
Learning Feature Relevance Through Step Size
Adaptation in Temporal-Difference Learning

Alex Kearneya,b, Vivek Veeriaha,b, Jaden Travnikb, Patrick M. Pilarskib,1,
Richard S. Suttonb,1

aBorealis AI, Edmonton, Alberta, Canada

bUniversity of Alberta, Edmonton, Alberta, Canada

Abstract

There is a long history of using meta learning as representation learning,
specifically for determining the relevance of inputs. In this paper, we examine
an instance of meta-learning in which feature relevance is learned by adapting
step size parameters of stochastic gradient descent—building on a variety of
prior work in stochastic approximation, machine learning, and artificial neural
networks. In particular, we focus on stochastic meta-descent introduced in
the Incremental Delta-Bar-Delta (IDBD) algorithm for setting individual
step sizes for each feature of a linear function approximator. Using IDBD,
a feature with large or small step sizes will have a large or small impact on
generalization from training examples. As a main contribution of this work,
we extend IDBD to temporal-difference (TD) learning—a form of learning
which is effective in sequential, non i.i.d. problems. We derive a variety of
IDBD generalizations for TD learning, demonstrating that they are able to
distinguish which features are relevant and which are not. We demonstrate
that TD IDBD is effective at learning feature relevance in both an idealized
gridworld and a real-world robotic prediction task.

Keywords: Reinforcement Learning, Representation Learning,
Meta-learning, Step Size Adaptation

Preprint submitted to arXiv March 11, 2019

ar
X

iv
:1

90
3.

03
25

2v
1 

 [c
s.L

G
]  

8 
M

ar
 2

01
9



1. Representation Learning Through Feature Relevance

The performance of Machine Learning (ML) methods depends on their
representation of the environment. A representation is composed by a collec-
tion of features which describe aspects of the current state or example which
is observed by the system. The choice of representation can be the difference
between a successful application and one which is unable to learn. For this
reason, representations are often designed by engineers who construct features
which best describe the task at hand.

Effectiveness of hand-constructed of features is limited, as designing a
representation requires substantial knowledge of both the environment and the
problem being solved. The features which are appropriate for a given task are
not necessarily transferable to different environments and problems. For each
new problem and environment the engineer must re-design the representation.
For this reason, hand-constructed features and engineer expertise is not a
scalable approach to representation construction. Due to these limitations,
it is desirable for systems to independently and automatically construct the
features a system uses to learn.

The process of automatically deciding how to represent the environment
can itself be learned through a second-order learning process—sometimes
described as representation learning, or more broadly as both learning to learn

and meta-learning. Meta-learning methods learn to modify the inputs or the
parameters of the underlying machine learning method. We can use meta-
learning to perform representation learning by learning to constructing new
features, or learning to shaping an existing representations by weighting given
features. In this paper, we focus on systems which perform meta-learning in
order to shape a given representation, i.e. by identifying relevant features.

The simplest case of representation learning is learning the relevance of
given features. Whether features are constructed by hand or learned, the
features a system uses will not be equally relevant to the task at hand. There
are some features which will be more relevant and which we wish to generalize
over more than others. By learning feature relevance, a system can weight
the influence of input features on the model being learnt and generalization
from training examples. In this sense, learning the relevance of features is a
form of representation learning which is prior to feature construction: before

2



creating systems which are able to construct their own features from inputs,
a system can modify its existing representation by weighting given features
based on their relevance. The problem of identifying relevant features through
meta-learning has roots in both animal and human learning. Humans and
animals are known to learn to discern which aspects of the environment are
relevant to the task at hand. Work in neuroscience has assessed how humans
perform representation learning by identifying relevant stimuli (Wilson and
Niv, 2012); in cognitive science studies have examined how children are able
to generalize from just a few examples by forming appropriate biases(Colunga
and Smith, 2005). Animals learn over which features to generalize their
learning to new examples–they learn the saliency of the signals. In doing so,
humans and animals are performing representation learning by identifying
the relevance of stimuli. It is natural that a machine learning system perform
representing learning by learning the relevance of inputs.

One method of assigning feature relevance is through adapting a vector
of many step sizes. Step sizes scale updates made to a learned model; by
assigning step sizes on a per-feature basis we are able to give large step sizes to
relevant features and small step sizes to the irrelevant features: scaling weight
updates based on the quality of input features (Sutton, 1992). The simplest
case of step sizes as feature relevance are methods which use a linear function
approximation: methods where each weight has its own specific step size. In
this paper, we focus on methods which use linear function-approximation. In
the linear mapping case there is a single step size per feature and feature-
relevance directly corresponds with step sizes. One of the main methods
of learning feature relevance by learning setting step size values is through
Stochastic Meta-descent (SMD): a form of gradient descent which takes the
gradient of a gradient step.

2. Stochastic Meta-descent For Meta Learning And Feature Rele-
vance

SMD was first introduced for online learning in the linear case as Incre-
mental Delta-Bar-Delta (IDBD)(Sutton, 1992) which was later extended to
non-linear mappings (Schraudolph, 1999). Most recently, SMD has been used
for temporal predictions and sequential problems, such as MAML (Finn et al.,
2017): an offline method for updating the step sizes in a model-agnostic

3



fashion. Meta-gradient RL uses SMD to adapt the return of a reinforcement
learning problem (Xu et al., 2018), and Cross-prop uses SMD to learn weight-
ings of inputs to learn representations which generalize across tasks. Outside
of machine learning, IDBD has been extended to biologically plausible version
for modeling neural metaplasticity (Schweighofer and Arbib, 1998).

Many generalizations of IDBD have been used to learn step sizes online for
a variety of underlying learning methods. AutoStep (Mahmood and Sutton,
2013) is an extension of IDBD which introduces a normalization to the update
of IDBD’s meta-weights to improve stability. SID, NOSID, Dabney AutoStep
(Dabney, 2014), and our initial presentation of TIDBD (Kearney et al., 2017)
are generalizations of IDBD for TD methods. We are particularly interested
in these meta-learning methods for step size adaptation to learn the relevance
of features.

IDBD

Incremental Delta-Bar-Delta(IDBD) (Sutton, 1992) is a meta-learning
algorithm which learns a bias through experience by maintaining a vector
of learned step sizes. The intuition behind IDBD is that features which are
correlated with our prediction problem should be given large step sizes, while
features which are irrelevant to our prediction problem should be given smaller
step sizes.

IDBD estimates a target value ŷ by learning a weight vector w, such that
the dot-product of the observations and the weight vector produce an estimate
y = w>x. The weights are updated by moving in the direction of the error
� = ŷ � y, where ŷ is the observed target. The update is weighted by a small
fraction ↵ > 0, where ↵ is a vector of step sizes which are learnt and ↵i > 0.

IDBD adapts a vector of many step sizes online and incrementally by
performing stochastic meta-descent over a vector of meta-weights � which
are used to specify the step sizes ↵ on a per-feature basis. On each time-step
alpha is updated by ↵ exp(�), producing a vector of step sizes: one step
size for each feature in observations x. By exponentiating the meta-weights
� to produce a step size ↵, a linear step in the meta-weights � produces a
geometric step in ↵; in addition, it ensures all step sizes ↵ are positive.

4



The meta-weights are updated by �  � + ✓�xh. The meta step size ✓
weights the amount by which we update our weights in the direction of the
error. The prediction error � is the difference between our estimate y and
the observed target ŷ. The additional memory vector h is a decaying trace
of recent meta-weight updates. The update of the � is proportional to the
correlation between the current change and previous changes to �.

The intuition behind this update is that if many updates for feature xi

to weight wi are similar, it would have been a more effective use of data to
have a larger step size ↵i and thus a larger update to wi. Negative correlation
suggests that updates to wi have over-shot and over-corrected—that the step
size ↵i should be smaller.

Algorithm 1 IDBD
1: Initialize vectors h, �, and w of size n number of features.
2: Repeat for each observation x and target ŷ:
3: y  w>x
4: �  ŷ � y
5: For i = 1, 2, · · · , n:
6: �i  �i + ✓�xihi

7: ↵i  e�i

8: wi  wi + ↵i�xi

9: hi  hi[1� ↵ix2
i ]

+ + ↵i�xi

While it is presented alongside the underlying gradient-descent learning
mechanism, IDBD is truly the update and maintenance of �, ↵, and h (lines
6,7, and 9, respectively). In this sense, it is a meta-learning method which is
distinct and separate from the method which learns resulting model; however,
the order of IDBD’s updates in relation to the underlying learning updates is
important.

A possible criticism of IDBD is that it is only abstracting the problem of
setting the step sizes to a higher level: although IDBD learns the step size
parameter, we must now specify the meta step size ✓ with which we learn our
step sizes. This is still an improvement, as tuned IDBD outperforms methods
which do not adapt their bias (Sutton, 1992). In addition, extensions of IDBD,
including AutoStep (Mahmood et al., 2012), and NOSID, and AUTOSID
(Dabney, 2014) have had success in making their methods relatively invariant

5



to the setting of the meta step size ✓.

Another criticism of IDBD is that of stability. If many consecutive weight
updates to wi are in the same direction, then hi will grow correspondingly
large. As hi grows, �i grows, and ↵i increases geometrically in size. This could
lead to instability as a single large update to �i could lead to divergence. To
prevent this, Sutton (1992) originally suggests that updates to meta-weights
� are limited ±2 and that each step size ↵i is limited to some maximum value.
While this resolves the instability of IDBD, it introduces two thresholds to
the algorithm. This adds greater complexity to the practical use of IDBD, as
we must pick appropriate thresholds for each problem. while IDBD abstracts
the problem of tuning, it does not fully escape it.

3. Temporal Difference Learning

A limitation of IDBD is that it is derived for supervised learning, pre-
venting its use on other learning problems which update their models with
different underlying learning methods. Most existing extensions of IDBD
are generalizations to other learning methods. In particular, reinforcement
learning policy evaluation methods have received many generalizations: for
instance, SID, NOSID, and an AutoStep variation (Dabney, 2014).

A form of policy evaluation is Temporal-difference learning (TD). TD
methods are of note, as they are able to learn directly from experience,
and their estimates are learned using bootstrapping—TD methods are able
to update their estimate V (s) based on their current estimate. Temporal-
difference learning methods are driven by the difference between estimates of
successive states.

We can think of TD predictions as estimating the value of a state in a
Markov Reward Process (MRP). A MRP is described by the tuple
< S, p, r, � > where S is the set of all states, p(s0|s) describes the probability
of a transition from a state s 2 S to a new state s0 2 S, r(s, s0) describes the
reward observed on a transition from s to s0, and 0  �  1 is a discount
factor which determines how future reward is weighted.

6



The goal in an MRP is to learn a value function V (s) which estimates the
expected return from a given state v⇤(s) := E{Gt|St = s}, where the return is
Gt :=

P1
i=1 �

i�1Rt+i, or the discounted sum of all future rewards. Within the
context of an MRP, a prediction is an estimation of the value of a state—an
accumulation of discounted future reward. For example, the prediction signal
could be the position of a robot’s gripper, which is later used as an input into
a robot’s control system.

We describe TD learning with eligibility traces and linear function ap-
proximations. The estimate V (s) is learnt by updating a vector of weights
w. Using some linear function approximation–i.e.: Tile Coding (Sutton and
Barto, 1998) or Selective Kanerva Coding (Travnik and Pilarski, 2017)—we
can generate a binary feature vector which represents state s. The estimated
value of state s is then V (s) = w>�(s).

The error we minimize is the TD error � = R+ �w>�(s0)�w>�(s). Note,
R+ �w>�(s0) is bootstrapped estimate of the true return G. We estimate the
true return by taking the sum observed reward R and the discounted estimate
of the following observed state V (s0) = �w>�(s0). This means that we are
learning our estimate of the target G through experience. The discounting
factor is 0  �  1.

The vector z is a decaying trace of recently activated features. At each
time step, the trace is decayed by �� and then incremented by the most
recently activated features. The parameter 0  �  1 describes the rate
at which we want to decay our traces. This enables current rewards to be
attributed to previously visited states. The weights w are then incremented
in the direction of the TD error �, weighted by a small, positive step size ↵,
and our eligibility traces �.

TD prediction methods are effective in life-long continual learning systems—
systems where the true return Gt may never be observed, or where the
dynamics of they system are too complex to model. While useful, TD learning
has received relatively little interest in step size adaptation methods. Those
which almost exclusively adapt, scalar step sizes: they do not adapt bias
by performing representation learning. In this paper, we provide a step size
based bias adaptation method by generalizing IDBD to TD learning.

7



Algorithm 2 TD(�)
1: Initialize vectors z 2 0n, and both w 2 Rn; initialize a small scalar ↵ > 0;

observe state S
2: Repeat for each observation s0 and reward R:
3: �  R + �w>�(s0)� w>�(s)
4: For i = 1, 2, · · · , n:
5: zi  zi��+ �i(s)
6: wi  wi + ↵i�zi
7: s s0

4. TIDBD: TD Incremental Delta-Bar-Delta

We now generalize IDBD to TD learning. There exist four other general-
izations of IDBD for policy evaluation: Scalar Incremental Delta-Bar-Delta
(SID), Normalized Scalar Incremental Delta-Bar-Delta (NOSID), an AutoStep
variation (Dabney, 2014), and meta-trace (Young et al., 2018). Both SID and
NOSID use a single, shared, global step size; as a result, neither are learning
feature relevance. Although SID and NOSID learn step sizes using IDBD, the
step sizes are not assigned on a per-feature basis. Dabney’s AutoStep uses a

In Section 7.1 We compare our methods against SID, NOSID, and Al-
phaBound (Dabney and Barto, 2012) as a sanity-check to ensure bias change
and representation learning provide some benefit over methods without rep-
resentation learning. In addition, we compare against (Dabney, 2014)’s
AutoStep.

IDBD was originally derived as meta gradient-descent for Least Means
Square rule learning. IDBD minimizes

@�2(t)
@�i(t)

where � is LMS error and � are
the meta-weights such that exp(�) = ↵. To generalize IDBD to TD learning
we must define what squared error we aim to minimize. One option is to

8



minimize the squared one-step TD error with respect to our meta-weights �.

�i(t+ 1) = �i(t)�
1

2
✓
@�2(t)

@�i

= �i(t)�
1

2
✓
X

j

@�2(t)

@wj(t)

@wj(t)

@�i

(1)

To approximate
P

j
@�2(t)
@wj(t)

�wj(t)
��i

we assume that @wj(t)
@�i

⇡ 0 where i 6= j.
This approximation is fair, as the effect of changing the step size for a
particular weight will predominantly be on the weight itself; effects on other
weights will be nominal.

�i(t+ 1) ⇡ �i(t)�
1

2
✓
@�2(t)

@wi(t)

@w(t)

@�i
(2)

The use of TD error introduces some subtleties based on bootstrapping:
the estimate of the error � = Rt + V (�(t + 1)) � V (�(t)) depends on the
predicted value of the future state V (�(t+ 1)), resulting in a biased gradient.
Rt+1 + �V (�(t + 1)) � V (�(t)) is a biased estimate of the expected return
from time-step t, as it relies on on the estimate produced by the weight vector
wt. Because of this bootstrapping, we are not using true gradient descent
(Barnard, 1993).

We have two choices: performing gradient descent using the full, biased
gradient, or using a semi-gradient method. Semi-gradient methods do not use
the estimate of the return at state �(t+ 1) in the the error. In this section,
we show the derivation for both choices. In the following section, we evaluate
the performance of each method.

Semi-gradient Derivation

For semi-gradient TD(�) we take the gradient of the approximate value
function V with respect to our weight vector w. In the linear case, the

9



semi-gradient for TD(�) is simply ��(t). Using this gradient we can find (3)
which may then be substituted back into (1).

�1

2

@�2(t)

@wi(t)
= ��(t) @�(t)

@wi(t)

= ��(t) @

@wi(t)
[�V (�(t))]

= �(t)�(t)

(3)

We then complete �’s definition in (4) by defining an additional memory
vector h. We define h as @wi(t+1)

@�i
.

�i(t+ 1) ⇡ �i(t) + ✓�(t)�i(t)hi(t) (4)

We simplify @wi(t)
@�i

by describing it in terms of it’s update.

hi(t+ 1) =
@wi(t+ 1)

@�i

=
@

@�i
[wi(t) + e�i(t+1)�(t)zi(t)]

= hi(t) + e�i(t+1)�(t)zi(t) + e�i(t+1)@�(t)

@�i
zi(t) + e�i(t+1)@zi(t)

@�i
�i(t)

(5)

10



using the product rule to simplify (5) leaves us with the remaining @�(t)
@� .

@�(t)

@�i
= � @

@�i
[V (�(t))]

= � @

@�i

X

j

wj(t)�j(t)

⇡ � @

@�i
[wi(t)�i(t)] = �hi(t)�i(t)

(6)

Again, as we presume that a change in step size for a particular weight
will have a nominal impact on other weights, we approximate @Vi(t)

@�i
as

@
@� [wi(t)>�(t)]. This results in �h(t)�(t) which we may then use to sim-
plify (5) to the definition of h in (8).

@zi(t+ 1)

@�i
=

@

@�i
[��zi(t) + �i(st)] =

@zi(t)��

@�i
= 0 (7)

We see that (7) results in a decaying trace of the initialized value of the
eligibility traces. Since the gradient is 0, this value will always be 0.

hi(t+ 1) ⇡ hi(t) + e�i(t+1)�(t)zi(t)� e�i(t+1)�i(t)zi(t)hi(t)

= hi(t)[1� ↵(t+ 1)�i(t)zi(t)] + ↵i(t+ 1)�(t)zi(t)
(8)

After positively bounding [1�↵(t+1)�i(t)zi(t)], denoted with +, we have
completed semi-gradient TIDBD, as shown in algorithm 3.

One may note that semi-gradient TIDBD is similar to the original IDBD
formulation (Algorithm 1). The meta-weights are updated using the product
of the current error �, a trace of recent weight updates h, and the currently
active features �(s). The most notable change is that TIDBD’s h trace is now
modulated by not just the active features �, but also the eligibility traces z.
This means that while the updates to step sizes will be limited to currently
active features �(s), the trace of recent weight updates include discounted
past activations in z.

11



Algorithm 3 TIDBD(�) with semi-gradient
1: Initialize vectors h 2 0n, z 2 0n, and both w 2 Rn and � 2 Rn as desired;

initialize a scalar ✓; observe state S
2: Repeat for each observation s0 and reward R:
3: �  R + �w>�(s0)� w>�(s)
4: For element i = 1, 2, · · · , n:
5: �i  �i + ✓��i(s)hi

6: ↵i  e�i

7: zi  zi��+ �i(s)
8: wi  wi + ↵i�zi
9: hi  hi[1� ↵i�i(s)zi]+ + ↵i�zi

10: s s0

Ordinary Gradient Derivation

We now derive TIDBD as stochastic meta-descent using the ordinary
gradient. We start the derivation of TIDBD by describing the update rule for
�—the meta-weights with which we define our step size.

Instead of using the semi-gradient, we consider both the estimated value
of the state, and the target.

�i(t+ 1) ⇡ �i(t)� ✓�(t)
@�(t)

@wi(t)

@wi(t)

@�i

= �i(t)� ✓�(t)
@[R + �w>�(t+ 1)� w>�(t)]

@wi(t)

@wi(t)

@�i

= �i(t)� ✓�(t)[��(t+ 1)� �(t)]
@wi(t)

@�i

= �i(t)� ✓�(t)[��(t+ 1)� �(t)]hi(t)

(9)

We then complete the simplification of �’s update by defining an additional

12



memory vector h as @w
@� . We then complete the update for h.

hi(t+ 1) =
@wi(t+ 1)

@�i

=
@[wi(t) + e�i(t+1)�(t)zi(t)]

@�i

= hi(t) + e�i(t+1)�(t)zi(t) + e�i(t+1)@�(t)

@�i
zi(t) + e�i(t+1)@zi(t)

@�i
�i(t)

(10)

This simplification leaves us with @�(t)
@�i

, derived in (6), and @zi(t)
@�i

, simplified
in (7). We use the same approximation as in (1) to simplify:

@�(t)

@�i
=

@

@�i
[R + �w>�(t+ 1)� w>�(t)]

=
@

@�i
[
X

j

R + �wj�j(t+ 1)� wj�j(t)]

⇡ @

@�i
[R + �wi�i(t+ 1)� wi�i(t)]

= �hi�i(t+ 1)� hi�i(t)

(11)

hi(t+ 1) ⇡ hi(t) + e�i(t+1)�(t)zi(t) + e�i(t+1)[�hi�i(st+1)� hi�i(st)]zi(t) + 0e�i(t+1)�i(t)

= hi(t)[1 + ↵i(t+ 1)zi(t)[��i(st+1)� �i(st)]] + ↵i(t+ 1)�(t)zi(t)
(12)

We then take the results from (6) and (7) to complete the definition of
h’s update. The update for h and � may then be implemented directly as
shown earlier in Algorithm 4.

13



Algorithm 4 TIDBD(�)
1: Initialize vectors h 2 0n, z 2 0n, and both w 2 Rn and � 2 Rn as desired;

initialize a scalar ✓; observe state S
2: Repeat for each observation s0 and reward R:
3: �  R + �w>�(s0)� w>�(s)
4: For element i = 1, 2, · · · , n:
5: �i  �i � ✓�[��(s0)� �(s)]hi

6: ↵i  e�i

7: zi  zi��+ �i(s)
8: wi  wi + ↵i�zi
9: hi  hi[1 + ↵izi[��i(s0)� �i(s)]]+ + ↵i�zi

10: s s0

5. Does TIDBD(0) With a Single, Shared step size Outperform
Ordinary TD?

Having derived both ordinary and semi-gradient TIDBD, we now evaluate
whether the benefits of IDBD transfer to TD learning.

First, we assess the ability of TIDBD to improve upon traditional TD
prediction in a simple tabular setting. In a tabular setting, the advantages of
vectorizing step sizes are not present, enabling us to assess whether adapting
step sizes with TIDBD is an improvement over ordinary TD in general,
independent of performing representation learning.

An ideal bias learning method would be able to perform as well as or
better than TD for arbitrary initial step sizes ↵0 while being insensitive to
meta-parameters. We expect that TIDBD should be able to out-perform TD
for all ✓ values, and that it should be relatively insensitive to the choice of ✓
values.

5.1. Gridworld

We created a suitable prediction task by generating a Markov Reward
Process from a grid-world problem originally described in Sutton and Barto
(1998) (depicted in Figure 1). Each tile in the 5 ⇥ 5 grid-world represents a

14



Figure 1: Gridworld Problem as introduced in (Sutton and Barto, 1998).

state. The state transitions are the four cardinal directions—north, south,
east, and west—chosen by an equiprobable random policy. Transitions which
would leave the grid resulted in staying in the same state and a reward of -1.
Regardless of the transition in state A or B, the learner transitions to states
A0 and B0 respectively with a probability of 1. A transition from A to A0

yields a reward of 10 and a transition from B to B0 yields a reward of 5. All
other transitions receive a reward of 0. The start state was the top left-hand
corner. A trial consisted of the equiprobable random policy acting for 15000
time-steps. Each prediction method would then learn a value function over
the 30 trials.

We compared ordinary TD to both semi-gradient and ordinary gradient
TIDBD with initial step sizes distributed between 0.0005 and 0.5. For all
prediction methods � = 0 and � = 0.99. We swept over 21 different meta-
parameters equally distributed between the range of 0 < ✓ < 0.2—the range
for which IDBD was originally compared over in Sutton (1992). When ✓ = 0,
TIDBD and TD are equivalent, as the initial step size ↵0 is never updated.

Figure 2 depicts the performance of both semi-gradient and ordinary
gradient TIDBD for settings of their meta step size. As expected, semi-
gradient TIDBD is less sensitive to meta step size ✓ values than ordinary
TIDBD, but has a higher asymptotic error than ordinary TD for the best
initial step size setting ↵0 = 0.05. For all but ↵0 = 0.05, there are broad
settings of ✓ such that TIDBD attains better asymptotic performance than
ordinary TD. As we move further away from the optimal step size, the greater

15



the advantage of adapting the step sizes with TIDBD becomes.

The semi-gradient accounts for the effect of changing the weights on the
estimate, but ignores the effects on the target. While semi-gradient methods
do not converge as robustly, they converge fast with reliability. The motivation
for a semi-gradient TIDBD is to make the method less sensitive to the setting
of ✓. By not taking into account the target, non-stationarity in the update of
the target value will not affect the updates of, making TIDBD more stable
than an ordinary gradient TD method.

For every initial step size except for the best setting (↵0 = 0.05), there
are settings of ✓ such that TIDBD is an improvement over ordinary fixed
step size TD. Common to both ordinary and semi-gradient TIDBD is the
asymmetry of sensitivity to meta-parameters: the performance of TIDBD is
more robust for initializations of ↵ > 0.05. In general, TIDBD is more robust
to larger initial step size settings than it is to smaller initial step size settings.
This is intuitive. Step size schedules typically start with large values which
decrease over time.

In figure 2b, the performance of TIDBD with an ordinary gradient is
displayed across varying settings of ↵ and ✓. As anticipated, TIDBD with an
ordinary gradient is more sensitive to ✓ settings.Unlike semi-gradient TIDBD,
TIDBD with an ordinary TD gradient achieves performance equivalent to
ordinary TD for the best initial step size.

In Figure 3 the error of both semi-gradient and ordinary TIDBD are
compared to TD for three initial step size settings. Figure 3a is the most
conservative initialization of ↵0. We expect that for this ↵0 learning for
ordinary TD will be slow, as it takes small steps when updating it’s estimated
value for each state. For ↵0 = 0.01, both ordinary and semi-gradient TIDBD
outperform ordinary TD, with both increasing their step sizes enabling them
to make larger updates to their weights and learn more quickly.

For the best setting ↵0 = 0.05(Figure 3b), there is little asymptotic
difference between TD both versions of TIDBD; however, semi-gradient
TIDBD learns far faster than both ordinary TD and ordinary gradient TIDBD.
In early learning, semi-gradient TIDBD is able to find step sizes which enable
it to converge the fastest. The benefits of both semi and ordinary-gradient

16



(a) Semi-gradient TIDBD.

(b) Ordinary gradient TIDBD.

Figure 2: Parameter study of semi and ordinary gradient TIDBD. Static step size TD in
black.

17



(a) ↵0 = 0.01

(b) ↵0 = 0.05

(c) ↵0 = 0.5

Figure 3: Error during learning for three initializations ↵0 for TD(0) and both semi-gradient
TIDBD and ordinary-gradient TIDBD.

18



TIDBD are most apparent at the most aggressive setting of ↵0 = 0.5 (Figure
3c). While ordinary TD is unable to learn, both semi and ordinary gradient
TIDBD are able to learn in spite of the poor initial step size setting—they
are able to tune their step sizes down in response.

6. AutoTIDBD: AutoStep-Style TIDBD

TIDBD with an ordinary gradient was able to perform as well as or better
than TD for some ✓ value at each ↵0 value; however, the best ✓ values varied
for different ↵0 values. Conversely, semi-gradient TIDBD had broad ranges
of values of ✓ for which the performance was acceptable, but did not perform
as well as TD for the best value of ↵0.

One of the benefits of a static shared step size is that most reinforcement
learning practitioners have an intuition of what range of values will yield
acceptable performance in general; however, the optimal step size value will
vary from domain to domain. With TIDBD and other similar IDBD methods,
the performance is dependent on a meta step size—a value for which there is
little intuition as to how to set. A poor choice of meta step size can lead to
explosive updates.

The instability of IDBD is not a new observation. Sutton (1992) orig-
inally suggested bounding both step size values and the size of updates
to the meta-weights �—amendments we chose to exclude so as to better
understand TIDBD’s underlying performance. AutoStep—an extension of
IDBD—reduced sensitivity to the setting of the meta step size and prevented
divergence in the supervised learning setting(Mahmood et al., 2012). To
prevent divergence, AutoStep makes two additions to IDBD. First, the meta-
weight update is normalized by a decaying average of recent weight updates.
Second, the step sizes is normalized by the amount by which the error was
reduced on a given example—termed the effective step size. By normalizing
the current step sizes by the effective step size a weight update will never
overshoot on the current observed example.

19



6.1. AutoStep

To manage explosive growth of step sizes, Autostep (Algorithm 5) adds
two components to IDBD (Algorithm 1): a normalization of the inputs �xh
with which we update our � meta-weights, and a normalization of the resulting
step size exp(�) by the effective step size.

To normalize the inputs, AutoStep maintains ⌘, a running trace of recent
weight updates (Line 5). At each time-step it takes the maximum between
the current weight update |�xh| and a decay of the previous maximum
vi +

1
⌧↵ix2

i (|�xihi|� ⌘). The scalar ⌧ is a large value which weights the decay
of v.

⌘  max(|�xh|, ⌘ + 1

⌧
↵x2(|�xh|� ⌘)) (13)

One might consider why the maximum is decayed rather than simply
stored—as is done with NOSID (see Dabney (2014) for further details). In real-
world data sources, noise and other outliers could distort the absolute recorded
maximum, making the normalizer adjust input values into an unrepresentative
range. By decaying the maximum, we enable the system to recover gracefully
and gradually from such extreme data.

On line 7, this normalizer ⌘ is used to make the update �xh unitless.

After the meta-weights have been updated, the resulting step size ↵ is
normalized by the effective step size (line 8). The effective step size describes
the amount by which we reduce the error on the current example by making
a weight update. An effective step size equal to one means that the error
has been entirely reduced for the current example. By dividing the current
step size ↵ by max(1, effective step size), we prevent over-shooting on a given
example: we prevent an update which introduces more error.

6.2. AutoTIDBD: AutoStep for TD learning

Having introduced AutoStep, we now add Auto-step’s normalization to
TIDBD to improve its stability. AutoStep prevents divergence by normalizing

20



Algorithm 5 AutoStep
1: Initialize vectors h 2 0n, z 2 0n, and both w 2 Rn and � 2 Rn as desired;

initialize vector ↵ exp(�) initialize a scalar ✓; observe state S
2: Repeat for each observation x and target y:
3: �  y �w>x
4: For element i = 1, 2, · · · , n:
5: ⌘i  max(|�xihi|, ⌘i + 1

⌧↵ix2
i (|�xihi|� ⌘))

6: If ⌘i 6= 0:
7: ↵i  ↵i exp(µ

�xihi
⌘i

)

8: M  max(
P

(↵ix2
i ), 1)

9: For element i = 1, 2, · · · , n:
10: ↵i  ↵i

M
11: wi  wi + ↵i�xi

12: hi(1� ↵ix2
i ) + ↵i�xi

the current step size ↵i by the effective step size ↵>
i x

2
i—the amount by which

the error on the current example is reduced by updating the weight vector.
If the effective step size is one, then we have reduced all error on the given
example; If the effective step size is greater than one, then we have over-
corrected on a given example. If we divide the current step size by the effective
step size before performing a weight update in this instance, we ensure that
we do not overshoot on the given example.

We calculate the effective step size by taking the difference between the
error before the weight update �t(t) and the error after the weights have
been updated �t+1(t), or �t(t)��t+1(t)

�t(t)
. We calculate the error �t+1(t) using the

weights from time-step t+ 1 and the observation from time-step t.

For supervised learning, the notion of an effective step size is straightfor-
ward: there is a known target value, so the error reduced on a given time-step
is directly observable. However, as previously mentioned, TD learning uses
bootstrapping. For TD learning the effective step size is not an exact value,
but a biased estimation dependent on how accurate the value-function is in

21



estimating the value of the following step.

�t(t)� �t+1(t)

�t(t)
=

[Rt+1 + �Vt(�(t+ 1)� Vt(�(t))]� [Rt+1 + �Vt+1(�(t+ 1)� Vt+1(�(t))]

�(t)

=
[�Vt(�(t+ 1)� Vt(�(t))]

�(t)

� [�(Vt(�(t+ 1) + (↵�z)>�(t+ 1))� (Vt(�(t)) + (↵�z)>�(t)]

�(t)
(14)

We expand �t+1(t), as the TD error of the current time-step t using the
value-functions from the following time-step, Vt+1. Value functions may be
written recursively as the sum of the previous time-step’s value-function
Vt(�(st) and the current weight update ↵t�ttzt. So, Vt+1(�(st)) = Vt(�(st)) +
[↵t�t(t)zt](�(st)).

�t(t)� �t+1(t)

�t(t)
=

[�Vt(�(t+ 1)� �Vt(�(t+ 1)]

�(t)

� [Vt(�(t)� Vt(�(t)]� [�↵�z>�(t+ 1)� ↵�z>�(t)]

�(t)

=
�[�↵�z>�(t+ 1))� ↵�z>�(t)]

�(t)

= �(↵z)>[��(t+ 1)� �(t)]

(15)

The resulting effective step size is �(↵z)>[��(t + 1) � �(t)]. This is an
intuitive result, as the amount by which we will reduce our error on a given
example is the difference between the the update made to the features active
in the target �(t+1) and the changes made to the features in the state who’s
value we are currently estimating �(t).

With the effective step size defined, what remains in defining an Au-
toStep for TIDBD is the weight-update’s normalizing term. AutoStep sim-
ply maintains a running trace of the absolute value of the weight-updates

22



max(|�xihi|, vi + 1
⌧↵ix2

i (|�xihi|� v)). The absolute weight update for TIDBD
is |�[��(st+1)� �(s)]h|, and the current active step size is ↵[��(st+1)� �(st)].
Thus, the trace ⌘ of the maximum weight update would be max(|�[��i(st+1)�
�i(s)]hi|, ⌘i � 1

⌧↵i[��i(st+1)� �i(s)]zi(|��i(s)hi|� ⌘i))

Algorithm 6 AutoStep Style Normalized TIDBD(�)
1: Initialize vectors h 2 0n, z 2 0n, and both w 2 Rn and � 2 Rn as desired;

initialize a scalar ✓; observe state S
2: Repeat for each observation s0 and reward R:
3: �  R + �w>�(s0)� w>�(s)
4: For element i = 1, 2, · · · , n:
5: ⌘i  max[
6: |�[��i(s0)� �i(s)]hi|,
7: ⌘i � 1

⌧↵i[��i(s0)� �i(s)]zi(|��i(s)hi|� ⌘i)]
8: For element i = 1, 2, · · · , n:
9: �i  �i � ✓ 1

⌘i
�[��i(s0))� �i(s)]hi

10: M  max(�e�i [��i(s0)� �i(s)]>zi, 1)
11: �i  �i � log(M)
12: ↵i  e�i

13: zi  zi��+ �i(s)
14: wi  wi + ↵i�zi
15: hi  hi[1 + ↵i[��i(s0)� �i(s)]zi]+ + ↵i�zi
16: s s0

With the generalization to AutoTIDBD, we assess it’s performance to
determine whether it is able to perform better or equal to than tuned ordinary
TD(0) while being relatively insensitive to its meta step size ✓, meeting one
of our core criteria for an adaptive bias algorithm.

23



6.3. AutoTIDBD in Gridworld

In Figure 5 and 4, a parameter study of AutoTIDBD’s sensitivity on the
task introduced in section 5.1 is presented. As with the previous experients,
AutoTIDBD is adapting a single, shared step size.

Similar to semi-gradient TIDBD, there are broad ranges of ✓ values for
which AutoTIDBD outperforms ordinary TD; like ordinary-gradient TIDBD,
AutoTIDBD performs as well as or better than TD, even for the best ↵0

setting. While the absolute best performance may vary for different values of
↵0, the change in performance as ✓ varies is predictable and consistent.

Figure 4: Parameter study of Full-gradient AutoTIDBD for varying ↵0 and ✓ values.

24



Figure 5: Parameter study of semi-gradient AutoTIDBD for varying ↵0 and ✓ values.

In Figure 6, the average error over the trial is shown for ↵0 of 0.01, 0.05,
and 0.5: points corresponding to initializations of ↵0 as shown in Figures 4
and 5. We can see that for the more conservative initialization of ↵0 = 0.01,
AutoTIDBD is able to increase its step size and learn faster than ordinary
TD. As expected, AutoTIDBD performs about as well as ordinary gradient
TIDBID without Auto normalization. When we start with a conservative
step size, we are unlikely to diverge; AutoTIDBD and TIDBD will behave
similarly in this setting. For the best initialization ↵0 = 0.05, AutoTIDBD
performs as well as fixed step size TD. For the most aggressive setting ↵0 = 0.5,
AutoTIDBD learns slower and more erratically than un-normalized TD.

25



Semi-gradient
AutoTIDBD

Semi-gradient TIDBD

TD
Ordinary Gradient 

TIDBD

Ordinary Gradient 
AutoTIDBD

(a) ↵0 = 0.01

Ordinary Gradient 
AutoTIDBID

TD

Ordinary Gradient 
TIDBID

Semi-gradient TIDBD

Semi-gradient 
AutoTIDBD

(b) ↵0 = 0.05

Semi-gradient AutoTIDBD

TD

Semi-gradient TIDBD

Ordinary Gradient TIDBD
Ordinary Gradient AutoTIDBD

(c) ↵0 = 0.5

Figure 6: Error during learning for three initializations of ↵0 for TD(0), both semi-gradient
and ordinary-gradient TIDBD(0), and AutoTIDBD(0).

26



(a) A subject with electrodes attached

to their wrist flexors and extensors.

(b) The BentoArm performing a mod-

ified Box and Blocks task.

Unlike the previous versions of TIDBD, AutoTDBD performs as well as
or better than ordinary fixed step size TD for all initial settings of ↵. While
this stability and improved performance comes at a cost—AutoTIDBD learns
more slowly for aggressive ↵0 than TIDBD—even without representation
learning AutoTIDBD is able to perform as well as or better than ordinary
TD learning for all of the initial step sizes ↵0 in the grid-world experiment.

7. How Robust is AutoTIDBD to Selection of Meta Step Size ✓

In previous sections, we demonstrated that TIDBD and AutoTIDBD
tuning a single, shared step size was able to perform as well as or better
than tuned ordinary TD. We now evaluate how well AutoTIDBD performs
when using a vector of many step sizes—when it is performing representation
learning. We evaluate this on a known, challenging, real-world prediction of
problem (Pilarski et al., 2012, 2013; Seijen and Sutton, 2014).

7.1. Robotic Prediction Task

The prediction problem for our evaluation consisted of predicting the
temporally extended future values of signals of interest within the data stream
of a robotic arm as a user controlled it to perform a manual manipulation task.
The dataset for this evaluation was drawn from a prior study by Edwards et al.
(2016), as done in the evaluation of True Online TD by Seijen and Sutton
(2014). In this dataset, the signal space of a robotic arm—the BentoArm of
Dawson et al. (2014), depicted in Figure 7b—was recorded as four participants

27



used signals from their upper-arm muscles to control the robot to perform
a simple object placement task. Signals in the data stream included the
moment-by-moment position, velocity, load, temperature of all the robot’s
motors, along with the control signals being sent by the human user. Users
were tasked with switching between the multiple controllable degrees of the
robot arm to move balls from one side of a divided box to another. For the full
experimental protocol used in generating this dataset, please refer to Edwards
et al. (2016). Important to our present evaluations, in this dataset the four
participants each performed the manipulation task a total of six times: three
times with a non-adaptive control system, and three times with an adaptive
control system, creating a total of 24 independent time-series trials within the
dataset. The inclusion of data from the adaptive control case of Edwards et al.
(2016) adds non-stationarity to an already non-stationary prediction problem.
Non-stationarity is introduced as the user becomes more proficient at the
manipulation task, and as the control system begins to adapt to the user’s
preferred movements. No single, scalar step size would be ideal in this setting
at all times, as the prediction problem changes over time. As noted by Pilarski
et al. (2013), finding appropriate features and setting appropriate parameters
for learning systems is in fact a known challenge in this particular robotic
control domain—end-user time is precious, and designers cannot possibly
test their prediction algorithms on datasets which are representative of all
the situations the robot might encounter upon deployment. Aspects such
as non-stationarity and the irregularities introduced through human-in-the-
loop control therefore make this dataset an appropriate one for studying the
robustness of AutoTIDBD in predicting a real-world data stream.

7.2. Sensitivity to Meta step size ✓or Prosthetic Prediction Problem

For AutoTIDBD to be an improvement over ordinary, fixed step size TD,
it should be less sensitive to settings of ✓ than TD is to settings of ↵: less
tuning should be required for AutoTIDBD.

We constructed a prediction problem where each algorithm predicts a
signal of interest from the robot arm. each algorithm predicted the angular
position of the robot’s hand motor (the gripper’s aperture), as in Seijen and
Sutton (2014). We used tile-coding to construct a binary feature vector of
size 210 with 8 tilings and used the velocity of the hand, the position of the

28



hand, and the participant’s control signals to construct the feature vector.
An additional bias feature was concatenated to the feature-vector, resulting
in 9 active features at any given time.

We compared AutoTIDBD to NoSID, SID, AutoSID, RMSProp, and
AlphaBound, as described in source papers. Each learning method used a
discounting factor � = 0.95. The IDBD-based adaptive step size methods
shown all initialized their vector step sizes to an initial value of log(19), which
when exponentiated results in a step size ↵0 =

1
9 . This step size was chosen,

as it was one of the best performing step size values for smaller values of �,
but diverges at � = 0.6 for ordinary fixed shared step size TD(�) (shown
in Figure 9). AlphaBound is initialized with a step size of 1, as originally
specified.

In figure 9, the sensitivity of static step size TD(�) is shown for a variety of
↵ values across � settings. There is a trade-off between error and magnitude
of step sizes. Consequently, there is no single step size ↵ which performs well
for all � values.

Figure 9: Average cumulative error of TD(�) for various ↵ settings.

In Figure 10 the sensitivity to the same prediction problem is shown.
AutoTIDBD is less sensitive to to ✓ than TD(�) is to the setting of ↵;
AutoTIDBD performs well for each ✓ and � value. This satisfies our criteria
for a method which performs acceptably for broad meta-parameter settings.

29



Figure 10: Average cumulative return error of AutoTIDBD for various ✓ settings.

In Figure 11, the average cumulative error for the best tuned parameter
settings for each method are shown. Adaptive step size we compared against
are SID and Alphabound. These methods act as a baseline comparison. If
TIDBD and AutoTIDBD are performing representation learning well, we
expect them to perform better than scalar step size adaptation methods. TD
with RMSProp, AutoSID, and NOSID could not be compared, as both had
errors which were too large to be compared.

30



Figure 11: Absolute cumulative return error averaged over 24 independent trials. Each
algorithm is presented for the best setting of ↵ or ✓ and is compared by varying � between
0 and 0.9

Both Semi-gradient TIDBD and Ordinary gradient TIDBD outperform
SID—A scalar version of IDBD for TD learning; however, neither consistently
attain errors less than or equal to ordinary TD. In contrast, AutoTIDBD
attains lower or equivalent error to TD—outperforming all other adaptive
methods we compared against, excluding AlphaBound for large values of �.

7.3. Sensitivity to Meta step size ✓cross Prediction Problems

We previously assessed the performance of AutoTIDBD across meta step
size settings for predictions of the gripper. An ideal adaptive step size method
should have broad ranges of meta-parameter settings for which it attains
acceptable performance. Moreover, it is ideal if these meta-parameter settings
are invariant over different problems: if an ideal step size on one problem is
ideal for all other problems.

Using the experiment and setup from Section 7, we compare the sensitiv-
ity of AutoTIDBD and TIDBD with an ordinary gradient for a variety of
prediction formulations. We predict the velocity, position, and load for all
five servos of the robot arm. Each of the signals produced by the arm are
unique; as a result, each of the prediction problems is unique.

31



In Figure 12, the sensitivity of ordinary gradient TIDBD to it’s meta-
parameter settings is depicted. Each line represents a prediction of a different
signal of interest from the arm. We can see that the sensitivity for each problem
is different and the best setting of ✓ for each problem are different. This is
problematic—the problem of tuning step sizes has simply been abstracted
away to a higher-level. TIDBD may be less sensitive to initialization of its
parameters than ordinary TD, but it is still sensitive and thus must be tuned
for each target domain.

In Figure 13 the same meta-sensitivity for AutoTIDBD is depicted for the
same meta-parameter settings. Each of the settings eventually diverge, but
the valley of ✓ parameters for which we attain reasonable performance is far
broader than TIDBD and TD(�), and relatively invariant across prediction
problems.

Figure 12: Average absolute cumulative return error of TIDBD(0) for different values of ✓.
Each line represents the error of a prediction with its own unique signal of interest. Each
on-policy prediction has the same �, but is predicting a different signal of interest.

32



Figure 13: Average absolute cumulative return error of TIDBD(0) for different values of ✓.
Each line represents the error of a prediction with its own unique signal of interest. Each
on-policy prediction has the same �, but is predicting a different signal of interest.

AutoTDBID meets our requirements: It performs as well as or better
than ordinary TD(�)—even when only adapting a single step size, it is less
sensitive to settings of ✓ than TD(�) is to ↵, and has broad ranges of ✓
which are invariant across problems. AutoTIDBD is bias-adaptation step size
method which does not require tuning across applications. What remains of
our criteria to be evaluated is whether AutoTIDBD is capable of performing
representation learning.

8. Can AutoTIDB Perform Representation Learning?

We have demonstrated that AutoTIDBD is able to outperform scalar step
size adaptation methods and ordinary TD on real-world prediction problems
by tuning its step sizes, and that it is less sensitive to its parameters than
ordinary TD. What remains of our four criteria is to determine if TIDBD is
able to effectively perform representation learning by giving features relevant
to the current prediction task large step sizes, and small step sizes to features
which are irrelevant. We assess AutoTIDBD’s ability to perform representation
learning, by analyzing the change in step size values for the prediction task
introduced in Section 7 at � = 0.95.

33



We created poor features by randomly choosing 25% of the features to be
noisy. Noisy features were activated equiprobably. After completion of the
experiment, the noisy features were compared with the number activations of
each feature to ensure that noisy features included some which were highly
active. There are certain time-steps for which all of the step sizes suddenly
decrease. On these time-steps, the effective step size was greater than 1,
leading to the normalization of the meta-weights to prevent over-shooting.

Figure 14: Average magnitude of step sizes over all trials. Noisy features are in greyscale,
ordinary features are in colour.

Figure 14 depicts the magnitude of all step sizes averaged over all trials.
step sizes corresponding to noisy features consistently decrease over time.
We can see that the noisy features coloured in greyscale constantly shrink
as experience determines them to be unreliable. This creates a separation
between features which are noisy and those which are not. None of the noisy
features have values within the range of ordinary features—all of the noisy
features were correctly given smaller step sizes.

AutoTIDBD is able to perform representation learning by assigning ap-
propriate step sizes, meeting our final criteria.

34



9. Limitations and Future Work

This derivation of TIDBD is limited to methods which use linear function
approximation. Generalizations of IDBD for non-linear supervised learning
methods exist (Schraudolph, 1999), and could be generalized to TD learning in
the future. In addition, this generalization is limited to on-policy predictions
with replacing and accumulating traces. Further extension is required before
AutoTDBD can be used with off-policy prediction methods and, and methods
with different eligibility traces such as True Online TD (Seijen and Sutton,
2014).

In addition to producing more general methods, future research could
pursue additional uses of learned step sizes. Step sizes learned with IDBD
methods describe the relevance of given feature to the task at hand. If many
of the features are large, then the features for the given prediction are well
specified. This possibly be used to evaluate the potential of a prediction
based on its given feature representation before it has been completely learned.
Preliminary evaluation of predictions based on step sizes could be beneficial
to prediction architectures such as horde (Sutton et al., 2011), where large
collections of predictions proposed, learned, and maintained in real-time as
a learner is interacting with their environment. In such situations limited
computational resources must be used effectively; being able to better identify
promising predictions in early learning could support prediction discovery in
predictive knowledge systems.

Learned step sizes may also be an effective way to drive computational
curiosity and intrinsic motivation. A challenge for learning systems is deciding
how to explore their environment to support learning. Many intrinsic motiva-
tion systems rely on metrics which drive exploration based on error on a given
task (Oudeyer and Kaplan, 2009). One shortfall of these approaches is difficult
for these methods to differentiate between situations where the error is high
because not enough learning has occurred, and situations where the error
is high because some signal or portion of the environment is not learnable.
Learned step sizes describe how much learning, if used in combination with
traditional error-based forms of intrinsic motivation, it may be better able to
differentiate between what is novel and should be learned about , and what
is unlearnable.

35



10. Conclusion

We presented an approach to generalizing Incremental Delta-Bar-Delta to
temporal-difference learning, demonstrating that its effectiveness carries over
from supervised learning to TD. We extended TIDBD to AutoTIDBD, using
normalization methods from Autostep to improve the robustness of TIDBD.
Adapting step sizes with AutoTIDBD is an improvement over ordinary TD
methods with a tuned static step size, even on stationary problems. On non-
stationary tasks, we showed that AutoTIDBD is able to find appropriate step
sizes and differentiate between relevant and irrelevant featdures. Most impor-
tantly, over a number of real-world robotic prediction tasks we demonstrated
that AutoTIDBD is less sensitive to choices of meta step sizes ✓ and initial
step sizes ↵0 than ordinary TD is to settings of ↵. AutoTIDBD out-performs
TD for broad a broad range of meta step size settings which is relatively
invariant over prediction problems. AutoTIDBD and TIDBD-based step size
learning systems show promise of learning feature relevance and performing
meta learning in an incrementally and online, lessening dependence on feature
construction and parameter tuning.

References

References

Barnard, E. (1993). Temporal-difference methods and Markov models. IEEE

Transactions on Systems, Man, and Cybernetics, 23(2):357–365.

Colunga, E. and Smith, L. B. (2005). From the lexicon to expectations about
kinds: A role for associative learning. Psychological review, 112(2):347.

Dabney, W. and Barto, A. G. (2012). Adaptive Step-Size for Online Temporal
Difference Learning. In AAAI.

Dabney, W. C. (2014). Adaptive Step-Sizes for Reinforcement Learning. PhD
thesis, University of Massachusetts Amherst.

Dawson, M. R., Sherstan, C., Carey, J. P., Hebert, J. S., and Pilarski, P. M.
(2014). Development of the Bento Arm: An improved robotic arm for
myoelectric training and research. Proceedings of MEC, 14:60–64.

36



Edwards, A. L., Hebert, J. S., and Pilarski, P. M. (2016). Machine learning and
unlearning to autonomously switch between the functions of a myoelectric
arm. In Biomedical Robotics and Biomechatronics (BioRob), 2016 6th

IEEE International Conference On, pages 514–521. IEEE.

Finn, C., Abbeel, P., and Levine, S. (2017). Model-Agnostic Meta-Learning
for Fast Adaptation of Deep Networks. arXiv:1703.03400 [cs].

Kearney, A., Veeriah, V., Travnik, J., Sutton, R. S., and Pilarski, P. M. (2017).
Every step you take: Vectorized adaptive step sizes for temporal difference
learning. In 3rd Multidisciplinary Conference on Reinforcement Learning

and Decision Making (RLDM), The University of Michigan, Ann Arbor,
Michigan, USA.

Mahmood, A. R. and Sutton, R. S. (2013). Representation Search through
Generate and Test. In AAAI Workshop: Learning Rich Representations

from Low-Level Sensors.

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski, P. M. (2012).
Tuning-free step-size adaptation. In Acoustics, Speech and Signal Processing

(ICASSP), 2012 IEEE International Conference On, pages 2121–2124.
IEEE.

Oudeyer, P.-Y. and Kaplan, F. (2009). What is intrinsic motivation? A
typology of computational approaches. Frontiers in neurorobotics, 1:6.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., Chan, K. M., Hebert,
J. S., and Sutton, R. S. (2013). Adaptive artificial limbs: A real-time
approach to prediction and anticipation. IEEE Robotics & Automation

Magazine, 20(1):53–64.

Pilarski, P. M., Dawson, M. R., Degris, T., Carey, J. P., and Sutton, R. S.
(2012). Dynamic switching and real-time machine learning for improved
human control of assistive biomedical robots. In Biomedical Robotics and

Biomechatronics (BioRob), 2012 4th IEEE RAS & EMBS International

Conference On, pages 296–302. IEEE.

Schraudolph, N. N. (1999). Local gain adaptation in stochastic gradient
descent. In 9th International Conference on Artificial Neural Networks:

ICANN ’99, pages 569–574.

37



Schweighofer, N. and Arbib, M. A. (1998). A model of cerebellar metaplasticity.
Learning & Memory, 4(5):421–428.

Seijen, H. and Sutton, R. (2014). True online TD (lambda). In International

Conference on Machine Learning, pages 692–700.

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental
version of delta-bar-delta. In AAAI, pages 171–176.

Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Intro-

duction. MIT press Cambridge.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White,
A., and Precup, D. (2011). Horde: A scalable real-time architecture for
learning knowledge from unsupervised sensorimotor interaction. In AAMAS

2011, pages 761–768. International Foundation for Autonomous Agents and
Multiagent Systems.

Travnik, J. B. and Pilarski, P. M. (2017). Representing high-dimensional
data to intelligent prostheses and other wearable assistive robots: A first
comparison of tile coding and selective Kanerva coding. IEEE International

Conference on Rehabilitation Robotics: [proceedings], 2017:1443–1450.

Wilson, R. C. and Niv, Y. (2012). Inferring relevance in a changing world.
Frontiers in human neuroscience, 5:189.

Xu, Z., van Hasselt, H., and Silver, D. (2018). Meta-Gradient Reinforcement
Learning. arXiv:1805.09801 [cs, stat].

Young, K., Wang, B., and Taylor, M. E. (2018). Metatrace: Online Step-
size Tuning by Meta-gradient Descent for Reinforcement Learning Control.
arXiv:1805.04514 [cs, stat].

38


