
The Thirty-Fourth AAAI Conference on Artificial Intelligence (AAAI-20)

Fixed-Horizon Temporal Difference
Methods for Stable Reinforcement Learning

Kristopher De Asis,1 Alan Chan,1,3 Silviu Pitis,2 Richard S. Sutton,1 Daniel Graves3
1University of Alberta, 2University of Toronto, 3Huawei Technologies Canada, Ltd.

{kldeasis, achan4, rsutton}@ualberta.ca, spitis@cs.toronto.edu, daniel.graves@huawei.com

Abstract

We explore fixed-horizon temporal difference (TD) methods,
reinforcement learning algorithms for a new kind of value
function that predicts the sum of rewards over a fixed number
of future time steps. To learn the value function for horizon h,
these algorithms bootstrap from the value function for hori-
zon h−1, or some shorter horizon. Because no value function
bootstraps from itself, fixed-horizon methods are immune to
the stability problems that plague other off-policy TD meth-
ods using function approximation (also known as “the deadly
triad”). Although fixed-horizon methods require the storage
of additional value functions, this gives the agent additional
predictive power, while the added complexity can be substan-
tially reduced via parallel updates, shared weights, and n-
step bootstrapping. We show how to use fixed-horizon value
functions to solve reinforcement learning problems compet-
itively with methods such as Q-learning that learn conven-
tional value functions. We also prove convergence of fixed-
horizon temporal difference methods with linear and general
function approximation. Taken together, our results establish
fixed-horizon TD methods as a viable new way of avoiding
the stability problems of the deadly triad.

1 Temporal Difference Learning
Temporal difference (TD) methods (Sutton 1988) are an im-
portant approach to reinforcement learning (RL) that com-
bine ideas from Monte Carlo estimation and dynamic pro-
gramming. A key view of TD learning is that it incremen-
tally learns testable, predictive knowledge of the environ-
ment (Sutton et al. 2011). The learned values represent an-
swers to questions about how a signal will accumulate over
time, conditioned on a way of behaving. In control tasks, this
signal is the reward sequence, and the values represent an
arbitrarily long sum of rewards an agent expects to receive
when acting greedily with respect to its current predictions.

A TD learning agent’s prediction horizon is specified
through a discount factor (Sutton and Barto 2018). This
parameter adjusts how quickly to exponentially decay the
weight given to later outcomes in a sequence’s sum, and
allows computational complexity to be independent of

Copyright c© 2020, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

span (van Hasselt and Sutton 2015). It’s often set to a con-
stant γ ∈ [0, 1), but prior work generalizes the discount rate
to be a transition-dependent termination function (White
2016). This allows for (variable) finite-length sums depen-
dent on state transitions, like in episodic tasks.

In this paper, we explore a case of time-dependent dis-
counting, where the sum considers a fixed number of fu-
ture steps regardless of where the agent ends up. We derive
and investigate properties of fixed-horizon TD algorithms,
and identify benefits over infinite-horizon algorithms in both
prediction and control. Specifically, by storing and updat-
ing a separate value function for each horizon, fixed-horizon
methods avoid feedback loops when bootstrapping, so that
learning is stable even in presence of function approxima-
tion. Fixed-horizon agents can approximate infinite-horizon
returns arbitrarily well, expand their set of learned hori-
zons freely (computation permitting), and combine forecasts
from multiple horizons to make time-sensitive predictions
about rewards. We emphasize our novel focus on predicting
a fixed-horizon return from each state as a solution method,
regardless of the problem setting. Our algorithms can be ap-
plied to both finite-horizon and infinite-horizon MDPs.

2 MDPs and One-step TD Methods
The RL problem is usually modeled as a Markov decision
process (MDP), in which an agent interacts with an environ-
ment over a sequence of discrete time steps.

At each time step t, the agent receives information about
the environment’s current state, St ∈ S , where S is the set
of all possible states in the MDP. The agent uses this state
information to select an action, At ∈ A(St), where A(s)
is the set of possible actions in state s. Based on the cur-
rent state and the selected action, the agent gets information
about the environment’s next state, St+1 ∈ S , and receives
a reward, Rt+1 ∈ R, according to the environment model,
p(s′, r|s, a) = P (St+1 = s′, Rt+1 = r|St = s,At = a).

Actions are selected according to a policy, π(a|s) =
P (At = a|St = s), which gives the probability of taking
action a given state s. An agent is interested in the return:

Gt =
T−t−1∑

k=0

γkRt+k+1 (1)

3741

where γ ∈ [0, 1] and T is the final time step in an episodic
task, and γ ∈ [0, 1) and T =∞ for a continuing task.

Value-based methods approach the RL problem by com-
puting value functions. In prediction, or policy evaluation,
the goal is to accurately estimate a policy’s expected re-
turn, and a state-value function, denoted vπ(s), is estimated.
In control, the goal is to learn a policy that maximizes
the expected return, and an action-value function, denoted
qπ(s, a), is estimated. In each case, the value functions rep-
resent a policy’s expected return from state s (and action a):

vπ(s) = Eπ[Gt|St = s] (2)
qπ(s, a) = Eπ[Gt|St = s,At = a] (3)

TD methods learn to approximate value functions by ex-
pressing Equations 2 and 3 in terms of successor values (the
Bellman equations). The Bellman equation for vπ is:

vπ(s) =
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a)
(
r + γvπ(s

′)
)

(4)

Based on Equation 4, one-step TD prediction estimates the
return by taking an action in the environment according to
a policy, sampling the immediate reward, and bootstrapping
off of the current estimated value of the next state for the
remainder of the return. The difference between this TD tar-
get and the value of the previous state (the TD error) is then
computed, and the previous state’s value is updated by tak-
ing a step proportional to the TD error with α ∈ (0, 1]:

Ĝt = Rt+1 + γV (St+1) (5)

V (St)← V (St) + α[Ĝt − V (St)] (6)

Q-learning (Watkins 1989) is arguably the most popular TD
method for control. It has a similar update, but because pol-
icy improvement is involved, its target is a sample of the
Bellman optimality equation for action-values:

Ĝt = Rt+1 + γmax
a′

Q(St+1, a
′) (7)

Q(St, At)← Q(St, At) + α[Ĝt −Q(St, At)] (8)

For small finite state spaces where the value function can
be stored as a single parameter vector, also known as the
tabular case, TD methods are known to converge under mild
technical conditions (Sutton and Barto 2018). For large or
uncountable state spaces, however, one must use function
approximation to represent the value function, which does
not have the same convergence guarantees.

Some early examples of divergence with function ap-
proximation were provided by Boyan and Moore (1995),
who proposed the Grow-Support algorithm to combat diver-
gence. Baird (1995) provided perhaps the most famous ex-
ample of divergence (discussed below) and proposed resid-
ual algorithms. Gordon (1995) proved convergence for a
specific class of function approximators known as aver-
agers. Convergence of TD prediction using linear func-
tion approximation, first proved by Tsitsiklis and Van Roy
(1997), requires the training distribution to be on-policy.
This approach was later extended to Q-learning (Melo and
Ribeiro 2007), but under relatively stringent conditions. In

particular, Assumption (7) of Theorem 1 in Melo and
Ribeiro (2007) amounts to a requirement that the behaviour
policy is already somewhat close to the optimal policy.

The on-policy limitations of the latter two results reflect
what has come to be known as the deadly triad (Sutton and
Barto 2018): when using (1) TD methods with (2) func-
tion approximation, training on (3) an off-policy data dis-
tribution can result in instability and divergence. One re-
sponse to this problem is to shift the optimization target, as
done by Gradient TD (GTD) methods (Sutton et al. 2009;
Bhatnagar et al. 2009); while provably convergent, GTD
algorithms are empirically slow (Ghiassian et al. 2018;
Sutton and Barto 2018). Another approach is to approximate
Fitted Value Iteration (FVI) methods (Munos and Szepesvári
2008) using a target network, as proposed by Mnih et al.
(2015). Though lacking convergence guarantees, this ap-
proach has been empirically successful. In the next section,
we propose fixed-horizon TD methods, an alternative ap-
proach to ensuring stability in presence of the deadly triad.

3 Fixed-horizon TD Methods
A fixed-horizon return is a sum of rewards similar to Equa-
tion 1 that includes only a fixed number of future steps. For
a fixed horizon h, the fixed-horizon return is defined to be:

Gh
t =

min(h,T−t)−1∑

k=0

γkRt+k+1 (9)

which is well-defined for any finite γ. This formulation al-
lows the agent’s horizon of interest and sense of urgency to
be characterized more flexibly and admits the use of γ = 1
in the continuing setting. Fixed-horizon value functions are
defined as expectations of the above sum when following
policy π beginning with state s (and action a):

vhπ(s) = Eπ[G
h
t |St = s] (10)

qhπ(s, a) = Eπ[G
h
t |St = s,At = a] (11)

These fixed-horizon value functions can also be written in
terms of successor values. Instead of bootstrapping off of the
same value function, vhπ(s) bootstraps off of the successor
state’s value from an earlier horizon (Bertsekas 2012):

vhπ(s) =
∑

a

π(a|s)
∑

r,s′

p(s′, r|s, a)
(
r + γvh−1

π (s′)
)

(12)
where v0π(s) = 0 for all s ∈ S .

From the perspective of generalized value functions
(GVFs) (Sutton et al. 2011), fixed-horizon value functions
are compositional GVFs. If an agent knows about a signal
up to a final horizon of H , it can specify a question under the
same policy with a horizon of H + 1, and directly make use
of existing values. As H →∞, the fixed-horizon return con-
verges to the infinite-horizon return, so that a fixed-horizon
agent with sufficiently large H could solve infinite-horizon
tasks arbitrarily well. Indeed, for an infinite-horizon MDP
with absolute rewards bounded by Rmax and γ < 1, it is
easy to see that |vhπ(s)− vπ(s)| ≤ γh Rmax

1−γ .

3742

For a final horizon H '∞, there may be concerns about
suboptimal control. We explore this empirically in Section
5. For now, we note that optimality is never guaranteed
when values are approximated. This can result from func-
tion approximation, or even in tabular settings from the use
of a constant step size. Further, recent work shows bene-
fits in considering shorter horizons (van Seijen, Fatemi, and
Tavakoli 2019) based on performance metric mismatches.

One-step Fixed-horizon TD
One-step fixed-horizon TD (FHTD) learns approximate val-
ues V h ≈ vhπ by computing, for each h ∈ {1, 2, 3, ..., H}:

Ĝh
t = Rt+1 + γV h−1(St+1) (13)

V h(St)← V h(St) + α[Ĝh
t − V h(St)] (14)

where V 0(s) = 0 for all s ∈ S . The general procedure of
one-step FHTD was previously described by Sutton (1988),
but not tested due to the observation that one-step FHTD’s
computation and storage scale linearly with the final horizon
H , as it performs H value updates per step. We argue that
because these value updates can be parallelized, reasonably
long horizons are feasible, and we’ll later show that n-step
FHTD can make even longer horizons practical. Forms of
temporal abstraction (Sutton, Precup, and Singh 1999) can
further substantially reduce the complexity.

A key property of FHTD is that bootstrapping is grounded
by the 0th horizon, which is exactly known from the start.
The 1st horizon’s values estimate the expected immediate
reward from each state, which is a stable target. The 2nd
horizon bootstraps off of the 1st, which eventually becomes
a stable target, and so forth. This argument intuitively ap-
plies even with general function approximation, assuming
weights are not shared between horizons. To see the im-
plications of this on TD’s deadly triad, consider one-step
FHTD with linear function approximation. For each hori-
zon’s weight vector, wh, the following update is performed:

wh
t+1 ← wh

t + α
[
Rt+1 + γwh−1

t · φt+1 −wh
t · φt

]
φt

where φt is the feature vector of the state at time t, φ(St).
The expected update can be written as:

wh
t+1 ← wh

t + α[b−Awh
t]

where A = E[φtφT
t] and b = E[(Rt+1+γwh−1

t ·φt+1)φt],
having expectations over the transition dynamics and the
sampling distribution over states. Because the target uses a
different set of weights, the b vector is non-stationary (but
convergent), and the A matrix is an expectation over the
fixed sampling distribution. Defining Φ to be the matrix con-
taining each state’s feature vector along each row, and D to
be the diagonal matrix containing the probability of sam-
pling each state on its diagonal, we have that A = ΦTDΦ.
A is always positive definite and so the updates are guaran-
teed to be stable relative to the current b vector. In contrast,
TD’s update gives A = ΦTD(I − γP)Φ where P contains
the state-transition probabilities under the target policy. TD’s
A matrix can be negative definite if D and P do not match
(i.e., off-policy updates), and the weights may diverge. We
explore the convergence of FHTD formally in Section 4.

A horizon’s reliance on earlier horizons’ estimates being
accurate may be expected to have worse sample complexity.
If each horizon’s parameters are identically initialized, dis-
tant horizons will match infinite-horizon TD’s updates for
the first H − 1 steps. If H →∞, this suggests that FHTD’s
sample complexity might be upper bounded by that of TD.
See Appendix D for a preliminary result in this vein.

An FHTD agent has strictly more predictive capabilities
than a standard TD agent. FHTD can be viewed as comput-
ing an inner product between the rewards and a step func-
tion. This gives an agent an exact notion of when rewards
occur, as one can subtract the fixed-horizon returns of sub-
sequent horizons to get an individual expected reward at a
specific future time step.

Multi-step Fixed-horizon TD Prediction
Another way to estimate fixed-horizon values is through
Monte Carlo (MC) methods. From a state, one can generate
reward sequences of fixed lengths, and average their sums
into the state’s expected fixed-horizon return. Fixed-horizon
MC is an opposite extreme from one-step FHTD in terms
of a bias-variance trade-off, similar to the infinite-horizon
setting (Jaakkola, Jordan, and Singh 1994). This trade-off
motivates considering multi-step FHTD methods.

Fixed-horizon MC is appealing when one only needs the
expected return for the final horizon H , and has no explicit
use for the horizons leading up to H . This is because it can
learn the final horizon directly by storing and summing the
last H rewards, and performing one value-function update
for each visited state. If we use a fixed-horizon analogue to
n-step TD methods (Sutton and Barto 2018), denoted n-step
FHTD, the algorithm stores and sums the last n rewards,
and only has to learn)Hn * value functions. For each h ∈
{n, 2n, 3n, ...,H}, n-step FHTD computes:

Ĝh
t:t+n = γnV h−n(St+n) +

n−1∑

k=0

γkRt+k+1 (15)

V h(St)← V h(St) + α[Ĝh
t:t+n − V h(St)] (16)

assuming that H is divisible by n. If H is not divisible
by n, the final horizon’s update will only sum the first
H (mod n) of the last n rewards. Counting the number of
rewards to sum, and the number of value function updates,
n-step FHTD performs n − 1 + H/n operations per time
step. This has a worst case of H operations at n = 1 and
n = H , and a best case of 2

√
H − 1 operations at n =

√
H .

This suggests that in addition to trading off reliance on sam-
pled information versus current estimates, n-step FHTD’s
computation can scale sub-linearly in H .

Fixed-horizon TD Control
The above FHTD methods for state-values can be trivially
extended to learn action-values under fixed policies, but it is
less trivial with policy improvement involved.

If we consider the best an agent can do from a state in
terms of the next H steps, it consists of an immediate re-
ward, and the best it can do in the next H − 1 steps from the
next state. That is, each horizon has a separate target policy

3743

that’s greedy with respect to its own horizon. Because the
greedy action may differ between one horizon and another,
FHTD control is inherently off-policy.

Q-learning provides a natural way to handle this off-
policyness, where the TD target bootstraps off of an esti-
mate under a greedy policy. Based on this, fixed-horizon Q-
learning (FHQ-learning) performs the following updates:

Ĝh
t = Rt+1 + γmax

a′
Qh−1(St+1, a

′) (17)

Qh(St, At)← Qh(St, At) + α[Ĝh
t −Qh(St, At)] (18)

A saddening observation from FHTD control being in-
herently off-policy is that the computational savings of n-
step FHTD methods may not be possible without approxi-
mations. With policy improvement, an agent needs to know
the current greedy action for each horizon. This informa-
tion isn’t available if n-step FHTD methods avoid learning
intermediate horizons. On the other hand, a benefit of each
horizon having its own greedy policy is that the optimal pol-
icy for a horizon is unaffected by the policy improvement
steps of later horizons. As a compositional GVF, the uni-
directional decoupling of greedy policies suggests that in
addition to a newly specified final horizon leveraging pre-
viously learned values for prediction, it can leverage previ-
ously learned policies for control.

4 Convergence of Fixed-horizon TD
This section sets forth our convergence results, first for linear
function approximation (which includes the tabular case),
and second for general function approximation.

Linear Function Approximation
For linear function approximation, we prove the conver-
gence of FHQ-Learning under some additional assumptions,
outlined in detail in Appendix A. Analogous proofs may be
obtained easily for policy evaluation. We provide a sketch
of the proof below, and generally follow the outline of Melo
and Ribeiro (2007). Full proofs are in the Appendix.

We denote φ(s, a) ∈ Rd for the feature vector corre-
sponding to the state s and action a. We will sometimes
write φs for φ(s, a). Assume furthermore that the features
are linearly independent and bounded.

We assume that we are learning H horizons, and approx-
imate the fixed-horizon h-th action-value function linearly.

Qh
w(s, a) := wh,:φ(s, a),

where w ∈ RH×d. Colon indices denote array slicing, with
the same conventions as in NumPy. For convenience, we
also define w0,: := 0.

We define the feature corresponding to the max action of
a given horizon:

φ∗
w(s, h) := φ(s, argmax

a
Qh

w(s, a)).

The update at time t+ 1 for each horizon h is given by

wh+1,:
t+1 := wh+1,:

t + αt(r(s, a, s
′) + γwh,:

t φ∗
wt

(s′, h)

−wh+1,:
t φs)φ

T
s .

where the step-sizes αt are assumed to satisfy:
∑

t

αt =∞ and
∑

t

α2
t <∞.

Proposition 1. For h = 1, ..., H , the following ODE system
has an equilibrium.

ẇh+1,: = E
[
(r(s, a, s′) + γwh,:φ∗

w(s′, h)−wh+1,:φs)φ
T
s

]

(19)
Denote one such equilibrium by we, and define w̃ := w −
we. If, furthermore, we have that for h = 1, ..., H ,

γ2E[(wh,:φ∗
w(s, h)−wh,:

e φ∗
we

(s, h))2] < (20)

E
[
(wh+1,:φs −wh+1,:

e φs)
2
]

then we is a globally asymptotically stable equilibrium of
Equation (19).

Proof. See Appendix A. The main idea is to explicitly con-
struct an equilibrium of Equation (19) and to use a Lyapunov
function along with Equation (20) to show global asymptotic
stability.

Equation (20) means that the h-th fixed-horizon action-value
function must be closer, when taking respective max actions,
to its equilibrium point than the (h + 1)-th fixed-horizon
action-value function is to its equilibrium, where distance is
measured in terms of squared error of the action-values. In-
tuitively, the functions for the previous horizons must have
converged somewhat for the next horizon to converge, for-
malizing the cascading effect described earlier. This assump-
tion is reasonable given that value functions for smaller
horizons have a bootstrap target that is closer to a Monte
Carlo target than the value functions for larger horizons.
As a result, eq. (20) is somewhat less stringent than the
corresponding assumption (7) in Theorem 1 of Melo and
Ribeiro (2007), which requires the behaviour policy already
be somewhat close to optimal.

Theorem 1. Viewing the right-hand side of the ODE sys-
tem eq. (19) as a single function g(w), assume that g is lo-
cally Lipschitz in w. Assuming also Equation (20), a fixed
behaviour policy π, and the assumptions in the Appendix,
the iterates of FHQ-learning converge with probability 1 to
the equilibrium of the ODE system eq. (19).

Proof. See Appendix A. The main idea is to use Theorem
17 of Benveniste, Métivier, and Priouret (1990) and Propo-
sition 1.

A limitation of Theorem 1 is the assumption of a fixed
behaviour policy. It is possible to make a similar claim for
a changing policy, assuming that it satisfies a form of Lip-
schitz continuity with respect to the parameters. See Melo
and Ribeiro (2007) for discussion on this point.

3744

General Function Approximation
We now address the case where Qh is represented by a gen-
eral function approximator (e.g., a neural network). As be-
fore, the analysis extends easily to prediction (V h). Gen-
eral non-linear function approximators have non-convex loss
surfaces and may have many saddle points and local min-
ima. As a result, typical convergence results (e.g., for gradi-
ent descent) are not useful without some additional assump-
tion about the approximation error (cf., the inherent Bellman
error in the analysis of Fitted Value Iteration (Munos and
Szepesvári 2008)). We therefore state our result for general
function approximators in terms of δ-strongness for δ > 0:
Definition 1. A function approximator, consisting of func-
tion class H and iterative learning algorithm A, is δ-strong
with respect to target function class G and loss function
J : H × G → R+ if, for all target functions g ∈ G, the
learning algorithm A is guaranteed to produce (within a fi-
nite t number of steps) an ht ∈ H such that J(ht, g) ≤ δ.

We consider learning algorithms A that converge once
some minimum progress c can no longer be made:
Assumption 1. There exists stopping constant c such that
algorithm A is considered “converged” with respect to tar-
get function g if less than c progress would be made by an
additional step; i.e., if J(ht, g)− J(ht+1, g) < c.

Note that δ-strongness may depend on stopping constant
c: a larger c naturally corresponds to earlier stopping and
looser δ. Note also that, so long as the distance between the
function classes H and G is upper bounded, say by d, any
convergent A is “d-strong”. Thus, a δ-strongness result is
only meaningful to the extent that δ is sufficiently small.

We consider functions Qh
t = Q(wh

t) parameterized by
wh

t . Letting T denote the Bellman operator [TQ](s, a) =
Es′,r∼p(·|s,a)[r + γmaxa′ Q(s′, a′)], we assume:
Assumption 2. The target function TQ(w) is Lipschitz con-
tinuous in the parameters: there exists constant L such that
‖TQ(w1)− TQ(w2)‖F ≤ L ‖w1 −w2‖ for all w1,w2,
where ‖·‖F is a norm on value function space F (typically a
weighted L2 norm, weighted by the data distribution), which
we take to be a Banach space containing both H and G.

It follows that if (wh−1
t)→ wh−1

∗ , the sequence of target
functions TQh−1

t converges to TQh−1
∗ = TQ(wh−1

∗) in F
under norm ‖·‖. We can therefore define the “true” loss:

J∗(wh
t) = ‖TQh−1

∗ −Qh
t ‖ (21)

where we drop the square from the usual mean square Bell-
man error (Sutton and Barto 2018) for ease of exposition
(the analysis is unaffected after an appropriate adjustment).
Since we cannot access J∗, we optimize the surrogate loss:

J(wh−1
t ,wh

t) = ‖TQh−1
t −Qh

t ‖ . (22)
Lemma 1. If ‖TQh−1

t − TQh−1
∗ ‖ < ε, and learning has

not yet converged with respect to the surrogate loss J , then
J∗(wh

t)− J∗(wh
t+1) > c− 2ε.

Proof. Intuitively, enough progress toward a similar enough
surrogate loss guarantees progress toward the true loss. Ap-
plying the triangle inequality (twice) gives:
J∗(wh

t)−J∗(wh
t+1) = ‖TQh!1

∗ −Qh
t ‖−‖TQh!1

∗ −Qh
t+1‖

= ‖TQh!1
∗ −Qh

t ‖
+ (‖TQh!1

t − TQh!1
∗ ‖ − ‖TQh!1

t − TQh!1
∗ ‖)

− ‖TQh!1
∗ + (TQh!1

t − TQh!1
t)−Qh

t+1‖
≥ (‖TQh!1

t −Qh
t ‖ − ‖TQh!1

t − TQh!1
∗ ‖)

− (‖TQh!1
t −Qh

t+1‖+ ‖TQh!1
∗ − TQh!1

t ‖)
= (‖TQh!1

t −Qh
t ‖ − ‖TQh!1

t −Qh
t+1‖

− 2 ‖TQh!1
∗ − TQh!1

t ‖ > c− 2ε,

where the final inequality uses ‖TQh!1
t −Qh

t ‖ −
‖TQh!1

t −Qh
t+1‖ ≥ c from Assumption 1.

It follows from Lemma 1 that when ε is small enough—
ε < c

2 − k for some constant k—either the true loss J∗ falls
by at least k, or learning has converged with respect to the
current target TQh−1

t . Since J∗ is non-negative (so cannot
go to −∞), it follows that the loss converges to a δ-strong
solution: J∗(wh

t) → d with d ≤ δ. Since there are only
a finite number of k-sized steps between the current loss at
time t and 0 (i.e., only a finite number of opportunities for
the learning algorithm to have “not converged” with respect
to the surrogate J), the parameters wh

t must also converge.
Since Q0

t = 0 is stationary, it follows by induction that:
Theorem 2. Under Assumptions 1 and 2, each horizon of
FHQ-learning converges to a δ-strong solution when using
a δ-strong function approximator.

In contrast to Theorem 1, which applies quite generally to
linear function approximators, δ-strongness and Assumption
1 limit the applicability of Theorem 2 in two important ways.

First, since gradient-based learning may stall in a bad sad-
dle point or local minimum, neural networks are not, in
general, δ-strong for small δ. Nevertheless, repeat empiri-
cal experience shows that neural networks consistently find
good solutions (Zhang et al. 2016), and a growing number
of theoretical results suggest that almost all local optima
are “good” (Pascanu et al. 2014; Choromanska et al. 2015;
Pennington and Bahri 2017). For this reason, we argue that
δ-strongness is reasonable, at least approximately.

Second, Assumption 1 is critical to the result: only if
progress is “large enough” relative to the error in the surro-
gate target is learning guaranteed to make progress on J∗.
Without a lower bound on progress—e.g., if the progress
at each step is allowed to be less than 2ε regardless of ε—
training might accumulate an error on the order of ε at ev-
ery step. In pathological cases, the sum of such errors may
diverge even if ε→ 0. As stated, Assumption 1 does not re-
flect common practice: rather than progress being measured
at every step, it is typically measured over several, say k,
steps. This is because training targets are noisy estimates of
the expected Bellman operator and several steps are needed
to accurately assess progress. Our analysis can be adapted to
this more practical scenario by making use of a target net-
work (Mnih et al. 2015) to freeze the targets for k steps at a
time. Then, considering each k step window as a single step
in the above discussion, Assumption 1 is fair. This said, in-
tuition suggests that pathological divergence when Assump-
tion 1 is not satisfied is rare, and our experiments with Deep
FHTD Control show that training can be stable even with
shared weights and no target networks.

3745

5 Empirical Evaluation

This section outlines several hypotheses concerning fixed-
horizon TD methods, experiments aimed at testing them,
and the results from each experiment. Pseudo-code, dia-
grams, more experimental details, and additional experi-
ments can be found in the supplementary material.

Stability in Baird’s Counterexample

We hypothesize that FHTD methods provide a stable way
of bootstrapping, such that divergence will not occur un-
der off-policy updating with function approximation. To test
this, we used Baird’s counterexample (Baird 1995), a 7-state
MDP where every state has two actions. One action results
in a uniform random transition to one of the first 6 states, and
the other action results in a deterministic transition to the 7th
state. Rewards are always zero, and each state has a specific
feature vector for use with linear function approximation. It
was presented with a discount rate of γ = 0.99, and a target
policy which always chooses to go to the 7th state.

In our experiment, we used one-step FHTD with impor-
tance sampling corrections (Rubinstein 1981) to predict up
to a horizon of H = 1

1−γ = 100. Each horizon’s weights
were initialized to be wh = [1, 1, 1, 1, 1, 1, 10, 1]T , based
on Sutton and Barto (2018), and we used a step size of
α = 0.2

|S| . We performed 1000 independent runs of 10,000
steps, and the results can be found in Figure 1.

We see that one-step FHTD eventually and consistently
converges. The initial apparent instability is due to each hori-
zon being initialized to the same weight vector, making early
updates resemble the infinite-horizon setting where weight
updates bootstrap off of the same weight vector. The re-
sults emphasize what TD would have done, and how FHTD
can recover from it. Of note, the final weights do give op-
timal state-values of 0 for each state. In results not shown,
FHTD still converges, sometimes quicker, when each hori-
zon’s weights are initialized randomly (and not identically).

Figure 1: Weight trajectories of one-step FHTD’s 100th hori-
zon value function on Baird’s counterexample, plotted after
each time step. Shaded regions represent one standard error.

Tabular FHTD Control

In this section, we evaluate one-step FHQ-learning in a
control problem. We hypothesize that when transitions are
highly stochastic, predicting too far into the future results
in unnecessarily large variance. Using fixed step sizes, we
expect this to be an issue even in tabular settings. Both trun-
cating the horizon and constant-valued discounting can ad-
dress the variability of long term information, so we com-
pare undiscounted FHQ-learning to discounted Q-learning.

We designed the slippery maze environment, a maze-like
grid world with 4-directional movement. The agent starts in
the center, and hitting walls keep the agent in place. The
“slipperiness” involves a 75% chance that the agent’s action
is overridden by a random action. A reward of −1 is given
at each step. The optimal deterministic path is 14 steps, but
due to stochasticity, an optimal policy averages 61.77 steps.

Each agent behaved ε-greedily with ε = 0.1. We
swept linearly spaced step-sizes, final horizons H ∈
{8, 16, 32, 48} for FHQ-learning, and discount rates γ ∈
{0.875, 0.938, 0.969, 0.979} for Q-learning. The discount
rates were selected such that if 1− γ represented a per-step
termination probability of a stochastic process, the expected
number of steps before termination matches the tested val-
ues of H . We performed 100 independent runs, and Figure
2 shows the mean episode length over 100 episodes.

For FHQ-learning, it can be seen that if the final hori-
zon is unreasonably short (H = 8), the agent performs
poorly. However, H = 16 does considerably better than if
it were to predict further into the future. With Q-learning,
each discount rate performed relatively similar to one an-
other, despite discount rates chosen to have expected se-
quence lengths comparable to the fixed horizons. This may
be because they still include a portion of the highly vari-
able information about further steps. For both algorithms, a
shorter horizon was preferable over the full episodic return.

Deep FHTD Control

We further expect FHTD methods to perform well in control
with non-linear function approximation. FHTD’s derivation
assumes weights are separated by horizon. To see the ef-
fect of horizons sharing weights, we treated each horizon’s
values as linear neural network outputs over shared hidden
layers. Use of this architecture along with parallelization
emphasizes that the increased computation can be minimal.
Due to bootstrapped targets being decoupled by horizon, we
also expect deep FHTD methods to not need target networks.

In OpenAI Gym’s LunarLander-v2 environment (Brock-
man et al. 2016), we compared Deep FHQ-learning (DFHQ)
with a final horizon H = 64 and DQN (Mnih et al. 2015).
We restricted the neural network to have two hidden layers,
and swept over hidden layer widths for each algorithm. We
used γ ∈ {0.99, 1.0}, and behaviour was ε-greedy with ε
annealing linearly from 1.0 to 0.1 over 50,000 frames. RM-
Sprop (Tieleman and Hinton 2012) was used on sampled
mini-batches from an experience replay buffer (Mnih et al.
2015), and ignoring that the target depends on the weights,

3746

Figure 2: Mean episode lengths over 100 episodes of FHQ-learning and Q-learning with various step-sizes and horizons of
interest. Results are averaged over 100 runs, and shaded regions represent one standard error.

Figure 3: Mean return over last 10 episodes at each frame of
DFHQ and DQN, without target networks, averaged over 30
runs. Shaded regions represent one standard error.

DFHQ minimized the mean-squared-error across horizons:

Ĝh
t = Rt+1 + γmax

a′
Qh−1(St+1, a

′;w)

J(w) =
1

H

H∑

h=1

(
Ĝh

t −Qh(St, At;w)

)2

(23)

We performed 30 independent runs of 500,000 frames
each (approximately 1000 episodes for each run). Figure
3 shows for each frame, the mean return over the last 10
episodes of each algorithm’s best parameters (among those
tested) in terms of area under the curve. Note that the results
show DFHQ and DQN without target networks. From ad-
ditional experiments, we found that target networks slowed
DFHQ’s learning more than it could help over a run’s dura-
tion. They marginally improve DQN’s performance, but the
area under the curve remained well below that of DFHQ.

It can be seen that DFHQ had considerably lower vari-
ance, and relatively steady improvement. Further, DFHQ
was significantly less sensitive to γ, as DQN with γ = 1
immediately diverged. From the remainder of our sweep,
DFHQ appeared relatively insensitive to large hidden layer
widths beyond the setting shown, whereas DQN’s perfor-

mance considerably dropped if the width further increased.
DFHQ’s good performance may be attributed to the repre-

sentation learning benefit of predicting many outputs (Jader-
berg et al. 2016; Fedus et al. 2019); in contrast with auxiliary
tasks, however, these outputs are necessary tasks for pre-
dicting the final horizon. An early assessment of the learned
values can be found in Appendix D.

6 Discussion and future work
In this work, we investigated using fixed-horizon returns in
place of the conventional infinite-horizon return. We derived
FHTD methods and compared them to their infinite-horizon
counterparts in terms of prediction capability, complexity,
and performance. We argued that FHTD agents are stable
under function approximation and have additional predictive
power. We showed that the added complexity can be sub-
stantially reduced via parallel updates, shared weights, and
n-step bootstrapping. Theoretically, we proved convergence
of FHTD methods with linear and general function approxi-
mation. Empirically, we showed that off-policy linear FHTD
converges on a classic counterexample for off-policy linear
TD. Further, in a tabular control problem, we showed that
greedifying with respect to estimates of a short, fixed hori-
zon could outperform doing so with respect to longer hori-
zons. Lastly, we demonstrated that FHTD methods can scale
well to and perform competitively on a deep reinforcement
learning control problem.

There are many avenues for future work. Given that us-
ing shorter horizons may be preferable (Figure 2), it would
be interesting if optimal weightings of horizons could be
learned, rather than relying on the furthest horizon to act.
Developing ways to handle the off-policyness of n-step
FHTD control (See Appendix D), incorporating temporal
abstraction, and experiments in more complex environments
would improve our understanding of the scalability of our
methods to extremely long horizon tasks. Finally, the appli-
cations to complex and hyperbolic discounting (Appendix
B), exploring the benefits of iteratively deepening the final
horizon, and the use of fixed-horizon critics in actor-critic
methods might be promising.

3747

Acknowledgments The authors thank the Reinforcement
Learning and Artificial Intelligence research group, Amii,
and the Vector Institute for providing the environment to
nurture and support this research. We gratefully acknowl-
edge funding from Alberta Innovates – Technology Futures,
Google Deepmind, and from the Natural Sciences and Engi-
neering Research Council of Canada.

References
Baird, L. 1995. Residual algorithms: Reinforcement learn-
ing with function approximation. In Prieditis, A., and Rus-
sell, S., eds., Machine Learning Proceedings 1995. Morgan
Kaufmann. 30 – 37.
Benveniste, A.; Métivier, M.; and Priouret, P. 1990. Adap-
tive Algorithms and Stochastic Approximations. Springer-
Verlag.
Bertsekas, D. 2012. Dynamic Programming & Opti-
mal Control, Vol II: Approximate Dynamic Programming.
Athena Scientific, 4 edition.
Bhatnagar, S.; Precup, D.; Silver, D.; Sutton, R. S.; Maei,
H. R.; and Szepesvári, C. 2009. Convergent temporal-
difference learning with arbitrary smooth function approxi-
mation. In Advances in Neural Information Processing Sys-
tems, 1204–1212.
Boyan, J. A., and Moore, A. W. 1995. Generalization in re-
inforcement learning: Safely approximating the value func-
tion. In Advances in neural information processing systems,
369–376.
Brockman, G.; Cheung, V.; Pettersson, L.; Schneider, J.;
Schulman, J.; Tang, J.; and Zaremba, W. 2016. OpenAI
gym. CoRR abs/1606.01540.
Choromanska, A.; Henaff, M.; Mathieu, M.; Arous, G. B.;
and LeCun, Y. 2015. The loss surfaces of multilayer net-
works. In Artificial Intelligence and Statistics, 192–204.
Fedus, W.; Gelada, C.; Bengio, Y.; Bellemare, M. G.; and
Larochelle, H. 2019. Hyperbolic discounting and learning
over multiple horizons.
Ghiassian, S.; Patterson, A.; White, M.; Sutton, R. S.; and
White, A. 2018. Online off-policy prediction. arXiv preprint
arXiv:1811.02597.
Gordon, G. J. 1995. Stable function approximation in
dynamic programming. In Machine Learning Proceedings
1995. Elsevier. 261–268.
Jaakkola, T. S.; Jordan, M. I.; and Singh, S. P. 1994. On the
convergence of stochastic iterative dynamic programming
algorithms. Neural Computation 6(6):1185–1201.
Jaderberg, M.; Mnih, V.; Czarnecki, W. M.; Schaul, T.;
Leibo, J. Z.; Silver, D.; and Kavukcuoglu, K. 2016. Rein-
forcement learning with unsupervised auxiliary tasks. CoRR
abs/1611.05397.
Melo, F. S., and Ribeiro, M. I. 2007. Q-learning with lin-
ear function approximation. In International Conference on
Computational Learning Theory, 308–322. Springer.
Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Veness,
J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidjeland,

A. K.; Ostrovski, G.; Petersen, S.; Beattie, C.; Sadik, A.;
Antonoglou, I.; King, H.; Kumaran, D.; Wierstra, D.; Legg,
S.; and Hassabis, D. 2015. Human-level control through
deep reinforcement learning. Nature 518(7540):529–533.
Munos, R., and Szepesvári, C. 2008. Finite-time bounds for
fitted value iteration. Journal of Machine Learning Research
9(May):815–857.
Pascanu, R.; Dauphin, Y. N.; Ganguli, S.; and Bengio, Y.
2014. On the saddle point problem for non-convex opti-
mization. arXiv preprint arXiv:1405.4604.
Pennington, J., and Bahri, Y. 2017. Geometry of neural net-
work loss surfaces via random matrix theory. In Proceedings
of the 34th International Conference on Machine Learning-
Volume 70, 2798–2806. JMLR. org.
Rubinstein, R. Y. 1981. Simulation and the Monte Carlo
Method. New York, NY, USA: John Wiley & Sons, Inc., 1st
edition.
Sutton, R. S., and Barto, A. G. 2018. Reinforcement Learn-
ing: An Introduction. The MIT Press, 2nd edition.
Sutton, R. S.; Maei, H. R.; Precup, D.; Bhatnagar, S.; Silver,
D.; Szepesvári, C.; and Wiewiora, E. 2009. Fast gradient-
descent methods for temporal-difference learning with lin-
ear function approximation. In Proceedings of the 26th An-
nual International Conference on Machine Learning, 993–
1000. ACM.
Sutton, R. S.; Modayil, J.; Delp, M.; Degris, T.; Pilarski,
P. M.; White, A.; and Precup, D. 2011. Horde: A scal-
able real-time architecture for learning knowledge from un-
supervised sensorimotor interaction. In AAMAS, 761–768.
IFAAMAS.
Sutton, R. S.; Precup, D.; and Singh, S. P. 1999. Between
MDPs and semi-MDPs: A framework for temporal abstrac-
tion in reinforcement learning. Artificial Intelligence 112(1-
2):181–211.
Sutton, R. S. 1988. Learning to predict by the methods of
temporal differences. Machine learning 3(1):9–44.
Tieleman, T., and Hinton, G. 2012. Lecture 6.5—RmsProp:
Divide the gradient by a running average of its recent magni-
tude. COURSERA: Neural Networks for Machine Learning.
Tsitsiklis, J., and Van Roy, B. 1997. An analysis of
temporal-difference learning with function approximation.
IEEE Transactions on Automatic Control 42(5):674–690.
van Hasselt, H., and Sutton, R. S. 2015. Learning to predict
independent of span. CoRR abs/1508.04582.
van Seijen, H.; Fatemi, H.; and Tavakoli, A. 2019. Using
a logarithmic mapping to enable lower discount factors in
reinforcement learning.
Watkins, C. J. C. H. 1989. Learning from Delayed Rewards.
Ph.D. Dissertation, King’s College, Cambridge, UK.
White, M. 2016. Unifying task specification in reinforce-
ment learning. CoRR abs/1609.01995.
Zhang, C.; Bengio, S.; Hardt, M.; Recht, B.; and Vinyals,
O. 2016. Understanding deep learning requires rethinking
generalization. arXiv preprint arXiv:1611.03530.

3748

