
Scaling-up Knowledge for a Cognizant Robot

Thomas Degris∗, Joseph Modayil†
∗Flowers, INRIA, 351 cours de la libration, 33405 Talence Cedex, France
†RLAI, University of Alberta, Edmonton, AB, Canada, T6G 2E8

Abstract

This paper takes a new approach to the old adage that knowl-
edge is the key for artificial intelligence. A cognizant robot is
a robot with a deep and immediately accessible understand-
ing of its interaction with the environment—an understand-
ing the robot can use to flexibly adapt to novel situations.
Such a robot will need a vast amount of situated, revisable,
and expressive knowledge to display flexible intelligent be-
haviors. Instead of relying on human-provided knowledge,
we propose that an arbitrary robot can autonomously acquire
pertinent knowledge directly from everyday interaction with
the environment. We show how existing ideas in reinforce-
ment learning can enable a robot to maintain and improve its
knowledge. The robot performs a continual learning process
that scales-up knowledge acquisition to cover a large number
of facts, skills and predictions. This knowledge has seman-
tics that are grounded in sensorimotor experience. We see the
approach of developing more cognizant robots as a necessary
key step towards broadly competent robots.

Knowledge: a Bottleneck for Cognizant Robots
Any robot with a closed-loop control has some awareness
of its environment. In 1948, Walter’s robot tortoises Elmer
and Elsie could respond to their environment by avoiding
obstacles or moving towards a light (Walter, 1950). More
recently, robot vacuum cleaners detect dirty areas and spend
more time cleaning them. Some are able to build maps of
their local space. Autonomous cars are able to take appro-
priate action to react to changing traffic conditions (Urmson
et al., 2008).

In comparison, most animals can be considered more cog-
nizant than modern robots in many ways. First, even simple
animals such as fruit flies, cockroaches and spiders are able
to adapt their behavior to their environment through learning
from everyday experience (Greenspan and van Swinderen,
2004). Second, animals can learn to anticipate what is go-
ing to happen next, as it has been demonstrated with dogs,
pigeons, and insects (Pearce, 1997). Third, animals demon-
strate a deep understanding of their sensorimotor experience
by exhibiting complex behaviors. Cats can detect what is un-
usual in their environment and exhibit curiosity-driven be-
havior. Crows, bees, and rats can successfully remember lo-

Copyright c© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

cations and navigate between them. Fourth, some animals
use a large number of diverse sensorimotor signals from the
world. Mammals, for example, are able to take advantage
of smell, sight, hearing, taste and touch, along with temper-
ature, acceleration, hair movements and also their internal
senses such as pain, hunger, fatigue, guts, and propriocep-
tion. In addition, they interact with their environment using
a large number and variety of muscles and actuators.

To demonstrate comparable awareness of their environ-
ment, a cognizant robot would need to have lots of immedi-
ate knowledge. For instance, a reaction as basic as flinching
in response to a moving object involves knowledge in the
form of a ready to use flinching skill, and also, perhaps, a
prediction of the trajectory of the object. Competent naviga-
tion involves a wide-range of knowledge about the topology
and characteristics of the environment, as well as skills rang-
ing from obstacle avoidance to planning a new route when a
path is unexpectedly blocked. Detecting novelty and exhibit-
ing curiosity-driven behaviour also involves knowledge: us-
ing existing knowledge to contextualize newly observed sen-
sorimotor data, and a repertoire of behaviors to assess the
nature of the novelty. The more knowledge to which a robot
has immediate access, the more the robot can be cognizant.

The bottleneck in developing such robots is the lack of
methods that are able to acquire and maintain a large quan-
tity of immediately usable knowledge. A traditional ap-
proach is to manually provide the robot with knowledge
about its environment in the form of models, skills, and fea-
tures. But such methods are problematic for at least two
reasons. One, scaling-up knowledge is difficult if it re-
quires manual interventions for every modification. Two,
such knowledge will be necessarily incomplete or inaccu-
rate in an open environment. Moreover, knowledge is often
encoded in a form that cannot be autonomously updated by
the robot (e.g. hand-coded or learned-but-fixed features and
skills).

As a solution to this bottleneck, we consider Horde: a
conceptually simple architecture that was introduced re-
cently (Sutton et al., 2011). Horde proposes a theoretically
sound formalism for representing knowledge. Horde allows
a robot to learn autonomously from its everyday interaction
with its environment. Horde is able to maintain and acquire
a large number of situated, revisable, and expressive pieces
of knowledge that are exploitable by a cognizant robot. To



Robot

Environment

Observation Action

Figure 1: The robot is a situated agent that can only learn
from its sensorimotor interaction stream of observations and
actions.

reap these benefits, the robot should have an abundance of
experience and the ability to autonomously explore its envi-
ronment.

Defining Knowledge for a Cognizant Robot
To make our discussion about knowledge more concrete,
we start by defining the interaction between the robot and
its environment. We assume that this interaction is divided
into discrete time steps. Despite the fact that this assump-
tion does not characterize robots using analog electronics
for their behavior (e.g. Walter’s robot tortoises), it is a re-
quirement for working with digital computers. Ideally, the
length of these time steps should be as small as possible so
that the robot has a short reaction time. Note that time steps
do not need to be of constant length.

The environment for robots is the physical world, a large
space with essentially unlimited forms of variation. At every
time t, the robot receives a new observation ot ∈ O from its
environment (where O is a real vector space). The observa-
tion ot represents the latest information available on all the
sensors of the robot. Not all elements of ot may have been
updated because sensors can have different update times. In
response, the robot sends back an action at ∈ A where A is
also a real vector space. An action includes all the parame-
ters for the different actuators available to the robot, includ-
ing voltage on motors, parameters for pattern generators or
colors on LEDs. Observations and actions are the only in-
formation exchanged between a robot and its environment,
as illustrated in Figure 1; they do not constitute knowledge.

The first element of knowledge that we formalize is an
update function U : X ×A×O → X defined as

xt ← U(xt−1,at−1,ot),

where X is the space of state of the agent. At a time step t,
the function U takes the current state of the agent xt−1, the
latest observation ot and the last action at−1 to produce an
updated state xt. We do not restrict the state of the agent,
which can be the current value of variables in a procedure or
the weights of a feature vector for a learning algorithm.

A second element of knowledge is the behavior of the
robot in the world, represented as a policy b(at|xt) defining
the probability density of executing at time t the action at
given its current state xt. We allow both U and b to depend
on time but we do not include time indices for clarity.

Consequently, the goal of developing a cognizant robot
requires the definition of only these two elements of knowl-
edge: an internal state update function and a behavior pol-
icy. A robot will demonstrate a deep understanding of its
environment by extracting information from observations to
adequately update its internal state, so that the behavior pol-
icy will efficiently output adapted actions. Other elements of
knowledge support the construction of these two functions.

Another important element of knowledge are skills. In-
dependently of the robot’s current behavior, we would like
to represent the knowledge of being able to achieve some
goals. We can formalize skills as policies π(a|x). Similarly
to the option framework, we can also define a termination
function C : X → [0, 1] that, given the state of the agent,
defines the probability of terminating a policy, maybe when
a goal is achieved (Sutton et al., 1999). For a mobile robot,
a useful skill such as “going back to the docking station”
would be represented by a policy that the robot could fol-
low to go back to its docking station and the skill would
terminate either when the robot observes it has successfully
connected or after a time out.

Given a policy and a termination function, another ele-
ment of knowledge are the predictions about observable sig-
nals. An observable signal z is any function of the observa-
tions or the state of the agent. If the current time is t, we are
interested in predicting the value zT at the time T (where
T > t) given the current state xt of the agent. These pre-
dictions can be conditional on a skill, such as a prediction of
the value zT if a policy π is started from the current time t
and terminated at time T . An example of such prediction for
a mobile robot would be knowledge such as: if I go back to
the docking station starting from now and until termination,
will I observe being connected to it?

Another form of predictions frequently used for knowl-
edge, most notably in reinforcement learning, is the empiri-
cal return gt, that is the prediction of the sum of an observ-
able signal z all along the way while executing a skill:

gt =

T∑
k=t

zk. (1)

Such knowledge can represent predictions such as: what is
the number of time steps required to go back to the docking
station? What is the total amount of energy required to reach
the docking station?

A last element of knowledge commonly used is features.
Part of the state of the agent can be a feature vector φt that
is updated every time step. φt can include elements from
the past experience of the robot, data extracted from sen-
sors (e.g. edge detection from image, word recognized from
audio) or other elements computed from observations, ac-
tions or more generally from the internal representation of
the robot.

In summary, these elements comprise the robot’s immedi-
ate knowledge: the robot’s update function, behavior, skills,
predictions, and features. These are not the only compu-
tational elements within the robot: slower timescale pro-
cesses that may be present include planning and long-term
memories. To be used by a cognizant robot, the results of



these slower processes should eventually be made available
as a form of immediate knowledge. Aspects of immediate
knowledge can be identified in all mechanical robots, vary-
ing from Walter’s tortoises, to map-building vacuums, to
Shakey the robot. Analogues can also be identified in ani-
mals as described in the previous section.

The immediate knowledge forms the basis by which a
cognizant robot can demonstrate the depth of its understand-
ing of the environment. By requiring that the knowledge be
demonstrable, we ensure that different approaches can be
compared using clearly specified performance measures.

Cognizance: Situated, Revisable, Expressive
Knowledge

Ideally, a cognizant robot’s immediate knowledge would
have several desirable properties, namely being situated, re-
visable, and expressive. These properties have largely been
studied by different communities. To be situated is of pri-
mary importance for the robotics community who desire
knowledge that pertains directly to the robot’s interaction
stream. To be revisable is of primary importance for the on-
line machine learning community, who desire knowledge to
have clear performance measures and mechanisms for in-
cremental adaptation. To be expressive is of primary im-
portance for the knowledge representation community, who
desire knowledge that can be used flexibly to accomplish a
wide range of tasks. As we describe below, requiring a sys-
tem to possess all three properties suggests a substantially
different approach from when these properties of knowledge
are pursued in isolation.

Situated
Knowledge is situated if it pertains to the robot’s stream
of interaction with the environment. Many approaches to
knowledge are not situated, including scraping information
from the web, manually constructing knowledge bases, and
mathematical theories. However, the need to be situated has
been long understood in robotics (Brooks, 1986).

Imagine that a program accesses the Internet, scans a large
(unstructured) knowledge database, and gets the factoid “A
robot can walk on a sandy beach”. Such knowledge can-
not be used to infer what sensor values would arise from
walking on a beach, nor to construct a gait for walking on
the beach. There also remains a fundamental and difficult
problem of associating the words “beach” and “sand” to the
robot’s immediate knowledge. Before making use of these
non-immediate forms of knowledge, a robot needs a founda-
tion of immediate knowledge that provides situated seman-
tics for these terms.

Unlike forms of knowledge acquired from third parties,
knowledge about sensorimotor interaction is tightly coupled
to the current environment and physical embodiment of the
robot. For instance, the response of a wheel motor to a volt-
age not only depends on the specification of the motor but
potentially also on its age, its temperature, the shape and
materials of the wheel, also most certainly on the kind of
floor the wheel is on, the shape and weight of the robot. The
amount of this information that is observable by the robot

and taken into account will comprise how aware the robot is
of its wheel response.

Revisable
Knowledge is revisable if it has an observable performance
measure and the robot can modify the knowledge to improve
its performance. Situated knowledge is ideally suited for re-
vision, but the immediate knowledge in many robots relies
on constructs whose semantics are not defined in the robot’s
interaction stream. Often, the robot is externally evaluated
by the robot developer, but the robot cannot evaluate its
own performance. In principle, even a robot vacuum cleaner
could measure its success in cleaning the floor. Did the floor
get brighter after cleaning? Did the dust-bin get heavier?
Perhaps the robot vacuum cleaner could modify its behav-
ior to spend more time in places that are more rewarding
(have more dirt).

Knowledge is often considered to be static, as opposed to
revisable. The static approach is appropriate for knowledge
that has a clear logical notion of falsehood as is the case for
knowledge about mathematics, events in the past, and the
common knowledge within communication protocols. The
fact that 2+2 is equal to 4 is always true, independent of the
environment and the local condition of the robot. This is true
also for historical events: “It rained in Edmonton on June 2,
2008”. However, it is not appropriate for knowledge to be
incapable of change when it pertains to the future.

A direct consequence of having an observable perfor-
mance metric is that a robot should use its experience to
revise its immediate knowledge. One might argue against
this, by arguing that specifications for particular sensors are
accessible to the robot designer. The designer can know a
laboratory-calibrated function for converting from infrared
reflection sensor readings to a distance between the sensor
and an obstacle. But the specifications will never consider
all the possible cases that the robot will encounter: the re-
sponse of individual sensors might vary within a manufac-
turing batch, the response will also depend on the color and
material on the wall, and the response might vary with more
or less opaque walls. Such uncertainty is true for many sen-
sors: how does an accelerometer respond to uneven ground?
How does a laser range-finder respond to rain, fog, snow,
mud and reflected mirages? A robot interacting in an open
environment will eventually run into conditions that were
not anticipated by the robot’s designer. A robot needs the
ability to incorporate new observed data with its existing
knowledge, and this requires knowledge to be in a form that
permits revision.

Expressive
The expressive power of a form of knowledge representation
limits how flexibly the robot can achieve its objectives. Hav-
ing expressive power is crucial for demonstrating compe-
tent behavior with limited resources. Expressivity constrains
both how well a robot can generalize to novel situations, and
the robot’s ability to predict selected consequences of per-
forming a temporally extended policy.

Expressive knowledge should enable a robot to general-
ize to novel situations. Since a robot never has access to the



state of the physical world, the robot always has to gener-
alize from past experience, but can never be certain in its
generalizations. For any given task, some features will be
relevant while many others will not, and the features that
are relevant might vary over time. For example, navigating
empty hallways at night will present a substantially different
set of challenges from performing the same navigation task
in the day when the hallways are filled with people.

Another aspect of expressive power is the ability to make
predictions of temporally extended behavior. Many learning
approaches focus on building a one-timestep dynamical sys-
tem model of the robot’s interaction. Using these models for
temporally-extended planning requires substantial computa-
tion. In addition to their computational cost, they still may
not make available the information the robot actually needs
at the moment - for example, whether enough battery power
remains to go back to the recharging station. Temporally ex-
tended predictions can also form a powerful method of ab-
straction. For example, if a robot can both predict the onset
of collisions under various policies and how much time is
required to come to a complete stop, then the robot can use
this information to develop a skill for moving while avoiding
collisions.

The Horde for Scaling-up Knowledge
Horde, proposed by Sutton et al. (2011), is an architec-
ture for maintaining knowledge using reinforcement learn-
ing methods (Sutton and Barto, 1998). To learn policies and
predictions, we need an idealized representation of the world
of the robot to define objective functions. Horde assumes an
underlying Markov Decision Process (MDP) which provides
the dynamics of the world. The state of the world at time t
is denoted st ∈ S.

By definition, the MDP representing the world satisfies
the Markov assumption, namely that the next state does not
depend on previous states, it depends only on the current
state and the current action. This assumption may seem un-
realistic for robots, as observations from the environment
are an incomplete description of the world. Actually, this
assumption is weak because it is only about the dynamics
of the environment, not the robot. All the methods used in
the Horde use function approximation. With this approach,
Horde does not assume having access to the state of the envi-
ronment. In practice, the main advantage of this formalism
is the absence of strong assumptions about the data avail-
able to the robot, while still enabling mathematical proofs
of convergence (with additional assumptions).

Horde introduces the concept of general value functions
to formally define a prediction. A general value function is
an expectation defined as:

V (st) = Eπ,C [Rt + ZT |st] .

HereRt is a random variable that corresponds to the empiri-
cal return gt as defined in Eq. 1 and ZT is a random variable
representing the value of the signal zT at time T , where T is
termination with respect to C.

Whereas a general value function V is defined given a
MDP, Horde learns an approximate value function Ṽ defined

as the linear combination:

Ṽ = vTφ,

where v is a weight vector and φ is a feature vector. Horde
uses gradient TD methods (Sutton et al., 2009) to learn
the weights v given a general value function because these
methods have a per-time-step complexity that is linear in the
size of the feature vector φ.

In addition to learning predictions, Horde can also learn
policies. The task for the policy is defined by a reward
function. A policy is learned using the Greedy-GQ algo-
rithm (Maei and Sutton, 2010), which approximates a gen-
eral action-value function with a linear function of the fea-
tures. The complexity per-time-step of Greedy-GQ is also
linear with the size of the feature vector.

The key idea of the Horde architecture to scale-up knowl-
edge acquisition by learning in parallel many predictions
and policies online, all from a single stream of experience.
Indeed, Horde consists of independent demons, each learn-
ing a different prediction or policy using an independent
weight vector. Demons are able to learn about policies not
currently followed by the robot using off-policy learning.

We implemented Horde on the Critterbot, a comma-
shaped robot with a wide-range of low-level sensors (see
Figure 2.a). These sensors include an accelerometer, infra-
red distance sensors, infra-red photodiodes, thermal sensors,
a magnetometer, a gyroscope and ambient light sensors. Ad-
ditional sensors provide information on the system bus volt-
age and motor velocity, current and temperature. The robot
can move using three motors controlling omni-directional
wheels. Sensor readings are generated every 10ms.

Figure 2.b shows the time (in ms) required for an update
cycle with respect to the number of demons. The update cy-
cle includes updating the current prediction given the latest
feature vector and updating the weight vector. As expected,
the update cycle grows linearly with the number of demons.

Figure 2.c, an early result, shows the normalized predic-
tion error of 20 demons, that is the difference between the
prediction and observed empirical return on a separate eval-
uation set, normalized for each demon by the standard de-
viation of the returns in the evaluation set. The behavior re-
peatedly selects a random action from a set of 7 predefined
actions for a randomized duration while running in a wooden
pen. Sensor readings were sampled at 10ms. Each demon is
learning to predict the value of some sensor (one of the IR
sensors, a motor speed, or a motor current), after following a
constant action policy (for one of the 7 actions) with a spon-
taneous termination (with probabilities of 1, 0.5, 0.1, 0.05, or
0.01 spanning timescales from 10ms to 1s). These questions
provide a sample of the sorts of knowledge that a robot might
want to have about its experience. From the graph, we can
observe that the prediction error decreases substantially in
the first thirty minutes, with all the learned predictions even-
tually performing better than the best constant prediction.
Moreover, the learning has no divergence problems, special
feature selection, or parameter tweaking for individual pre-
dictions. With additional experience, learning continues to
reduce the prediction error but slowly and with some vari-
ability.



0 500 1000 1500 2000 2500 3000 3500 4000
Number of Demons

0

5

10

15

20

25

30

35

40

45

A
v
e
ra

g
e
 T

im
e
 S

te
p
 (

m
s
)

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Hours

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
o
rm

a
li
z
e
d
 R

M
S

 P
re

d
ic

ti
o
n
 E

rr
o
r

(a) (b) (c)

Figure 2: A robot learning many pieces of knowledge. (a) The robot. (b) The time requirement scales linearly with the available
computation, with timescales that are reasonable for robots. (c) Learning many predictions in parallel about different poli-
cies with substantial reductions in error in 30 minutes, and improving with additional experience. The prediction error is the
measured difference between predictions and empirical returns on a separate evaluation run. For each question, the root-mean-
square error is normalized by the sample standard deviation over the evaluation set. Thus, normalized errors below 1 indicate
the portion of the variance in the empirical returns that the robot is able to predict.

Horde learns knowledge that is situated: predictions are a
function of the feature vector of the robot and the predictions
are about the sensors of the robot (or its internal state). Poli-
cies are defined as functions of the feature vector of the robot
as well. Horde learns knowledge that is revisable: predic-
tions and policies are defined using a weight vector updated
in real-time from the sensorimotor stream. Finally, Horde
learns knowledge that is expressive: predictions are condi-
tional on policies that can be arbitrarily complex and tempo-
rally extended.

Future Directions: What are Demons For?
Though the idea of using TD methods to acquire knowledge
might seem unusual at first glance, we have demonstrated
that this approach yields empirical knowledge that can be
learned accurately and flexibly with practical amounts of
training experience. Although we demonstrated this ap-
proach on a research robot, the same method can be applied
directly to robots with more complex sensory and motor
systems. Moreover, as we discuss below, the demons have
several possible uses in modifying the behaviour and state-
update function: for novelty-detection, as partial models for
planning, for feature selection, or to develop new features.

First, demons can be used for detecting novelty. Each
piece of knowledge maintained by a demon represents an
expectation of the robot of its environment. When the senso-
rimotor stream does not match the predictions, the discrep-
ancy can be detected and the robot can modify its behavior
to express surprise, to assess the newly discovered novelty—
an idea with connections to encouraging a curiosity-drive,
or even to change its update function to imprint on the nov-
elty. A robot that is able to respond to novelty on any on its
sensors can be considered more cognizant than a robot that
would not.

Second, demons can be used for planning. Each predic-
tion demon is a partial model of the consequences of fol-
lowing an option, and multiple demons could be considered
jointly to enable temporally extended planning. As a slow

process, planning could use multiple partial models to up-
date the behavior policy of the robot. The ability to flexibly
reason with partial models would provide a compelling dis-
criminative alternative for tasks where generative Bayesian
models are commonly used.

Third, demons can be used for feature selection. In Horde,
all demons compute a general value function with a shared
feature vector. As the demons have different predictive tasks,
this provides a selection pressure on the features to be rel-
evant for many tasks. Examining the reliance across all the
demons on each feature can help to determine what features
to change or remove as part of a representation discovery
process. In short, a feature used by many demons predicting
different signals may be more informational and valuable
compared to a feature only used by only a few demons.

Fourth, demons can be used as features themselves. Pre-
dictive state representations and TD networks have been
shown to be more general for knowledge representation than
other concurrent approach such as POMDP or nth-order
Markov models (Singh et al., 2004). In such setting, the
prediction of a demon can be used directly as a feature for
other demons (including itself). Demons connected together
in this manner could define a TD network that is able to rep-
resent abstract concepts built from the sensorimotor stream.

The argument we propose in this paper, that knowledge
is important and that it should be closely related to sen-
sorimotor experience, has been acknowledged for a long
time in the robotics community. The novel contribution of
the Horde is to provide a combination of features that en-
able a robot to efficiently learn a broad set of competencies.
1. Horde is the first architecture able to represent abstract
temporally-extended knowledge within a well-defined math-
ematical framework that supports learning under function
approximation (an incomplete representation of the environ-
ment). 2. Horde is scalable: the computational and memory
requirements grow linearly with the number of demons, all
demons always learn from one single common sensorimotor
stream but are able to efficiently learn about different ways



of behaving. 3. Demons are easy to create and delete to build
more abstract knowledge. Finally, this paper is about devel-
oping low-level knowledge and abstractions from low-level
knowledge on a robot, and it is not obvious precisely how
this supports high-level deliberative tasks like reading and
playing chess.

Conclusion
This paper describes a roadmap for building a cognizant
robot. We have defined a cognizant robot as one that pos-
sesses vast amounts of situated, revisable and expressive
knowledge. We have argued that such knowledge ought to
be learned for scalability and for maintaining accuracy in an
open environment. We have described a framework for ac-
quiring knowledge that is conceptually simple and scalable
in practice. Our results so far show that this approach scales
well, and updates in real-time. Thus our approach to build
knowledge for a cognizant robot is concrete, implemented,
and works. In some ways, it is surprising that we can use re-
inforcement learning methods for acquiring a broad array of
knowledge. Although there are still many open questions for
future research, we believe working towards more cognizant
robots will provide a firm foundation for more abstract cog-
nition.

References
Brooks, R. A. (1986). A robust layered control system for
a mobile robot. IEEE Trans. on Robotics and Automation,
RA-2(1):14–23.
Greenspan, R. J. and van Swinderen, B. (2004). Cognitive
consonance: complex brain functions in the fruit fly and its
relatives. TRENDS in Neurosciences, 27(12):707–711.
Maei, H. R. and Sutton, R. S. (2010). GQ(λ): A general gra-
dient algorithm for temporal-difference prediction learning
with eligibility traces. In Proceedings of the Third Confer-
ence on Artificial General Intelligence.
Pearce, J. (1997). Animal Learning and Cognition: an In-
troduction. Psychology Press.
Singh, S., James, M., and Rudary, M. (2004). Predictive
state representations: A new theory for modeling dynamical
systems. In Proceedings of the 20th conference on Uncer-
tainty in artificial intelligence, pages 512–519. AUAI Press.
Sutton, R. and Barto, A. (1998). Reinforcement Learning:
An Introduction. MIT Press.
Sutton, R., Precup, D., and Singh, S. (1999). Between mdps
and semi-mdps: A framework for temporal abstraction in
reinforcement learning. Artificial intelligence, 112(1):181–
211.
Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver,
D., Szepesvári, C., and Wiewiora, E. (2009). Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th In-
ternational Conference on Machine Learning.
Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski,
P. M., and Precup, D. (2011). Horde: A scalable real-time ar-
chitecture for learning knowledge from unsupervised senso-
rimotor interaction. In Proceedings of the 10th International

Conference on Autonomous Agents and Multiagent Systems
(AAMAS).
Urmson, C., Anhalt, J., Bagnell, D., et al. (2008). Au-
tonomous driving in urban environments: Boss and the ur-
ban challenge. Journal of Field Robotics, 25(8):425–466.
Walter, W. G. (1950). An electro-mechanical animal. Di-
alectica, 4(3):206–213.


