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Abstract

TD(�) is a popular family of algorithms
for approximate policy evaluation in large
MDPs. TD(�) works by incrementally up-
dating the value function after each observed
transition. It has two major drawbacks: it
makes ine�cient use of data, and it requires
the user to manually tune a stepsize schedule
for good performance. For the case of lin-
ear value function approximations and � =
0, the Least-Squares TD (LSTD) algorithm
of Bradtke and Barto (Bradtke and Barto,
1996) eliminates all stepsize parameters and
improves data e�ciency.

This paper extends Bradtke and Barto's work
in three signi�cant ways. First, it presents
a simpler derivation of the LSTD algorithm.
Second, it generalizes from � = 0 to arbitrary
values of �; at the extreme of � = 1, the re-
sulting algorithm is shown to be a practical
formulation of supervised linear regression.
Third, it presents a novel, intuitive interpre-
tation of LSTD as a model-based reinforce-
ment learning technique.

1 BACKGROUND

This paper addresses the problem of approximating
the value function V � of a �xed policy � in a large
Markov decision process (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998). This is an impor-
tant subproblem of several algorithms for sequential
decision making, including optimistic policy iteration
(Bertsekas and Tsitsiklis, 1996) and STAGE (Boyan
and Moore, 1998). V �(x) simply predicts the expected
long-term sum of future rewards obtained when the

process starts in state x and follows policy � until ter-
mination. This function is well-de�ned as long as � is
proper, i.e., guaranteed to terminate.1

For small Markov chains whose transition probabilities
are all explicitly known, computing V � is a trivial mat-
ter of solving a system of linear equations. However, in
many practical applications, the transition probabili-
ties of the chain are available only implicitly|either
in the form of a simulation model or in the form of
an agent's actual experience executing � in its envi-
ronment. In either case, we must compute V � or an
approximation thereof (denoted ~V �) solely from a col-
lection of trajectories sampled from the chain. This is
where the TD(�) family of algorithms applies.

TD(�) was introduced in (Sutton, 1988); excellent
summaries may now be found in several books (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998).
For each state on each observed trajectory, TD(�) in-
crementally adjusts the coe�cients of ~V � toward new
target values. The target values depend on the pa-
rameter � 2 [0; 1]. At � = 1, the target at each
visited state xt is the \Monte-Carlo return," i.e., the
actual observed sum of future rewards Rt + Rt+1 +
� � �+Rend. This is an unbiased sample of V �(xt), but
may have signi�cant variance since it depends on a
long stochastic sequence of rewards. At the other ex-
treme, � = 0, the target value is set by a sampled one-
step lookahead: Rt + ~V �(xt+1). This value has lower
variance|the only random component is a single state
transition|but is biased by the potential inaccuracy of
the lookahead estimate of V �. The parameter � trades
o� between bias and variance. Empirically, interme-
diate values of � seem to perform best (Sutton, 1988;

1For improper policies, V � may be made well-de�ned
by the use of a discount factor that exponentially reduces
future rewards; however, for simplicity we will assume here
that V � is undiscounted.



Sutton and Barto, 1998).

TD(�) has been shown to converge to a good ap-
proximation of V � when linear architectures are
used, assuming a suitable decreasing schedule of
stepsizes for the incremental weight updates (Tsit-
siklis and Roy, 1996). Linear architectures|which
include lookup tables, state aggregation methods,
CMACs, radial basis function networks with �xed
bases, and multi-dimensional polynomial regression|
approximate V �(x) by �rst mapping the state x to a
feature vector �(x) 2 <K , and then computing a lin-
ear combination of those features, �(x)T�. Figure 1
gives a convenient form of TD(�) that exploits this
representation.

On each transition, the algorithm computes the scalar
one-step TD error Rt + (�(xt+1)��(xt))

T�, and ap-
portions that error among all state features according
to their respective eligibilities zt. The eligibility vec-
tor may be seen as an algebraic trick by which TD(�)
propagates rewards backward over the current trajec-
tory without having to remember the trajectory explic-
itly. Each feature's eligibility at time t depends on the
trajectory's history and on �: zt =

Pt

i=t0
�t�i�(xi),

where t0 is the time at which the current trajec-
tory started. In the case of TD(0), only the cur-
rent state's features are eligible to be updated, so
zt = �(xt); whereas in TD(1), the features of all states
seen so far on the current trajectory are eligible, so
zt =

Pt

i=t0
�(xi).

To what weights does TD(�) converge? Examining
the update rule for � in Figure 1, it is not di�cult to
see that the coe�cient changes made by TD(�) after
an observed trajectory (x0; x1; : : : ; xL; end) have the
form � := � + �n(d+C� +!), where

d = E
� LX

i=0

ziRi

	
; C = E

� LX

i=0

zi
�
�(xi+1)� �(xi)

�T	
;

(1)

and ! = zero-mean noise. The expectations are taken
with respect to the distribution of trajectories through
the Markov chain. It is shown in (Bertsekas and
Tsitsiklis, 1996) that C is negative de�nite and that
the noise ! has su�ciently small variance, which to-
gether with the stepsize conditions mentioned above,
imply that � converges to a �xed point �� satisfying
d + C�� = 0. In e�ect, TD(�) solves this system of
equations by performing stochastic gradient descent
on a potential function k� � ��k

2. It never explicitly
represents d or C. The changes to � depend only on
the most recent trajectory, and after those changes are

made, the trajectory and its rewards are simply forgot-
ten. This approach, while requiring little computation
per iteration, wastes data and may require sampling
many trajectories to reach convergence.

One technique for using data more e�ciently is \ex-
perience replay" (Lin, 1993): explicitly remember all
trajectories ever seen, and whenever asked to produce
an updated set of coe�cients, perform repeated passes
of TD(�) over all the saved trajectories until conver-
gence. This technique is similar to the batch train-
ing methods commonly used to train neural networks.
However, in the case of linear function approximators,
there is another way.

2 THE LEAST-SQUARES TD(�)
ALGORITHM

The Least-Squares TD(�) algorithm, or LSTD(�),
converges to the same coe�cients �� that TD(�)
does. However, instead of performing gradient descent,
LSTD(�) builds explicit estimates of the C matrix and
d vector (actually, estimates of a constant multiple of
C and d), and then solves d+C�� = 0 directly. The
actual data structures that LSTD(�) builds from ex-
perience are the matrixA (of dimension K�K, where
K is the number of features) and the vector b (of di-
mension K):

b =
tX

i=0

ziRi A =
tX

i=0

zi
�
�(xi)� �(xi+1)

�T
(2)

After n independent trajectories have been observed,
b is an unbiased estimate of nd, and A is an unbi-
ased estimate of �nC. Thus, �� can be estimated
as A�1b. As is standard in least-squares algorithms,
Singular Value Decomposition is used to invert A ro-
bustly (Press et al., 1992). The complete LSTD(�)
algorithm is speci�ed in Figure 2.

When � = 0, LSTD(0) reduces precisely to Bradtke
and Barto's LSTD algorithm, which they derived us-
ing a more complex approach based on regression with
instrumental variables (Bradtke and Barto, 1996). At
the other extreme, when � = 1, LSTD(1) produces the
same A and b that would be produced by supervised
linear regression on training pairs of fstate features 7!
observed Monte-Carlo returnsg (see (Boyan, 1998) for
proof). Thanks to the algebraic trick of the eligibility
vectors, LSTD(1) builds the regression matrices fully
incrementally|without having to store the trajectory
while waiting to observe the eventual outcome. When
trajectories through the chain are long, this provides
signi�cant memory savings over linear regression.
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TD(�) for approximate policy evaluation:

Given: � a simulation model for a proper policy � in MDP X ;

� a featurizer � : X ! <K mapping states to feature vectors, �(end)
def
= 0;

� a parameter � 2 [0; 1]; and
� a sequence of stepsizes �1; �2; : : : for incremental coe�cient updating.

Output: a coe�cient vector � for which V �(x) � � � �(x).
Set � := 0 (or an arbitrary initial estimate); t := 0.
for n := 1; 2; : : : do: f

Set � := 0.
Choose a start state xt 2 X .
Set zt := �(xt).
while xt 6= end, do: f

Simulate one step of the process, producing a reward Rt and next state xt+1.
Set � := � + zt

�
Rt + (�(xt+1)� �(xt))

T�
�
. /* inner product */

Set zt+1 := �zt + �(xt+1).
Set t := t+ 1.

g
Set � := � + �n�.

g

Figure 1: Ordinary TD(�) for linearly approximating the undiscounted value function of a �xed proper policy.

LSTD(�) for approximate policy evaluation:

Given: a simulation model, featurizer, and � as in ordinary TD(�).
(No stepsize schedules or initial estimates of � are necessary.)

Output: a coe�cient vector � for which V �(x) � � � �(x).
Set A := 0; b := 0; t := 0.
for n := 1; 2; : : : do: f

Choose a start state xt 2 X .
Set zt := �(xt).
while xt 6= end, do: f

Simulate one step of the chain, producing a reward Rt and next state xt+1.
Set A := A+ zt(�(xt)� �(xt+1))

T. /* outer product */
Set b := b+ ztRt.
Set zt+1 := �zt + �(xt+1).
Set t := t+ 1.

g
Whenever updated coe�cients are desired: Set � := A�1b. /* use Singular Value Decomposition */

g

Figure 2: A least-squares version of TD(�) (compare Figure 1). Note that A has dimension K �K, and b, �,
z, and �(x) all have dimension K � 1.
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The computation per timestep required to update A
and b is the same as least-squares linear regression:
O(K2), where K is the number of features. LSTD(�)
must also perform a matrix inversion at a cost of
O(K3) whenever �'s coe�cients are needed|typically,
once per complete trajectory. (If updated coe�cients
are required more frequently, then the O(K3) cost
can be avoided by recursive least-squares (Bradtke and
Barto, 1996) or Kalman-�ltering techniques (Bertsekas
and Tsitsiklis, 1996, x3.2.2), which update � on each
timestep at a cost of only O(K2).) LSTD(�) performs
more computation per observation than incremental
TD(�), which updates the coe�cients using only O(K)
computation per timestep. However, LSTD(�) o�ers
several signi�cant advantages:

� Least-squares algorithms \extract more informa-
tion from each additional observation" (Bradtke
and Barto, 1996) and would thus be expected to
converge with fewer training samples.

� TD(�)'s convergence can be slowed dramatically
by a poor choice of the stepsize parameters �n.
LSTD(�) eliminates these parameters.

� TD(�)'s performance is sensitive to the initial es-
timate for ��. LSTD(�) does not rely on an ar-
bitrary initial estimate.

� TD(�) is also sensitive to the ranges of the indi-
vidual features. LSTD(�) is not.

Section 4 below presents experimental results com-
paring the data e�ciency of gradient-based and least-
squares-based TD learning.

3 LSTD(�) AS MODEL-BASED

LEARNING

Surprisingly, the move from a gradient-based to a
least-squares-based update rule for TD(�) turns out
to be mathematically equivalent to a move from a
model-free to a model-based reinforcement learning al-
gorithm. This equivalence provides interesting new in-
tuitions about the space of temporal di�erence learn-
ing algorithms, and as such forms an important part
of this work's contribution.

To begin, let us restrict our attention to the case of
a small discrete state space X , over which V � can be
represented and learned exactly by a lookup table. A
classical model-based algorithm for learning V � from
simulated trajectory data would proceed as follows:

1. From the state transitions and rewards observed
so far, build in memory an empirical model of
the Markov chain. The su�cient statistics of this
model are

� a vector n recording the number of times each
state has been visited;

� a matrix C recording the observed state-
transition counts: Cij = how many times xj
was seen to directly follow xi; and

� a vector s recording, for each state, the sum
of all one-step rewards observed on transi-
tions leaving that state.

2. Whenever a new estimate of the value function
V � is desired, solve the linear system of Bellman
equations corresponding to the current empirical
model. Writing N = diag(n), the solution vector
of V � values is given by

v = (N�C)�1s: (3)

This model-based technique contrasts with TD(�), a
model-free approach to the same problem. TD(�)
does not maintain any statistics on observed transi-
tions and rewards; it simply updates the components
of v directly. In the limit, assuming a lookup-table
representation, both converge to the optimal V �. The
advantage of TD(�) is its low computational burden
per step; the advantage of the classical model-based
method is that it makes the most of the available
training data. The empirical advantages of model-
based and model-free reinforcement learning meth-
ods have been investigated in, e.g., (Sutton, 1990;
Moore and Atkeson, 1993; Atkeson and Santamaria,
1997).

Where does LSTD(�) �t in? In fact, for the case of
� = 0, it precisely duplicates the classical model-based
method sketched above. The assumed lookup-table
representation for ~V � means that we have one inde-
pendent feature per state: the feature vector � cor-
responding to state 1 is (1; 0; 0; : : : ; 0); corresponding
to state 2 is (0; 1; 0; : : : ; 0); etc. Referring to the algo-
rithm of Figure 2, we see that LSTD(0) performs the
following operations upon each observed transition:

b := b+ �(xt)Rt A := A+ �(xt)(�(xt)� �(xt+1))
T

(4)

Clearly, the role of b is to sum all the rewards ob-
served at each state, exactly as the vector s does in
the classical technique. A, meanwhile, accumulates
the statistics (N�C). To see this, note that the outer
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product in Eq. 4 is a matrix consisting of an entry of
+1 on the single diagonal element corresponding to
state xt; an entry of �1 on the element in row xt,
column xt+1; and all the rest zeroes. Summing one
such sparse matrix for each observed transition gives
A � N�C. Finally, LSTD(0) performs the inversion
� := A�1b = (N �C)�1s , giving the same solution
as in Equation 3.

Thus, when � = 0, the A and b matrices built by
LSTD(�) e�ectively record a model of all the observed
transitions. What about when � > 0? Again, A and b
record the su�cient statistics of an empirical Markov
model|but in this case, the model being captured is
one whose single-step transition probabilities directly
encode the multi-step TD(�) backup operations. That
is, the model links each state x to all the downstream
states that follow x on any trajectory, and records how
much in
uence each has on estimating ~V �(x) accord-
ing to TD(�). In the case of � = 0, the TD(�) back-
ups correspond to the one-step transitions, resulting
in the equivalence described above. The opposite ex-
treme, the case of � = 1, is also interesting: the em-
pirical Markov model corresponding to TD(1)'s back-
ups is the chain in which each state x leads directly
to absorption, and � then simply computes the aver-
age Monte-Carlo return at each state. In short, if we
assume a lookup-table representation for the function
~V �, we can view the LSTD(�) algorithm as performing
these two steps:

1. It implicitly uses the observed simulation data to
build a Markov chain. This chain compactly mod-
els all the backups that TD(�) would perform on
the data.

2. It solves the chain by performing a matrix inver-
sion.

The lookup-table representation for ~V � is intractable
in practical problems; in practice, LSTD(�) oper-
ates on states only via their (linearly dependent) fea-
ture representations �(x). In this case, we can view
LSTD(�) as implicitly building a compressed version
of the empirical model's transition matrix N�C and
summed-reward vector s:

b = �Ts A = �T(N�C)� (5)

where � is the jX j �K matrix representation of the
function � : X ! <K . From the compressed empirical
model, LSTD(�) computes the following coe�cients
for ~V �:

�� = A�1b = (�T(N�C)�)�1(�Ts): (6)

Ideally, these coe�cients �� would be equivalent to
the empirical optimal coe�cients ���. The empirical
optimal coe�cients are those that would be found by
building the full uncompressed empirical model (repre-
sented by N�C and s), using a lookup table to solve
for that model's value function (v = (N � C)�1s),
and then performing a least-squares linear �t from the
state features � to the lookup-table value function:

���
def
= (�T�)�1(�Tv) = (�T�)�1�T(N�C)�1s:

(7)

It can be shown that Equations 6 and 7 are indeed
equivalent for the case of � = 1, because that setting of
� implies that C = 0 (thus (N�C)�1 is diagonal and
commutes). However, for the case of � < 1, solving
the compressed empirical model does not in general
produce the optimal least-squares �t to the solution of
the uncompressed model.
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Figure 3: The six di�erent stepsize schedules used in
the experiments with TD(�). The schedules are deter-
mined by Equation 8 with various settings for a0 and
n0.

4 EXPERIMENTAL COMPARISON

OF TD(�) AND LSTD(�)

This section reports experimental results comparing
TD(�) and LSTD(�) on the simple Markov chain
illustrated in Figure 4. The chain consists of 13
states, and we seek to represent its value function
compactly as a linear function of four state features
as shown. This domain's optimal V � function is ex-
actly linear in these features: the optimal coe�cients
��� are (�24;�16;�8; 0). This condition guarantees
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Figure 4: A 13-state Markov chain. Each state is represented by four features as shown. In states 2{12, each
outgoing arc is taken with probability 0:5.

that LSTD(�) will converge with probability 1 to the
optimal ��� for any setting of �.

TD(�) is also guaranteed to converge to the optimal
V �, under the additional condition that an appropri-
ate schedule of stepsizes is chosen. The following three
criteria on the schedule (�n) are su�cient: �n � 0 8n;P
1

n=1 �n = 1; and
P
1

n=1 �
2
n < 1. Our experiments

use schedules that satisfy these criteria, having the fol-
lowing form:

�n
def
= a0

n0 + 1

n0 + n
n = 1; 2; : : : (8)

The parameter a0 determines the initial stepsize,
and n0 determines how gradually the stepsize de-
creases over time. Each TD(�) experiment was run
with six di�erent stepsize schedules, corresponding to
the six combinations of a0 2 f0:1; 0:01g and n0 2
f102; 103; 106g. These six schedules are plotted in Fig-
ure 3, from which it can be seen that they fall into a
typical range of learning rates used in applications of
gradient descent.

Comparative results are given in Figures 5 and 6. Fig-
ure 5 focuses on the case of � = 0:4, comparing the
learning curve for LSTD(�) against those of all six
schedules of TD(�). Each point plotted represents the
average of 10 trials. The plot shows clearly that for
� = 0:4, LSTD(�) learns a good approximation to V �

in fewer trials than any of the TD(�) experiments, and
performs better asymptotically as well.

Figure 6 graphically summarizes six learning-curve
plots similar to Figure 5, corresponding to varying �

over the range f0; 0:2; 0:4; 0:6; 0:8; 1:0g. The results
may be summarized as follows:

� Across all values of �, LSTD(�) learns a good ap-
proximation to V � in fewer trials than any of the
TD(�) experiments, and performs better asymp-
totically as well.

� The performance of TD(�) depends critically on

the stepsize schedule chosen. LSTD(�) has no
tunable parameters other than � itself.

� Varying � has a relatively small e�ect on
LSTD(�)'s performance.

5 CONCLUSIONS AND FUTURE

WORK

We have argued, both from the experimental results
above and from the deep connection to model-based
reinforcement learning presented in Section 3, that
the least-squares formulation of TD learning makes
better use of simulation data than TD(�). Further
experiments are needed to determine when to pre-
fer one algorithm over the other as a practical mat-
ter. If a domain has many features and simula-
tion data is available cheaply, then incremental meth-
ods such as TD(�) may have better real-time per-
formance than least-squares methods (Sutton, 1992).
On the other hand, some reinforcement learning ap-
plications have been successful with very small num-
bers of features (e.g., (Singh and Bertsekas, 1997;
Boyan and Moore, 1998)), and in these situations
LSTD(�) should be superior.

LSTD(�) has been successfully applied in the con-
text of STAGE, a reinforcement learning algorithm for
combinatorial optimization (Boyan, 1998). An excit-
ing possibility for future work is to apply LSTD(�)
in the context of approximation algorithms for gen-
eral Markov decision problems. LSTD(�) provides an
alternative to TD(�) for the inner loop of optimistic
policy iteration (Bertsekas and Tsitsiklis, 1996), and
should thereby enable good control policies to be dis-
covered with fewer trial simulations.
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