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Abstract

TD(A) is a popular family of algorithms
for approximate policy evaluation in large
MDPs. TD(A) works by incrementally up-
dating the value function after each observed
transition. It has two major drawbacks: it
makes inefficient use of data, and it requires
the user to manually tune a stepsize schedule
for good performance. For the case of lin-
ear value function approximations and A =
0, the Least-Squares TD (LSTD) algorithm
of Bradtke and Barto (Bradtke and Barto,
1996) eliminates all stepsize parameters and
improves data efficiency.

This paper extends Bradtke and Barto’s work
in three significant ways. First, it presents
a simpler derivation of the LSTD algorithm.
Second, it generalizes from A = 0 to arbitrary
values of \; at the extreme of A = 1, the re-
sulting algorithm is shown to be a practical
formulation of supervised linear regression.
Third, it presents a novel, intuitive interpre-
tation of LSTD as a model-based reinforce-
ment learning technique.

1 BACKGROUND

This paper addresses the problem of approximating
the value function V™ of a fixed policy 7 in a large
Markov decision process (Bertsekas and Tsitsiklis,
1996; Sutton and Barto, 1998). This is an impor-
tant subproblem of several algorithms for sequential
decision making, including optimistic policy iteration
(Bertsekas and Tsitsiklis, 1996) and STAGE (Boyan
and Moore, 1998). V™ (z) simply predicts the expected
long-term sum of future rewards obtained when the

process starts in state & and follows policy 7 until ter-
mination. This function is well-defined as long as 7 is
proper, i.e., guaranteed to terminate.

For small Markov chains whose transition probabilities
are all explicitly known, computing V'™ is a trivial mat-
ter of solving a system of linear equations. However, in
many practical applications, the transition probabili-
ties of the chain are available only implicitly—either
in the form of a simulation model or in the form of
an agent’s actual experience executing 7 in its envi-
ronment. In either case, we must compute V™ or an
approximation thereof (denoted V’T) solely from a col-
lection of trajectories sampled from the chain. This is
where the TD()) family of algorithms applies.

TD()\) was introduced in (Sutton, 1988); excellent
summaries may now be found in several books (Bert-
sekas and Tsitsiklis, 1996; Sutton and Barto, 1998).
For each state on each observed trajectory, TD()) in-
crementally adjusts the coefficients of V™ toward new
target values. The target values depend on the pa-
rameter A € [0,1]. At A = 1, the target at each
visited state x; is the “Monte-Carlo return,” i.e., the
actual observed sum of future rewards R; + Ry41 +
-+ 4 Rpgnp. This is an unbiased sample of V7 (x;), but
may have significant variance since it depends on a
long stochastic sequence of rewards. At the other ex-
treme, A = 0, the target value is set by a sampled one-
step lookahead: R; + V™ (x441). This value has lower
variance—the only random component is a single state
transition—but is biased by the potential inaccuracy of
the lookahead estimate of V™. The parameter A trades
off between bias and variance. Empirically, interme-
diate values of A seem to perform best (Sutton, 1988;

'For improper policies, V™ may be made well-defined
by the use of a discount factor that exponentially reduces
future rewards; however, for simplicity we will assume here
that V™ is undiscounted.



Sutton and Barto, 1998).

TD(A) has been shown to converge to a good ap-
proximation of V7™ when [linear architectures are
used, assuming a suitable decreasing schedule of
stepsizes for the incremental weight updates (Tsit-
siklis and Roy, 1996). Linear architectures—which
include lookup tables, state aggregation methods,
CMACs, radial basis function networks with fixed
bases, and multi-dimensional polynomial regression—
approximate V™ (x) by first mapping the state = to a
feature vector ¢(z) € R¥, and then computing a lin-
ear combination of those features, ¢(z)"3. Figure 1
gives a convenient form of TD()\) that exploits this
representation.

On each transition, the algorithm computes the scalar
one-step TD error R; + (¢(z4+1) — ¢(x¢)) T3, and ap-
portions that error among all state features according
to their respective eligibilities z;. The eligibility vec-
tor may be seen as an algebraic trick by which TD(\)
propagates rewards backward over the current trajec-
tory without having to remember the trajectory explic-
itly. Each feature’s eligibility at time ¢ depends on the
trajectory’s history and on \: z; = Zﬁzto M=l (x;),
where to is the time at which the current trajec-
tory started. In the case of TD(0), only the cur-
rent state’s features are eligible to be updated, so
z; = ¢(x¢); whereas in TD(1), the features of all states
seen so far on the current trajectory are eligible, so
t

Zt = )iy, P(Ti).

To what weights does TD()\) converge? Examining
the update rule for § in Figure 1, it is not difficult to
see that the coefficient changes made by TD(\) after

an observed trajectory (zo,21,...,2r, END) have the
form B8 := B + a,(d + CB + w), where

L L

d:E{ZziRi}; CZE{ZZi((ﬁ(xiH)—Qﬁ(xi))T}%
=0 i=0

(1)

and w = zero-mean noise. The expectations are taken
with respect to the distribution of trajectories through
the Markov chain. It is shown in (Bertsekas and
Tsitsiklis, 1996) that C is negative definite and that
the noise w has sufficiently small variance, which to-
gether with the stepsize conditions mentioned above,
imply that B converges to a fixed point 3 satisfying
d + CBy = 0. In effect, TD(A) solves this system of
equations by performing stochastic gradient descent
on a potential function ||3 — B,||?. It never explicitly
represents d or C. The changes to 3 depend only on
the most recent trajectory, and after those changes are

made, the trajectory and its rewards are simply forgot-
ten. This approach, while requiring little computation
per iteration, wastes data and may require sampling
many trajectories to reach convergence.

One technique for using data more efficiently is “ex-
perience replay” (Lin, 1993): explicitly remember all
trajectories ever seen, and whenever asked to produce
an updated set of coefficients, perform repeated passes
of TD()) over all the saved trajectories until conver-
gence. This technique is similar to the batch train-
ing methods commonly used to train neural networks.
However, in the case of linear function approximators,
there is another way.

2 THE LEAST-SQUARES TD())
ALGORITHM

The Least-Squares TD(A) algorithm, or LSTD()),
converges to the same coefficients 3, that TD(\)
does. However, instead of performing gradient descent,
LSTD(\) builds explicit estimates of the C matrix and
d vector (actually, estimates of a constant multiple of
C and d), and then solves d + C3, = 0 directly. The
actual data structures that LSTD(A) builds from ex-
perience are the matrix A (of dimension K x K, where
K is the number of features) and the vector b (of di-
mension K):
¢ t
b=S"zR A=Y z(p(x) - dzir) (2)
=0 =0

After n independent trajectories have been observed,
b is an unbiased estimate of nd, and A is an unbi-
ased estimate of —nC. Thus, 3\ can be estimated
as A~ 'b. As is standard in least-squares algorithms,
Singular Value Decomposition is used to invert A ro-
bustly (Press et al., 1992). The complete LSTD())
algorithm is specified in Figure 2.

When A = 0, LSTD(0) reduces precisely to Bradtke
and Barto’s LSTD algorithm, which they derived us-
ing a more complex approach based on regression with
instrumental variables (Bradtke and Barto, 1996). At
the other extreme, when A = 1, LSTD(1) produces the
same A and b that would be produced by supervised
linear regression on training pairs of {state features —
observed Monte-Carlo returns} (see (Boyan, 1998) for
proof). Thanks to the algebraic trick of the eligibility
vectors, LSTD(1) builds the regression matrices fully
incrementally—without having to store the trajectory
while waiting to observe the eventual outcome. When
trajectories through the chain are long, this provides
significant memory savings over linear regression.



TD(A) for approximate policy evaluation:

Given: e a simulation model for a proper policy 7 in MDP X;

e a featurizer ¢ : X — RE mapping states to feature vectors, ¢(END) Lo,

e a parameter A € [0,1]; and
e a sequence of stepsizes ay,qs,... for incremental coefficient updating.
Output: a coefficient vector 3 for which V7™ (z) =~ 3 - ¢(z).
Set 3 := 0 (or an arbitrary initial estimate), t := 0.
for n:=1,2,... do: {
Set 4 := 0.
Choose a start state x; € X.
Set z; := ().
while z; # END, do: {
Simulate one step of the process, producing a reward R; and next state x¢y;.

Set 8 := 8 + 24 (R + (d(x141) — ¢(24)) " B). /* inner product */
Set Ziy1 1= AZt + ¢($t+1).
Set t :=t+ 1.

}
Set B := 3+ a,0.

}

Figure 1: Ordinary TD()) for linearly approximating the undiscounted value function of a fixed proper policy.

LSTD(\) for approximate policy evaluation:
Given: a simulation model, featurizer, and A as in ordinary TD(\).
(No stepsize schedules or initial estimates of 3 are necessary.)
Output: a coefficient vector 3 for which V™ (z) ~ 3 - ¢(z).
Set A:=0,b:=0, t:=0.
for n:=1,2,... do: {
Choose a start state x; € X.
Set z; := ().
while z; # END, do: {
Simulate one step of the chain, producing a reward R; and next state z;y1.
Set A := A + z(d(x1) — P(w141))T. /* outer product */
Set b:=b + Zth.
Set Ziy1 1= AZt + ¢($t+1).
Set t :=t+ 1.
}

Whenever updated coefficients are desired: Set 3 := A~'b.  /* use Singular Value Decomposition */

}

Figure 2: A least-squares version of TD(A) (compare Figure 1). Note that A has dimension K x K, and b, 3,
z, and ¢(z) all have dimension K x 1.




The computation per timestep required to update A
and b is the same as least-squares linear regression:
O(K?), where K is the number of features. LSTD())
must also perform a matrix inversion at a cost of
O(K?) whenever 3’s coefficients are needed—typically,
once per complete trajectory. (If updated coefficients
are required more frequently, then the O(K3) cost
can be avoided by recursive least-squares (Bradtke and
Barto, 1996) or Kalman-filtering techniques (Bertsekas
and Tsitsiklis, 1996, §3.2.2), which update 3 on each
timestep at a cost of only O(K?).) LSTD()) performs
more computation per observation than incremental
TD(\), which updates the coefficients using only O(K)
computation per timestep. However, LSTD(\) offers
several significant advantages:

e Least-squares algorithms “extract more informa-
tion from each additional observation” (Bradtke
and Barto, 1996) and would thus be expected to
converge with fewer training samples.

e TD())’s convergence can be slowed dramatically
by a poor choice of the stepsize parameters a,,.
LSTD(\) eliminates these parameters.

e TD(\)’s performance is sensitive to the initial es-
timate for Bx. LSTD(A) does not rely on an ar-
bitrary initial estimate.

e TD()) is also sensitive to the ranges of the indi-
vidual features. LSTD(A) is not.

Section 4 below presents experimental results com-
paring the data efficiency of gradient-based and least-
squares-based TD learning.

3 LSTD()\) AS MODEL-BASED
LEARNING

Surprisingly, the move from a gradient-based to a
least-squares-based update rule for TD()) turns out
to be mathematically equivalent to a move from a
model-free to a model-based reinforcement learning al-
gorithm. This equivalence provides interesting new in-
tuitions about the space of temporal difference learn-
ing algorithms, and as such forms an important part
of this work’s contribution.

To begin, let us restrict our attention to the case of
a small discrete state space X, over which V™ can be
represented and learned exactly by a lookup table. A
classical model-based algorithm for learning V™ from
simulated trajectory data would proceed as follows:

1. From the state transitions and rewards observed
so far, build in memory an empirical model of
the Markov chain. The sufficient statistics of this
model are

e a vector n recording the number of times each
state has been visited;

e a matrix C recording the observed state-
transition counts: C;; = how many times x;
was seen to directly follow z;; and

e a vector s recording, for each state, the sum
of all one-step rewards observed on transi-
tions leaving that state.

2. Whenever a new estimate of the value function
V7™ is desired, solve the linear system of Bellman
equations corresponding to the current empirical
model. Writing N = diag(n), the solution vector
of V™ values is given by

v=(N-C)'s. (3)

This model-based technique contrasts with TD(\), a
model-free approach to the same problem. TD())
does not maintain any statistics on observed transi-
tions and rewards; it simply updates the components
of v directly. In the limit, assuming a lookup-table
representation, both converge to the optimal V™. The
advantage of TD()) is its low computational burden
per step; the advantage of the classical model-based
method is that it makes the most of the available
training data. The empirical advantages of model-
based and model-free reinforcement learning meth-
ods have been investigated in, e.g., (Sutton, 1990;
Moore and Atkeson, 1993; Atkeson and Santamaria,
1997).

Where does LSTD(\) fit in? In fact, for the case of
A =0, it precisely duplicates the classical model-based
method sketched above. The assumed lookup-table
representation for V™ means that we have one inde-
pendent feature per state: the feature vector ¢ cor-
responding to state 1 is (1,0,0,...,0); corresponding
to state 2 is (0,1,0,...,0); etc. Referring to the algo-
rithm of Figure 2, we see that LSTD(0) performs the
following operations upon each observed transition:

A=A+ o) (@(a) — Plas1))T
(4)

Clearly, the role of b is to sum all the rewards ob-
served at each state, exactly as the vector s does in
the classical technique. A, meanwhile, accumulates
the statistics (N — C). To see this, note that the outer

b= b+ ¢(z) R



product in Eq. 4 is a matrix consisting of an entry of
+1 on the single diagonal element corresponding to
state x4; an entry of —1 on the element in row zy,
column z:41; and all the rest zeroes. Summing one
such sparse matrix for each observed transition gives
A =N — C. Finally, LSTD(0) performs the inversion
B:=A"'b = (N-C)!s, giving the same solution
as in Equation 3.

Thus, when A = 0, the A and b matrices built by
LSTD(\) effectively record a model of all the observed
transitions. What about when A > 07 Again, A and b
record the sufficient statistics of an empirical Markov
model—but in this case, the model being captured is
one whose single-step transition probabilities directly
encode the multi-step TD(A) backup operations. That
is, the model links each state x to all the downstream
states that follow x on any trajectory, and records how
much influence each has on estimating V™ () accord-
ing to TD(X). In the case of A = 0, the TD(A) back-
ups correspond to the one-step transitions, resulting
in the equivalence described above. The opposite ex-
treme, the case of A\ = 1, is also interesting: the em-
pirical Markov model corresponding to TD(1)’s back-
ups is the chain in which each state x leads directly
to absorption, and 3 then simply computes the aver-
age Monte-Carlo return at each state. In short, if we
assume a lookup-table representation for the function
V7™, we can view the LSTD()) algorithm as performing
these two steps:

1. It implicitly uses the observed simulation data to
build a Markov chain. This chain compactly mod-
els all the backups that TD(\) would perform on
the data.

2. It solves the chain by performing a matrix inver-
sion.

The lookup-table representation for V™ is intractable
in practical problems; in practice, LSTD()) oper-
ates on states only via their (linearly dependent) fea-
ture representations ¢(z). In this case, we can view
LSTD(A) as implicitly building a compressed version
of the empirical model’s transition matrix N — C and
summed-reward vector s:

b=®"s A=3"(N-C)® (5)

where @ is the |X| x K matrix representation of the
function ¢ : X — R . From the compressed empirical
model, LSTD(A) computes the following coefficients
for V™

Br=A"b>=(®"(N-C)®) '(®'s). (6)

Ideally, these coefficients 3) would be equivalent to
the empirical optimal coeflicients B3. The empirical
optimal coefficients are those that would be found by
building the full uncompressed empirical model (repre-
sented by N — C and s), using a lookup table to solve
for that model’s value function (v = (N — C)~!s),
and then performing a least-squares linear fit from the

state features ® to the lookup-table value function:

L (PTE) (T) = (@T®) BTN - C) s
(7)

It can be shown that Equations 6 and 7 are indeed
equivalent for the case of A = 1, because that setting of
A implies that C = 0 (thus (N — C)~! is diagonal and
commutes). However, for the case of A < 1, solving
the compressed empirical model does not in general
produce the optimal least-squares fit to the solution of
the uncompressed model.
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Figure 3: The six different stepsize schedules used in
the experiments with TD()). The schedules are deter-
mined by Equation 8 with various settings for ay and
no-

4 EXPERIMENTAL COMPARISON
OF TD(A) AND LSTD(A)

This section reports experimental results comparing
TD(A) and LSTD(A) on the simple Markov chain
illustrated in Figure 4. The chain consists of 13
states, and we seek to represent its value function
compactly as a linear function of four state features
as shown. This domain’s optimal V™ function is ex-
actly linear in these features: the optimal coefficients
B3 are (—24,-16,—8,0). This condition guarantees

10000



I I
[1,0,0,0] [1/2, 112, 0, 0]
1314, 1/4, 0, 0]

I |
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[0, 0, 3/4, 1/4] [0, 0, 1/4, 3/4]

Figure 4: A 13-state Markov chain. Each state is represented by four features as shown. In states 2-12, each

outgoing arc is taken with probability 0.5.

that LSTD(\) will converge with probability 1 to the
optimal B} for any setting of A.

TD(A) is also guaranteed to converge to the optimal
V7, under the additional condition that an appropri-
ate schedule of stepsizes is chosen. The following three
criteria on the schedule (a,) are sufficient: ay,, > 0 Vn;
S jan =005 and Y o0 a2 < co. Our experiments
use schedules that satisfy these criteria, having the fol-
lowing form:

o, def no + 1
= ap
" ng +n

n=12,... (8)

The parameter ag determines the initial stepsize,
and ng determines how gradually the stepsize de-
creases over time. Each TD()\) experiment was run
with six different stepsize schedules, corresponding to
the six combinations of ap € {0.1,0.01} and noy €
{10%,10,10%}. These six schedules are plotted in Fig-
ure 3, from which it can be seen that they fall into a
typical range of learning rates used in applications of
gradient descent.

Comparative results are given in Figures 5 and 6. Fig-
ure 5 focuses on the case of A = 0.4, comparing the
learning curve for LSTD(\) against those of all six
schedules of TD()). Each point plotted represents the
average of 10 trials. The plot shows clearly that for
A = 0.4, LSTD(\) learns a good approximation to V'™
in fewer trials than any of the TD()) experiments, and
performs better asymptotically as well.

Figure 6 graphically summarizes six learning-curve
plots similar to Figure 5, corresponding to varying A
over the range {0,0.2,0.4,0.6,0.8,1.0}. The results
may be summarized as follows:

e Across all values of A, LSTD(\) learns a good ap-
proximation to V7™ in fewer trials than any of the
TD(\) experiments, and performs better asymp-
totically as well.

e The performance of TD()\) depends critically on

the stepsize schedule chosen. LSTD(A) has no
tunable parameters other than \ itself.

e Varying A has a relatively small effect on
LSTD(\)’s performance.

5 CONCLUSIONS AND FUTURE
WORK

We have argued, both from the experimental results
above and from the deep connection to model-based
reinforcement learning presented in Section 3, that
the least-squares formulation of TD learning makes
better use of simulation data than TD(X). Further
experiments are needed to determine when to pre-
fer one algorithm over the other as a practical mat-
ter. If a domain has many features and simula-
tion data is available cheaply, then incremental meth-
ods such as TD(A) may have better real-time per-
formance than least-squares methods (Sutton, 1992).
On the other hand, some reinforcement learning ap-
plications have been successful with very small num-
bers of features (e.g., (Singh and Bertsekas, 1997;
Boyan and Moore, 1998)), and in these situations
LSTD(\) should be superior.

LSTD(A) has been successfully applied in the con-
text of STAGE, a reinforcement learning algorithm for
combinatorial optimization (Boyan, 1998). An excit-
ing possibility for future work is to apply LSTD())
in the context of approximation algorithms for gen-
eral Markov decision problems. LSTD(\) provides an
alternative to TD(\) for the inner loop of optimistic
policy iteration (Bertsekas and Tsitsiklis, 1996), and
should thereby enable good control policies to be dis-
covered with fewer trial simulations.
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