8 First Results with Dyna,

an Integrated Architecture for Learning,
Planning and Reacting

Richard S. Sutton

8.1 Introduction

How should a robot decide what to do? The traditional answer in Al
has been that it should deduce its best action in light of its current
goals and world model, i.e., that it should plan. However, it is now
widely recognized that planning’s usefulness is limited by its computa-
tional complexity and by its dependence on a complete and accurate
world model. An alternative approach is to do the planning in advance
and compile its result into a set of rapid reactions, or situation-action
rules, which are then used for real-time decision making. Yet a third
approach is to learn a good set of reactions by trial and error; this has
the advantage of eliminating the dependence on a world model. In this
chapter I briefly introduce Dyna, a simple architecture integrating and
permitting tradeoffs among these three approaches. Results are pre-
sented for a simple Dyna system that learns from trial and error while
it learns a world model and uses the model to plan reactions that result
in optimal action sequences.

Dyna is based on the old idea that planning is like trial-and-error
learning from hypothetical experience (Craik 1943, Dennett 1978). The
theory of Dyna is based on the classical optimization technique of dy-
namic programmaing (Bellman 1957, Ross 1983) and on the relation-
ship of dynamic programming to reinforcement learning (Watkins 1989,
Barto, Sutton, and Watkins 1989), to temporal-difference learning (Sut-
ton 1988), and to Al methods for planning and search. Werbos (1987)
has previously argued for the general idea of building Al systems that
approximate dynamic programming, and Whitehead (1989) and others
(Sutton and Barto 1981, Sutton and Pinette 1985, see also Rumelhart
et al. 1986) have presented results for the specific idea of augmenting a
reinforcement learning system with a world model used for planning.

The Dyna architecture consists of four primary components, interact-
ing as shown in hgure 8.1. The policy is simply the function formed
by the current set of reactions; it receives as input a description of the
current state of the world and produces as output an action to be sent
to the world. The world represents the task to be solved; prototypically
it is the robot’s external environment. The world receives actions from
the policy and produces a next state output and a reward output. The
overall task is defined as maximizing the long-term average reward per

180 (General Principles

time step (cf. Russell 1989). The Dyna architecture also includes an ex-
plicit world model. The world model is intended to mimic the one-step
input-output behavior of the real world. Finally, the Dyna architecture
includes an evaluation function that rapidly maps states to values, much
as the policy rapidly maps states to actions. The evaluation function,
the policy, and the world model are each updated by separate learning
processes.

For a fixed policy, Dyna is a simple reactive system. However, the
policy is continually adjusted by an integrated planning/learning pro-
cess. The policy is, in a sense, a plan, but one that is completely condi-
tioned by current input. The planning process is incremental and can be
interrupted and resumed at any time. It consists of a series of shallow
searches, each typically of one ply, and yet ultimately produces the same
result as an arbitrarily deep conventional search. I call this relaration
planning. Dynamic programming is a special case of this.

Relaxation planning is based on continuously adjusting the evaluation
function in such a way that credit is propagated to the appropriate steps
within action sequences. Generally speaking, the evaluation of a state x
should be equal to the best of the states y that can be reached from it
in one action, taking into consideration the reward (or cost) r for that
one transition, 1.e.:

Eval(z) “=" max E{r+ Evally)|z,a}, (8.1)

a€ Actions

where E {- | -} denotes a conditional expected value and the equal sign is
quoted to indicate that this is a condition that we would like to hold, not
one that necessarily does hold. If we have a complete model of the world,
then the right-hand side can be computed by loocking ahead one action.
Thus, we can generate any number of training examples for the process
that learns the evaluation function: for any z, the right-hand side of
equation 8.1 is the desired output. If the learning process converges
such that equation 8.1 holds in all states, then the optimal policy is
given by choosing the action in each state z that achieves the maximum
on the right-hand side. There is an extensive theoretical basis from
dynamic programming for algorithms of this type for the special case
in which the evaluation function is tabular, with enumerable states and
actions. For example, this theory guarantees convergence to a unique
evaluation function satisfying equation 8.1 and that the corresponding
policy is optimal (e.g., see Ross 1983).

The evaluation function and policy need not be tables, but can be
more compact function approximators such as decision trees, k-d trees,

First Results with Dyna 181

EVALUATION
FUNCTION L

Heunstic
Heward
(scalar)

Reward POLICY

(scalar)

State

Action

WORLD MODEL /
SWITCH

Figure 8.1

Overview of Dyna.

connectionist networks, or symbolic rules. Although the existing theory
does not directly apply to the case in which these machine learning al-
gorithms are used, it does provide a theoretical foundation for exploring
their use. Finally, this kind of planning also extends conventional plan-
ning in that it is applicable to stochastic and uncertain worlds and to
non-boolean goals.

The above discussion gives the general idea of relaxation planning,
but not the exact form used in Dyna. Dyna is based on a closely related
method known as policy iteration (Howard 1960), in which the evaluation
function and policy are simultaneously approximated. In addition, Dyna
is a Monte Carlo or stochastic approzimation variant of policy iteration,
in which the world model need only be sampled, not examined directly.
Since the real world can also be sampled, by actually taking actions and
observing the result, the world can be used in place of the world model
in this method.

In this case, the result is not relaxation planning, but a trial-and-error
learning process much like reinforcement learning (see Barto, Sutton,
and Watkins 1989). In Dyna, both of these are done at once. The same
algorithm is applied both to real experience (resulting in learning) and
to hypothetical experience generated by the world model (resulting in
relaxation planning). The results in both cases are accumulated in the
policy and the evaluation function. There is insufficient room here to
fully justify the algorithm, but it is quite simple and is given in outline
form in figure 8.2.

As a simple illustration of the Dyna architecture, consider the nav-
igation task shown in the upper right of figure 8.3. The space is a 6
by 9 grid of possible locations or states, one of which is marked as the
starting state, “S”, and one of which is marked as the goal state, “G”,
The shaded states act as barriers and cannot be entered. All the other
states are distinct and completely distinguishable. From each there are
four possible actions: UP, DOWN, RIGHT, and LEFT, which change
the state accordingly, except where such a movement would take the
system into a barrier or outside the space, in which case the location is
not changed. Reward is zero for all transitions except for those into the
goal state, for which it is +1. Upon entering the goal state, the system
is instantly transported back to the start state to begin the next trial.
None of this structure and dynamics is known to the Dyna system a
priori.

In this demonstration, the world was assumed to be deterministic,
that is, to be a finite-state automaton, and the world model was im-
plemented simply as next-state and reward tables that were filled in

First Results with Dyna 183

0. Decide if this is a real experience or a hypothetical one.

1. Pick a state z. If this is a real experience, use the current state.
2. Form prior evaluation of z: e «— Eval(z)

3. Choose an action: a « Policy(z)

4. Do action a; obtain next state y and reward r from world or world
model.

5. If this is a real experience, update world model from z, a, y, and r.
6. Form posterior evaluation of z: €' « r 4+ yEval(y)

7. Update evaluation function so that Ewval(z) is more like ¢’ rather
than e; this typically involves temporal-difference learning.

8. Update policy—strengthen or weaken the tendency to perform ac-
tion a in state z according to ¢’ — e.

9. Go to Step 0.

Figure 8.2
Inner loop of a Dyna algorithm. These steps are repeated continually, sometimes
with real experiences, sometimes with hypothetical ones.

whenever a new state-action pair was experienced (Step 5 of figure 8.2).
The evaluation function was also implemented as a table and was up-
dated (Step 7) according to the simplest temporal-difference learning
method: Eval(z) «— Eval(z) + 8(¢' — €). The policy was implemented
as a table with an entry w,, for every pair of state r and action a.
Actions were selected (Step 3) stochastically according to a Boltzmann
distribution: P{a |z} = e¥=2/}_ e"=s. The policy was updated (Step
8) according to: w,, « Wz, + a(e’ — e). For hypothetical experiences,
states were selected (Step 1) at random uniformly over all states previ-
ously encountered. The initial values of the evaluation function Eval(x)
and the policy table entries w,, were all zero; the initial policy was thus
a random walk. The world model was initially empty; if a state and
action were selected for a hypothetical experience that had never been
experienced in reality, then the following steps (Steps 4-8) were simply
omitted.

In this instance of the Dyna architecture, the inner loop (figure 8.2)
was applied alternately to the real world and to the world model. For
each experience with the real world, k& hypothetical experiences were

184 (General Principles

800

700

600

|
500
STEPS
PER
TRIAL
400
300 0 Planning steps
(Trial and Error Learning
Only)
200 10 Planning
Steps
100 Planning
Steps
100
14 — ———
1 20 40 60 80 100
TRIALS
Figure 8.3

Learning curves for Dyna systems on a simple navigation task. A trial is one trip
from the start state “S” to the goal state “G”. The shortest possible trial is 14

steps. The more hypothetical experiences (“planning steps”) using the world
model, the faster an optimal path was found.

First Results with Dyna 185

generated with the model (Step 0). Figure 8.3 shows learning curves
for k = 0, k = 10, and & = 100, each an average over 100 runs. The
k = 0 case involves no planning; this is a pure trial-and-error learning
system entirely analogous to those used in reinforcement learning sys-
tems (Barto, Sutton, and Anderson 1983, Sutton 1984, Anderson 1987).
Although the length of path taken from start to goal falls dramatically
for this case, it falls much more rapidly for the cases including hypothet-
ical experiences (planning), showing the benefit of using a learned world
model. For k = 100, the optimal path was generally found and followed
by the fourth trip from start to goal; this is very rapid learning. The
parameter values used were § = 0.1, v = 0.9, and a = 1000 (k = 0) or
a = 10 (k = 10 and k = 100). The a values were chosen roughly to give
the best performance for each k value.

Figure 8.4 shows why a Dyna system that includes planning solves
this problem so much faster than one that does not. Shown are the
policies found by the k& = 0 and k = 100 Dyna systems halfway through
the second trial. Without planning (k = 0), each trial adds only one
additional step to the policy, and so only one step (the last) has been
learned so far. With planning, the first trial also learned only the last
step, but here during the second trial an extensive policy has been de-
veloped that by the trial’s end will reach almost back to the start state.
By the end of the third or fourth trial a complete optimal policy will
have been found and perfect performance attained.

This simple illustration is clearly limited in many ways. The state and
action spaces are small and denumerable, permitting tables to be used
for all learning processes, and making it feasible for the entire state space
to be explicitly explored. For large state spaces it is not practical to use
tables or to visit all states; instead one must represent a limited amount

of experience compactly and generalize from it. The Dyna architecture
is fully compatible with the use of a wide range of learning methods for

doing this. In this example, it was also assumed that the Dyna system
has explicit knowledge of the world’s state. In general, states can not be
known directly, but must be estimated from the pattern of past inter-
action with the world (Rivest and Schapire 1985, Mozer and Bachrach
1989). The Dyna architecture can use state estimates constructed in
any way, but will of course be limited by their quality and resolution. A
promising area for future work is the combination of Dyna architectures
with egocentric or “indexical-functional” state representations (Agre and
Chapman 1987, Whitehead 1989).

Yet another limitation of the example Dyna system presented here is
the trivial form of search control used. Search control in Dyna boils down

186 (General Principles

Without Planning (k = 0) With Planning (k = 100)

.

» G i
! .
| o | 34 d
S S " r -
i w
B -

LE
iy e Riig Al

— o i = =)

Figure 8.4
Policies found by planning and non-planning Dyna systems by the middle of the

second trial. The black square indicates the current location of the Dyna system,
and the arrows indicate action probabilities (excess over the smallest) for each
direction of movement.

to the decision of whether to consider hypothetical or real experiences,
and of picking the order in which to consider hypothetical experiences.
The task considered here is so small that search control is unimportant,
and was thus done trivially, but a wide variety of more sophisticated
methods could be used. Particularly interesting is the possibility of
using the Dyna architecture at a higher level to make these decisions.

Finally, the example presented here is limited in that reward is only
nonzero upon termination of a path from start to goal. This makes
the problem more like the kind of search problem typically studied in
Al, but does not show the full generality of the framework, in which
rewards may be received on any step and there need not even exist start
or termination states. In the general case, the Dyna algorithm given here
attempts to maximize the cumulative reward received per time step.

Despite these limitations, the results presented here are significant.
They show that the use of an internal model can dramatically speed
trial-and-error learning processes even on simple problems. Moreover,
they show how the functionality of planning can be obtained in a com-
pletely incremental manner, and how a planning process can be freely
intermixed with reaction and learning processes. | conclude that it is
not necessary to choose between planning systems, reactive systems, and
learning systems. These three can be integrated not just into one sys-
tem, but into a single algorithm, where each appears as a different facet
or slightly different use of that algorithm.

First Results with Dyna 187

Acknowledgments

The author gratefully acknowledges the extensive contributions to the
ideas presented of his colleagues Andrew Barto and Chris Watkins. 1
also wish to also thank the following people for ideas and discussions:
Steve Whitehead, Paul Werbos, Luis Almeida, Ron Williams, Glenn Iba,
Leslie Kaelbling, John Vittal, Charles Anderson, Bernard Silver, Oliver
Selfridge, Judy Franklin, Tom Dean, and Chris Matheus.

References

Agre, P. E., and Chapman, D. (1987). Pengi: An implementation of a
theory of activity. Proceedings of AAAI-87, 268-272.

Anderson, C. W. (1987). Strategy learning with multilayer connectionist
representations. Proceedings of the Fourth International Workshop
on Machine Learning, 103-114. Irvine, CA: Morgan Kaufmann.

Barto, A. G., Sutton R. S., and Anderson, C. W. (1983). Neuronlike
elements that can solve difficult learning control problems. IEEE
Transactions on Systems, Man, and Cybernetics, 13: 834-846.

Barto, A. G., Sutton, R. S., and Watkins, C. J. C. H. (1989). Learn-
ing and sequential decision making. COINS Technical Report 89-
95, Dept. of Computer and Information Science, University of Mas-
sachusetts, Amherst, MA.

Bellman, R. E. (1957). Dynamic Programming. Princeton, NJ.: Prince-
ton University Press.

Craik, K. J. W. (1943). The Nature of Explanation. Cambridge, UK.:
Cambridge University Press.

Dennett, D. C. (1978). Why the law of effect will not go away. In Brain-
storms, by D. C. Dennett, 71-89, Montgomery, Vermont: Bradford
Books.

Howard, R. A. (1960). Dynamic Programming and Markov Processes.
New York: Wiley.

188 General Principles

Mozer, M. C., and Bachrach, J. (1989). Discovering the structure of a
reactive environment by exploration. Technical Report CU-CS-451-
89, Dept. of Computer Science, University of Colorado at Boulder.

Rivest, R. L., and Schapire, R. E. (1987). A new approach to un-

supervised learning in deterministic environments. Proceedings of
the Fourth International Workshop on Machine Learning, 364-375.
Irvine, CA: Morgan Kaufmann.

Ross, S. (1983). Introduction to Stochastic Dynamic Programming.
New York: Academic Press.

Rumelhart, D. E., Smolensky, P., McClelland, J. L., and Hinton, G. E.
(1986) Schemata and sequential thought processes in PDP models.
In Parallel Distributed Processing: Ezplorations in the Microstruc-
ture of Cognition, Volume II, by J. L. McClelland, D. E. Rumelhart,
and the PDP research group, 7-57.

Russell, S. J. (1989). Execution architectures and compilation. Pro-
ceedings 1JCAI-89, 15-20.

Sutton, R. S. (1984). Temporal credit assignment in reinforcement learn-
ing. Doctoral dissertation, Department of Computer and Informa-
tion Science, University of Massachusetts, Amherst.

Sutton, R. S. (1988). Learning to predict by the methods of temporal
differences. Machine Learning 3: 9-44.

Sutton, R. S., Barto, A. G. (1981). An adaptive network that constructs
and uses an internal model of its environment. Cognition and Brain

Theory Quarterly 4: 217-246.

Sutton, R.S., Pinette, B. (1985). The learning of world models by con-
nectionist networks. Proceedings of the Seventh Annual Conf. of
the Cognitive Science Society, 54-64.

Watkins, C. J. C. H. (1989). Learning with Delayed Rewards. PhD
thesis, Cambridge University.

First Results with Dyna 189

Werbos, P. J. (1987). Building and understanding adaptive systems:
A statistical/numerical approach to factory automation and brain
research. IEEFE Transactions on Systems, Man, and Cybernetics,
Jan-Feb.

Whitehead, S. D. (1989). Scaling reinforcement learning systems.
Technical Report 305, Dept. of Computer Science, University of
Rochester, Rochester, NY 14627.

