Cambridge University, Cam-
bridge, England.

Zhang, W. & Dietterich, T. G., (1995). A reinforce-
ment learning approach to job-shop scheduling.” Proc.
IJCAI9S.

105

