
Estimating Variance of Returns using Temporal Difference Methods

by

Brendan Bennett

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Brendan Bennett, 2020



ABSTRACT

Temporal difference (TD) methods provide a powerful means of learning to make

predictions in an online, model-free, and highly scalable manner. In the reinforce-

ment learning (RL) framework, we formalize these prediction targets in terms of a

(possibly discounted) sum of rewards, called the return. Historically, RL methods

have mainly focused on learning to estimate the expected return, or the value, but

there has been some indication that using TD methods to make more general pre-

dictions would be desirable. In this thesis, we describe an approach to making such

predictions, with emphasis on estimating the variance of the return.

Equipped with an estimate of the variance, a learning agent can gauge not just the

mean outcome in a given situation, but also the degree to which an individual return

will tend to deviate from the average. Such knowledge could be applied towards

expressing more sophisticated predictions, decision making under uncertainty, or

hyperparameter optimization, among other things.

Previous work has shown that it is possible to construct an approximate Bellman

equation for higher moments of the return using estimates of the preceding moments,

which can then be used in a TD-style algorithm to learn those moments. This

approach builds on the raw moments of the return, which tend to make for poor

approximation targets due to the outsize effect that noise and other sources of error

have on them. In contrast, the central moments generally make for more robust

approximation targets. Learning to estimate the return’s second central moment,

i.e. the variance, would be useful on its own and as a prelude to future algorithms.

However, defining a suitable prediction target for the return’s variance is not

straightforward. The expected return is easily expressed as a Bellman equation;

variance, as a nonlinear function of the return, is hard to formulate in similar terms.

Establishing convergence for nonlinear algorithms is more difficult as well.
ii



Our main contributions concern an algorithm that attempts to navigate these

issues: Direct Variance Temporal Difference Learning (DVTD). It consists of two

components: the first learns the value function, while the second learns to predict the

discounted sum of squared TD errors emitted by the value learner. This 𝛿2-return is

equivalent to the variance of the original return when the value function is unbiased.

We provide an analysis demonstrating this equivalence, which also illuminates the

relationship between the 𝛿2-return and alternative various moment-based targets.

For the more typical case where the true value function is unavailable, we provide

an interpretation for what DVTD is estimating, and show that it converges to a

unique fixed-point under linear function approximation. We also describe how ad-

justing hyperparameters can yield new approximation targets, allowing us to estim-

ate the variance of the λ-return. Finally, we report on some experiments indicating

DVTD’s superior performance relative to alternative methods, which also serve to

validate our claims regarding DVTD’s stability and practical usability.

iii



Gesse at this woorke as happe doth leade.
By chance to truthe you may procede.
And firste woorke by the question,
Although no truthe therein be don.

Suche falsehode is so good a grounde,
That truth by it will soone be founde.

— Robert Recorde, c. 1542

iv



ACKNOWLEDGEMENTS

I wish to express my sincere gratitude to everyone who has supported me during

the long and occasionally trying process of finishing this thesis. I’m happy to say

it’s finally done!

The paramount influence on my academic endeavours has been my supervisor

Rich Sutton. Years ago, I enrolled in his course thinking that it would be somewhat

interesting; instead I found it to be life-changing. His mentorship has informed

my views on artificial intelligence, but also on what constitutes good research: a

resolution to solve the hard problems, dedication to getting the details right, and

the eschewing of gratuitous Latin or footnotes1.

Others from my time at the University of Alberta deserve thanks as well. When I

was just starting out, Rupam Mahmood, Joseph Modayil, Harm van Seijen, Janey

Yu, and Patrick Pilarski were wonderful mentors, generous with their time and

expertise, and could be counted on to provide at least one insight with every con-

versation. Janey, Touqir Sajed, and Pooria Joulani were particularly helpful when I

was learning about modelling stochastic approximation with differential equations.

I am grateful to the friends and colleagues I got to know during my time with the

RLAI group.

Craig Sherstan, Dylan Ashley, Kenny Young, Adam White, and Martha White

were part of the merry bunch responsible for the initial theory and experiments for

DVTD. In addition to being exemplary co-authors, they are great friends as well.

Working through ideas with Craig made a lot of things snap into place, and his ded-

ication to extending the frontiers of AI is a continuing source of inspiration. Arguing

with Dylan has been one of my favourite sources of recreation and is not infrequently
1I hope that two out of three is acceptable, sub specie aeternitatis.

v



educational; Kenny is similarly up for wide-ranging discussion, particularly when we

got lost wandering through an unfamiliar city. Adam was very helpful in refining

what experiments I should focus on and identifying which questions would yield the

most interesting answers. Martha provided advice at a number of junctures, and

much of my knowledge of the finer points of RL-related math comes from reading

her papers.

Wesley Chung, Muhammad Zaheer, and Vincent Liu provided valuable help clari-

fying some ideas about more general forms of the return and estimating functions of

the return in particular. The discussions (and animated GIFs) shared with Roshan

Shariff, Alex Kearney and Kris de Asis were also mind-expanding, although they

are only present in this work indirectly.

I would also like to thank my defence committee: Rich, Csaba Szepesvári, and

Dale Schuurmans. Despite the lockdown, they were clearly not phoning it in. Even

after all the work I’ve put in, I felt I achieved greater understanding as a result of

their questions and comments, and now have numerous further ideas I intend to

explore.

Naturally, I would also like to thank my family for their support; I’m honoured and

touched by their belief in me. My friends were similarly crucial– their willingness to

be used as a sounding board while I tried to get at the heart of the matter suggests

they either have saintlike patience or a perverse affinity for listening to fumbling

explanations.
Without the aforementioned, I doubt I would have made it to the end of this

process.

vi



CONTENTS

Abstract ii

Preface iv

Table of Contents vi

List of Tables ix

List of Figures x

1 Introduction 1

2 Background 5
2.1 Reinforcement Learning . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Formalizing RL using MDPs . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Learning the Value Function . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Function Approximation . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4.1 Objectives Under Function Approximation . . . . . . . . . . 12
2.5 Temporal Difference Learning . . . . . . . . . . . . . . . . . . . . . . 13

2.5.1 TD(0) with Linear Function Approximation . . . . . . . . . . 14
2.5.2 TD(λ) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.6 Differential Equations and Stochastic Approximation . . . . . . . . . 16
2.6.1 The Limiting ODE of TD(0) . . . . . . . . . . . . . . . . . . 18
2.6.2 Two Timescale Convergence . . . . . . . . . . . . . . . . . . . 21

3 Functions of the Return 25
3.1 The Reward Hypothesis in Practice . . . . . . . . . . . . . . . . . . . 25
3.2 Why Not Just Directly Estimate? . . . . . . . . . . . . . . . . . . . . 30
3.3 Estimating Functions of the Return . . . . . . . . . . . . . . . . . . . 32

3.3.1 Moment Estimation . . . . . . . . . . . . . . . . . . . . . . . 32
3.3.2 The Return’s Second Moment as a Bellman Equation . . . . 34
3.3.3 Learning the Second Moment of the Return . . . . . . . . . . 35
3.3.4 Learning Higher Moments of the Return . . . . . . . . . . . . 38
3.3.5 Taylor Series of a Random Variable . . . . . . . . . . . . . . 40
3.3.6 Parametric Approximation . . . . . . . . . . . . . . . . . . . 41

3.4 Distributional Reinforcement Learning . . . . . . . . . . . . . . . . . 42
3.4.1 Mathematical Framework . . . . . . . . . . . . . . . . . . . . 43
3.4.2 The C51 Algorithm . . . . . . . . . . . . . . . . . . . . . . . 46

4 The 𝛿2-return and Variance 48
4.1 Variance and the 𝛿2-return . . . . . . . . . . . . . . . . . . . . . . . . 48

vii



4.2 Cumulants and Approximation Targets . . . . . . . . . . . . . . . . . 52
4.2.1 Defining Cumulants . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Equivalence of Expressions for the Variance . . . . . . . . . . . . . . 54
4.4 What if the Value Function is Biased? . . . . . . . . . . . . . . . . . 57
4.5 The Direct Variance TD Algorithm . . . . . . . . . . . . . . . . . . . 60
4.6 Convergence Results . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Setup and Assumptions . . . . . . . . . . . . . . . . . . . . . 62
4.6.2 Proof Sketch . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5 Experiments 68
5.1 Modified Tamar Chain . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.1.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.1.2 Tabular Experiments . . . . . . . . . . . . . . . . . . . . . . . 71
5.1.3 Function Approximation . . . . . . . . . . . . . . . . . . . . . 73
5.1.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

5.2 Mountain Car . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
5.2.1 Experiment Setup . . . . . . . . . . . . . . . . . . . . . . . . 83
5.2.2 Evaluation Methods . . . . . . . . . . . . . . . . . . . . . . . 86
5.2.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
5.2.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

6 Conclusions & Future Work 95
6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A DVTD Convergence Details 101

B C51 Under Linear Function Approximation 110

C Algorithm Listing 113

D Glossary 119
D.1 Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Bibliography 126

viii



LiST OF TABLES

A.1 DVTD ODE Summary . . . . . . . . . . . . . . . . . . . . . . . . . . 109

ix



LiST OF FiGURES

2.1 The Reinforcement Learning Model . . . . . . . . . . . . . . . . . . . 6

3.1 Distribution Cutoff Example . . . . . . . . . . . . . . . . . . . . . . 29
3.2 Projected Distributional Bellman Operator . . . . . . . . . . . . . . 47

4.1 DVTD Schematic Representation . . . . . . . . . . . . . . . . . . . . 61

5.1 Modified Tamar Chain MDP . . . . . . . . . . . . . . . . . . . . . . 69
5.2 Tamar Chain Analytical Solutions . . . . . . . . . . . . . . . . . . . 70
5.3 Tabular Tamar Chain RMSVE vs. Time, alternate 𝜆 and 𝜆̄ . . . . . 72
5.4 DVTD and VTD RMSVE Error vs 𝜆 and 𝜆̄ . . . . . . . . . . . . . . 74
5.5 Tamar Chain RMSVE vs Time . . . . . . . . . . . . . . . . . . . . . 76
5.6 Variance Estimate RMSVE Montage, varying bootstrapping . . . . . 78
5.7 Tamar Chain RMSVE vs Time . . . . . . . . . . . . . . . . . . . . . 79
5.8 Tamar Chain RMSVE vs Time . . . . . . . . . . . . . . . . . . . . . 79
5.9 Variance Estimate RMSVE Montage, varying stepsize . . . . . . . . 80
5.10 Mountain Car Potential Energy . . . . . . . . . . . . . . . . . . . . . 82
5.11 Mountain Car Trajectories . . . . . . . . . . . . . . . . . . . . . . . . 85
5.12 Grid Refinement vs. Approximate Value Function . . . . . . . . . . 88
5.13 Grid Refinement vs. Approximate Variance . . . . . . . . . . . . . . 89
5.14 Comparing Value Function Estimates . . . . . . . . . . . . . . . . . . 90
5.15 TD Value Functions for Various λ . . . . . . . . . . . . . . . . . . . . 91
5.16 Comparing Variance Estimates . . . . . . . . . . . . . . . . . . . . . 91
5.17 DVTD Variance Estimates for Various 𝜆 and 𝜆̄ . . . . . . . . . . . . 92
5.18 VTD Variance Estimates for Various 𝜆 and 𝜆̄ . . . . . . . . . . . . . 94

6.1 Normal Approximation for Return Distribution . . . . . . . . . . . . 99
6.2 Skew Normal Approximation for Return Distribution . . . . . . . . . 100

x



CHAPTER 1

INTRODUCTiON

When making decisions or planning for the future, the single most valuable piece

of information is the expected value, that is, what you would expect to happen “on

average”.

It requires a certain amount of experience to gauge what response to a given

scenario yields the best outcome; choosing an action and executing it requires a

certain amount of effort as well. Part of the allure of machine learning (ML) is

that, at least in some circumstances, this process can be automated, and computers

are well-suited to processing vast quantities of data and making decisions quickly.

With a little creativity, machine learning can be applied in a surprising number of

situations.

Of particular interest are decision problems where the effects of taking an action

is only revealed at some point in the future. Many tasks can be modelled in this

fashion. For example, when playing a game, each move contributes to victory or

defeat, but only on the final move is the outcome made apparent. More abstractly,

even composing a sentence fits this model, as each word affects the overall meaning

of the thought being conveyed.

Of particular interest are decision problems that can be recursively decomposed

into sub-problems, where the result of taking a particular action does not depend

on the prior history of the system up to that point. These sorts of tasks which are

well-suited to a certain kind of machine learning, called reinforcement learning (RL).

The RL framework models systems as consisting of a learning agent in some

environment. At each time step, the agent observes the state of its environment,

1



executes an action, which results in the environment transitioning to a new state

and emitting a reward. If the agent’s action selection policy is fixed, our goal might

be to learn to predict the (possibly discounted) sum of rewards it can expect to

receive conditioned on its observations; alternatively, it might be looking to improve

its policy to maximize the rewards it will receive. This sum of rewards is called the

return, and can be expressed mathematically as

𝐺𝑡⏟
return

from time “𝑡”

=
∞

∑
𝑛=1

discount factor, 𝛾 ∈ [0, 1]
⏞𝛾𝑛−1 𝑅𝑡+𝑛⏟
transition reward

.

Reinforcement learning is appealing because it is flexible, lending itself to al-

gorithms that can learn incrementally, continuously, not to mention efficiently. In-

sofar as your task can be expressed in terms of the expected sum of rewards, then a

RL algorithm is probably the method of choice for addressing it. Typically, an RL

task is formulated with reference to the expected return, also called the value.

If you know an action’s expected outcome, the next most important thing to be

aware of is that the average case doesn’t always tell the whole story.

One can think of many tasks that seem to have a natural reward function, only

to find that the “obvious” return does not quite capture the problem’s essence. For

example, in games with binary outcomes, if a given line of play is ultimately expected

to result in a loss, then perhaps a riskier style might be called for, even if it is

expected to lose by a wider margin. Conversely, a traveller in an autonomous car

might prefer a route that takes longer so long as that route poses no risk of traffic

jams which might make them late for an appointment.

This presents a dilemma for RL practitioners, since it can be difficult or even

impossible to express these sorts of considerations in the form of a discounted sum.

Rather than abandoning the myriad benefits of RL, we might instead seek a means

of adapting our methods by making more sophisticated predictions.

The typical solution is usually to modify the task specification in an attempt to

have the rewards better represent what we truly wish to predict or optimize while

obeying the constraints of the framework. This can have adverse effects, in some
2



cases making the task more difficult for an agent to learn, or in other cases changing

the meaning of success to the extent that the agent learns the wrong thing.

An alternative would be instead learn to estimate functions of the return, which

would allow us to keep thinking in terms of easily measured quantities (like return

on investment, the probability of winning a game, or travel-time to a destination),

while enabling us to address more complicated questions of utility as well. In this

paradigm, we could learn from the natural prediction target while reserving the

ability to adjust it to bring it as necessary.

To give another example, successful gamblers must account for the risk associated

with a bet in addition to the expected profit. If the odds are good but the outcome

is uncertain, it might be better not to play if there’s the possibility of ending up in

debt to unsavory characters. We could of course modify how we defined the return in

order to penalize losses appropriately, but this reduces the usefulness of the learned

predictions. In other circumstances, our agent might not be so risk-averse, and so

would have to re-learn its gambling strategy because its past experience is no longer

applicable. If, instead, we had learned to estimate the return’s distribution, we

could instead approximate how worthwhile a particular bet would be under various

different circumstances.

As a test case, this thesis focuses on a method for estimating the return’s variance,

which has historically been ignored in comparison to the expected return. This may

be partially due to the difficulty involved with analyzing algorithms that target it

using existing methods. The variance of a random variable is its the second central

moment, and provides some notion of how individual realizations of that random

variable differ from its mean; it can be interpreted as a measure of uncertainty or

risk.

The algorithm we analyze, called Direct Variance Temporal Difference Learning

(DVTD), is based off the well-studied TD(λ) algorithm, and enjoys many of that

celebrated algorithm’s advantages. DVTD manages this by first learning an estimate

of the expected return, and then uses that estimate to construct a prediction target

which approximates the variance of the return.
3



While we cannot claim this algorithm to be entirely new1, this thesis does contain

some novel contributions:
∘ We provide a detailed analysis and explication of DVTD, showing how it relates
to previous work and comparing it with alternative methods for estimating the
return’s variance.

∘ We extend DVTD to the general value function setting, show that it can be used
to construct prediction targets for the variance of the λ-return, and even the
variance of returns with different bootstrapping hyperparameters.

∘ We show that DVTD converges under standard conditions, indicating that it can
be used in the same situations where TD(λ) would be used.

∘ Using simulated experiments, we compare DVTD with related methods, includ-
ing second moment based and distributional algorithms, showing that DVTD
generally holds the advantage over the alternatives.

∘ We also provide some general background for methods of estimating arbitrary
moments of the return, and describe how they might be used to approximate
arbitrary functions of the return.
In Chapter 2, we provide a (relatively) brief summary of reinforcement learning.

Chapter 3 contains some further background information, with some more comment-

ary on functions of the return and why learning to approximate them is a worth-

while endeavor. The remaining chapters contain the bulk of our contributions. In

Chapter 4, we introduce an approximation target (the 𝛿2-return) and an algorithm

(DVTD) for estimating the variance of the return. We describe experiments we

conducted to test DVTD and compare it with some alternatives in Chapter 5. Fi-

nally, we end with a summary of our contributions and some discussion of potential

future work in Chapter 6. The remaining pages consist of appendices which provide

further details, along some supplemental material such as an algorithm listing and

a glossary.
1As it was developed in collaboration with others at the University of Alberta’s RLAI Lab (Sherstan

et al. 2018).

4



CHAPTER 2

BACKGROUND

In this chapter, we provide an overview of reinforcement learning, particularly the

parts that we will make reference to in later chapters. We outline the basic frame-

work, discuss temporal difference methods for learning the value function, as well as

summarizing how algorithms can be proved convergent using results from the theory

of differential equations.

2.1 Reinforcement Learning

Machine learning is about developing algorithms that, once trained, produce an

appropriate output for a supplied input. This output usually takes the form of a

prediction or action; in traditional supervised learning, the agent’s response can be

compared to a desired result and used as feedback to improve the agent. However,

in many cases, the outcome of a given choice is not immediately apparent.

For example, games such as Chess or Go consist of a sequence of many moves that

determine the future state of the board and, ultimately, the result of the game itself.

Intuitively, it is clear that with enough experience it becomes possible to predict the

effects of different actions over various time horizons, but we require a more precise

formalism if we want to mechanize the process.

Reinforcement learning (RL) is such a framework. An RL problem consists of

a learning agent that interacts with an environment according to some policy. The

agent learns to predict how much of a scalar signal, referred to as the reward or the

cumulant, that it will receive over a period of time by following the policy1. The
1Strictly speaking, not all reinforcement learning algorithms make explicit predictions about the

5



environment consists of everything external to the agent, and is the source of the

agent’s observations about the world as well as the reward.

Environment

Agent

Observation,
Reward

Action

Figure 2.1: The basic reinforcement learning model. The agent observes the environment,
executes an action, causing the environment to emit a reward and provide a new observation.

In a game of chess, the agent would be the player, and the environment would

be the opponent, the board, the legion of cheering spectators, etc. The position of

the pieces correspond to the state, informs the actions taken by the agent; in this

example, the actions consist of the moves available to the agent on its turn. The

reward would be the outcome of the game, say one point for a win, zero points for

a loss, and half a point for a draw, and only emitted after the final move. While

the result of the game is not certain until the end of the game, as moves are made

it becomes possible to predict the outcome with greater accuracy.

Prediction may either be an end in itself or used as a step towards changing the

policy with the goal of maximizing long-term reward. In the control case, the agent

continually adjusts its policy while simultaneously refining its predictions, looking

to maximize the reward it will accumulate. For the prediction setting, the policy is

held constant and the agent concerns itself only with learning to predict the results

of its actions.
value function. For example, policy gradient methods such as REINFORCE(Williams 1992) alter
the policy with the goal of maximizing the expected return without actually computing a value for
the expected return. In many cases, however, incorporating an estimate of the expected return can
improve the performance of these algorithms.

6



2.2 Formalizing RL using MDPs

We make the ideas introduced in the previous section more concrete by casting them

in terms of Markov Decision Process (MDPs).

A Markov Decision Process is a 5-tuple of the form ℳ = (𝒮, 𝒜, 𝑃 , 𝑟, 𝛾), where:
∘ 𝒮 represents the “state space”, and is a set containing all possible configurations
of the environment.

∘ 𝒜, the “action space”, is a set containing all actions available to the agent.
∘ 𝑃 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1] is the transition probability. We write 𝑃(𝑠, 𝑎, 𝑠′) to
denote the probability of transitioning to state 𝑠′ given that action 𝑎 was taken
in state 𝑠.

∘ ℛ ∶ 𝒮 × 𝒜 × 𝒮 → R is the expected reward function, which gives the average
reward associated with a particular transition. In the theory of general value
functions, the reward is also referred to as the cumulant.

∘ 𝛾, which represents discounting, and may be either a constant (𝛾 ∈ [0, 1]) or
more generally a function of the transition2, e.g. 𝛾 ∶ 𝒮 → [0, 1].

For ease of analysis we focus on discrete-time MDPs and assume 𝒮 and 𝒜 are both

finite sets.

At each time 𝑡 = 0, 1, 2, … the environment’s state is 𝑆𝑡, the agent executes

an action 𝐴𝑡 ∈ 𝒜, and the environment responds by emitting a reward 𝑅𝑡+1 and

transitioning to a state 𝑆𝑡+1. The agent selects actions according to some policy

(usually denoted 𝜋) that assigns a probability to selecting an action conditioned on

being in a particular state. This might be denoted 𝐴𝑡 ∼ 𝜋(𝑆𝑡); by convention, we

write 𝜋(𝑎|𝑠) to refer to the probability of selecting action 𝑎 given state 𝑠.

To formalize the notion of long-term cumulative reward, we introduce the return,

which is the discounted sum of future rewards:

𝐺𝑡 ≝
∞

∑
𝑛=0

𝛾𝑛𝑅𝑡+𝑛+1 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + ⋯ , (2.1)

2Non-constant discounting has some technical advantages at the cost of slightly complicating the
notation. For simplicity, we consider state-dependent discounting, meaning that 𝛾𝑡+1 = 𝛾(𝑆𝑡+1),
although transition dependent discounting (with 𝛾𝑡+1 = 𝛾(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1)) behaves similarly). Further
details can be found in Sutton, Modayil et al. (2011), Maei (2011), White (2015) and Mahmood (2017),
among others.

7



or, if 𝛾 is not constant:

𝐺𝑡 ≝
∞

∑
𝑛=0

𝑅𝑡+𝑛+1
𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘 = 𝑅𝑡+1 + 𝛾𝑡+1𝑅𝑡+2 + 𝛾𝑡+1𝛾𝑡+2𝑅𝑡+3 + ⋯ . (2.2)

It is sometimes more convenient to express the return recursively, as 𝐺𝑡 = 𝑅𝑡+1 +
𝛾𝑡+1𝐺𝑡+1.

The value of a state, written 𝑣𝜋(𝑠), is then the expected return, conditional on

starting from state 𝑠 and thereafter selecting actions according to policy 𝜋:

𝑣𝜋(𝑠) ≝ E
𝜋
[𝐺𝑡|𝑆𝑡 = 𝑠] = E [∑

𝑛=0
𝑅𝑡+𝑛+1

𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘∣𝑆𝑡 = 𝑠, 𝐴𝑡+𝑛 ∼ 𝜋(𝑆𝑡+𝑛)]. (2.3)

For notational purposes, we might elect to denote the variables we condition on as

subscripts; for example, the state-value conditioned on 𝜋 becomes 𝑣𝜋(𝑠) = E𝜋,𝑠[𝐺𝑡].

The return captures the idea of the cumulative reward signal over a period of time,

rather than just the immediate reward. Discounting allows us to specify the time

horizon that we’re interested in, reflecting the notion that the future is uncertain,

or that the near future is more important for prediction purposes. The value of a

state is simply the average return that an agent will receive starting from that state

while following a prescribed policy.

We assumed that 𝑃 is a function of the current state and action, so 𝑟(𝑠, 𝑎, 𝑠′) does
not depend on the past history of states and actions; this is the Markov property. In

other words, knowing the current state provides as much information as knowing the

prior states visited, E𝜋[𝐺𝑡|𝑆0, 𝑆1, … , 𝑆𝑡−1, 𝑆𝑡] = E𝜋[𝐺𝑡|𝑆𝑡]. As such, we can rewrite

the value function as:

𝑣𝜋(𝑠) = E
𝜋
[𝐺𝑡|𝑆𝑡 = 𝑠] = E

𝜋
[𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1|𝑆𝑡 = 𝑠]

= ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑃(𝑠, 𝑎, 𝑠′) E
𝜋

[𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′]

= ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑃(𝑠, 𝑎, 𝑠′)(𝑟(𝑠, 𝑎, 𝑠′) + 𝛾(𝑠′)𝑣𝜋(𝑠′)).

(2.4)

This leads to the following Bellman equation:

𝑣𝜋(𝑠) = 𝑟𝜋(𝑠) + ∑
𝑠′

𝑃𝜋(𝑠, 𝑠′)𝛾(𝑠′)𝑣𝜋(𝑠′), (2.5)

8



where we use 𝑟𝜋(𝑠) = E𝜋[𝑅𝑡+1|𝑆𝑡 = 𝑠] and 𝑃𝜋(𝑠, 𝑠′) ≝ 𝑝(𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 ∼
𝜋(𝑆𝑡)) to achieve a more compact form.

We can make the preceding much easier to work with by expressing it in terms of

linear algebra. Let 𝐏𝜋 denote the state-state transition probability matrix such that

[𝐏𝜋]𝑖𝑗 = 𝑃𝜋(𝑖, 𝑗), and let 𝐯𝜋 ∈ R be the vector whose 𝑖-th element is 𝑣𝜋(𝑖), the value
for state 𝑖. Denote by 𝐫𝜋 the expected reward vector, with [𝐫𝜋]𝑖 = E𝜋[𝑅𝑡+1|𝑆𝑡 = 𝑖].
Further let 𝚪 be the diagonal matrix whose (𝑖, 𝑖)-th entry is the discount factor for

state 𝑠𝑖, that is, [𝚪]𝑖𝑖 = 𝛾(𝑖).

Then from (2.5) we have

[𝐯𝜋]𝑖 = [𝐫𝜋]𝑖 + ∑
𝑗

[𝐏𝜋]𝑖𝑗[𝚪]𝑗𝑗[𝐯𝜋]𝑗, (2.6)

which, after simplification, becomes

𝐯𝜋 = 𝐫𝜋 + 𝐏𝜋𝚪𝐯𝜋. (2.7)

This is a linear functional equation, and can be solved via inversion:

𝐯𝜋 = 𝐫𝜋 + 𝐏𝜋𝚪𝐯𝜋 ⇒ (𝐈 − 𝐏𝜋𝚪)𝐯𝜋 = 𝐫𝜋 (2.8)

Assuming 𝐈 − 𝐏𝜋𝚪 is invertible, we get

𝐯𝜋 = (𝐈 − 𝐏𝜋𝚪)−1𝐫𝜋 (2.9)

Expressions like (2.7) are much easier to work with than those involving multiple

nested sums, and allow the solution to be expressed neatly as in (2.9). The only

assumption we needed was that 𝐈 − 𝐏𝜋𝚪 be invertible, and this is the case if 𝐏𝜋 is

an ergodic3 stochastic4 matrix and that the discount factor is such that 𝛾(𝑠) < 1 for

at least one state 𝑠 ∈ 𝒮.

Of course, knowing that a solution exists is not the same as being able to find

it or even approximate it. Fortunately, myriad approaches have been developed for
3That is, aperiodic and irreducible. A transition matrix is irreducible if each state is (eventually)

reachable from every other state. For the matrix to be aperiodic, we must have that for every state
there is no integer 𝑛 > 1 such that visits to that state always occur in multiples of 𝑛 time-steps.

4Here meaning a matrix with nonnegative entries such that the sum of each row is one.

9



solving MDPs. We discuss some of them in the next section.

2.3 Learning the Value Function

If we have access to 𝐏𝜋, 𝚪, and 𝐫𝜋, then determining the value of a policy is just a

matter of matrix inversion. When the transition probabilities or expected rewards

are unknown, we might estimate them by recording the transitions and rewards

associated with each state.

For example, we could run the policy on the environment and build estimates of

̂𝐫 ≈ 𝐫𝜋 and 𝐏̂ ≈ 𝐏𝜋, then solve for 𝐯̂ = (𝐈−𝐏̂)−1 ̂𝐫 . If we do this naively, the memory
and computation requirements can quickly become burdensome for moderately large

MDPs; furthermore, the number of samples required to explore the state-space and

establish a reasonable estimate for the entries of 𝐏̂ and ̂𝐫 might be excessive as well.

A more natural approach would be to record trajectories in the MDP, recursively

compute the returns, and then average them for each state, as in Monte Carlo

Prediction5. These algorithms target the complete return (referred to as the Monte

Carlo return, abbreviated MC return), and therefore learns an unbiased estimate of

𝐯𝜋.

Various Monte Carlo algorithms are described in Sutton and Barto (2018, Chapter

5) (see pg. 92 in particular). They are examples of a tabular method6, because they

essentially build and update a table of state-values. While less onerous than the

matrix inversion approach, tabular methods still require at least enough memory to

store 𝑁 = |𝒮| values; this can still be problematic with a large enough state-space.
5Named with reference to the famous casino in Monte Carlo (Metropolis 1987). In general usage,

Monte Carlo algorithms approximate a random process by actually simulating it; in RL, however,
referring to something as a Monte Carlo method tends to imply that it updates based on the entire
return.

6Although Sutton and Barto (2018) notes that it’s straightforward to extend many of them to
function approximation, at least in the on-policy case.

10



2.4 Function Approximation

As the number of states in our problem grows larger, tabular methods become

proportionately less practical. Beyond the memory needed to store estimates for

each state, the tabular approach can also require a huge number of samples in order

to explore the state space and establish a reliable estimate for the state values. In

such cases, we might parameterize the value function and adapt those parameters

to approximate 𝐯𝜋. Such a value function has the form 𝑓 ∶ 𝒮 × R𝑑 → R, where

𝛉 ∈ R𝑑 is a 𝑑-dimensional parameter vector. For concision we might instead write

𝐯𝛉 instead, i.e.,

𝑓(𝑠; 𝛉) = 𝑣𝛉(𝑠) ≈ 𝑣𝜋(𝑠). (2.10)

Appropriately, this approach is referred to as function approximation.

The machine learning literature overflows with possible approximation schemes,

but linear function approximation (LFA) is perhaps the best explored. In this setting,

we map each state to a feature vector, for example 𝐱 ∶ 𝒮 → R𝑑. The approximate

value for a state is then just the inner product of that 𝐱(𝑠) and 𝛉:

𝑣(𝑠) = 𝛉⊤𝐱(𝑠). (2.11)

Letting |𝒮| = 𝑁 , we can define a matrix 𝐗 ∈ R𝑁×𝑑 where each row encodes the

feature vector for the corresponding state:

𝐗 ≝

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝐱(1)
𝐱(2)

⋮
𝐱(𝑁)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

=

⎡
⎢
⎢
⎢
⎢
⎢
⎣

𝑥1(1) 𝑥2(1) … 𝑥𝑑(1)
𝑥1(2) 𝑥2(2) … 𝑥𝑑(2)

⋮ ⋱ ⋮
𝑥1(𝑁) 𝑥2(𝑁) … 𝑥𝑑(𝑁)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

. (2.12)

This allows us to express the value function in vector form as 𝐯 = 𝐗𝛉.

Linear function approximation in particular has a number of advantages: the ap-

proximations can be simply expressed and usually cheaply computed, and it lends

itself to proving stronger convergence or stability results than are usually possible

11



under more complicated function approximation schemes7. From a practical per-

spective, LFA is generally worth trying first because it is easy to implement and its

failure or success can reveal more about the underlying structure of the problem.

2.4.1 Objectives Under Function Approximation

For problems where function approximation is actually necessary, the approximate

value function will never be exactly equal to the true value function. How, then,

can we determine which weights yield the best approximation? Typically, we do this

by defining an objective or error function, which measures the distance between our

approximation and its target.

For reinforcement learning in particular, the standard objective is theMean Squared

Value Error, denoted VE, defined in Sutton and Barto (2018, pg. 199) as:

VE(𝐯) ≝ ‖𝐯𝜋 − 𝐯‖2
𝜇 = ∑

𝑠∈𝒮
𝜇(𝑠)[𝑣𝜋(𝑠) − 𝑣(𝑠)]2. (2.13)

VE is the Euclidean distance between 𝐯 and 𝐯𝜋 weighted according to some distri-

bution 𝜇 ∶ 𝒮 → R with 𝜇(𝑠) ≥ 0 ∀𝑠 ∈ 𝒮 and ∑𝑠∈𝒮 𝜇(𝑠) = 1.

For on-policy prediction, we usually set 𝜇 to the on-policy distribution, denoted 𝑑𝜋,

which weights states proportional to how often the agent visits them. In continuing

tasks, this is just the stationary distribution8.

One advantage of using VE as our objective is that minimizing it corresponds to

solving a weighted least squares regression problem:

𝛉LS ≝ argmin
𝛉

∥𝐗̂𝛉 − 𝐯𝜋∥2
𝜇

= (𝐗⊤𝐃𝜇𝐗)−1𝐗⊤𝐃𝜇𝐯𝜋, (2.14)

where 𝐃𝜇 ≝ diag(𝜇(1), 𝜇(2), … , 𝜇(𝑁)).

The associated value function, 𝐯LS = 𝐗𝛉LS, is in some sense the closest we can get

to the 𝐯𝜋 under linear function approximation. There are a number of algorithms
7More general function approximation (for example, neural networks) may be able to represent

more complicated functions, but can take longer to train, and may converge to different solutions
depending on the details of the training process, if they converge at all.

8That is, 𝐝𝜋 = 𝐝𝜋𝐏𝜋. If 𝐏𝜋 is ergodic, then 𝐝𝜋 is the unique left eigenvector with modulus one.
For the definition of the on-policy distribution in the episodic case, see Sutton and Barto 2018, pg.
199.

12



whose estimates converge to 𝛉LS; for example, the already mentioned Monte Carlo

Prediction.

In practice, however, methods targeting the Monte Carlo return can still perform

poorly despite being unbiased. The Monte Carlo return, being comprised of a sum

of random variables, can exhibit high variance, requiring a huge number of samples

to get an accurate estimate. Furthermore, Monte Carlo methods require many

transitions to perform an update9, which can limit their efficacy in continuing tasks

or those with long episodes.

2.5 Temporal Difference Learning

The recursive nature of the Bellman equation allows us to avoid having to record the

full sequence of states and rewards when learning the value function. For a transition

of the form (𝑆𝑡, 𝑅𝑡+1, 𝑆𝑡+1), we define the temporal difference error, denoted 𝛿𝑡, as:

𝛿𝑡 ≝ 𝑅𝑡+1 + 𝛾𝑡+1𝑣𝑡(𝑆𝑡+1) − 𝑣𝑡(𝑆𝑡), (2.15)

where 𝑣𝑡 is the value function at time 𝑡.

If our value function is correct, we should have E𝜋[𝛿𝑡] = E𝜋[𝑅𝑡+1 + 𝛾𝑡+1𝑣𝑡(𝑆𝑡+1) −
𝑣𝑡(𝑆𝑡)] = 0 by definition.

Temporal difference (TD) learning (Sutton 1988) applies this observation by using

𝛿𝑡 to define an update rule, yielding a learning agent that can learn incrementally

without needing the full return. TD methods define approximation targets by sub-

stituting their estimate for value function for the full return, bootstrapping10 from

their own initial value function.

The simplest TD method is tabular TD(0), which can be expressed quite suc-
9There exist online and incremental Monte Carlo algorithms, but we note that for an update to have

truly concluded they still require the trajectory to terminate; otherwise they are effectively truncating
the return.

10In the sense of the colloquial expression “to pull yourself up by your own bootstraps”. The agent
starts in state of ignorance, but gradually learns about the environment, using its own initially incorrect
estimates to improve its approximation of the value function, until eventually it attains an accurate
understanding of the world it is embedded within.

13



cinctly:

𝑣𝑡+1(𝑆𝑡) = 𝑣𝑡(𝑆𝑡) + 𝛼𝑡𝛿𝑡,

where 𝛼 is the learning rate or stepsize parameter, and 𝛿𝑡 is the temporal-difference

error. As the agent visits each state, it improves its estimate for that state’s value,

gradually building a table of state-values consistent with the Bellman equation.

Each individual update is defined in reference to a single transition, in contrast

to Monte Carlo methods whose updates can only be said to be complete when the

trajectory has terminated. This can lead to substantial performance gains from the

reduced variance, even though the fixed-point of Tabular TD(0) is still the true

value function 𝑣𝜋.

2.5.1 TD(0) with Linear Function Approximation

Temporal difference learning can be extended to linear function approximation

rather easily. At time 𝑡, let 𝐱𝑡 be the feature vector, and 𝛉𝑡 be the weight vec-

tor. Then the TD(0) update equations are:

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1

𝑣𝑡(𝑆𝑡+1)
⏞𝛉⊤

𝑡 𝐱𝑡+1 −
𝑣𝑡(𝑆𝑡)
⏞𝛉⊤

𝑡 𝐱𝑡

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑡𝛿𝑡𝐱𝑡.
(2.16)

The temporal difference error is unchanged, but instead of updating a single entry in

the table of state-values, we update each entry in the weight vector proportional to

the corresponding entry in the feature vector. We retain the advantages of tabular

TD(0), only needing information from the transition (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1) to perform
an update, with a per time-step computational cost of 𝒪(𝑑), where 𝑑 is the dimen-

sionality of the weight vector.

Under the usual conditions, on-policy linear TD(0) is stable and convergent, with

a unique fixed point, which we denote 𝛉TD(0). We can solve for its fixed-point via11:

𝛉TD(0) = (𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪)𝐗)−1𝐗⊤𝐃𝜋𝐫𝜋. (2.17)

11For details on how these fixed-point equations are derived, see Tsitsiklis and Van Roy (1997),
Sutton, Mahmood and White (2015) and Mahmood (2017).

14



The TD(0) fixed point (2.17) is similar to that of the least-squares solution (2.14),

but under function approximation the two are generally different. The bias intro-

duced by bootstrapping can lead to higher VE, but TD(0)’s lower variance can mean

better performance in practice.

2.5.2 TD(λ)

The TD(λ) algorithm (Sutton 1989) generalizes TD(0) using eligibility traces. The

idea is to keep a trace of the features activated during each time-step, updating the

weights according to the trace rather than just the current features.

Adjusting the bootstrapping hyperparameter 𝜆 allows the agent to vary how much

it relies on its own value estimates versus the reward sequence. When 𝜆 = 0, the
updates are the same as in TD(0) (c.f . (2.16)), while for 𝜆 = 1, the traces are a

discounted record of the feature activations, making TD(1) essentially a form of

online Monte Carlo12. For values of 𝜆 between 0 and 1, we can think of TD(λ) as

interpolating between the TD(0) solution and the MC solution.

The update equations for TD(λ) with accumulating traces are barely more com-

plicated compared to those for TD(0):

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝛉⊤
𝑡 𝐱𝑡+1 − 𝛉⊤

𝑡 𝐱𝑡

𝐳𝑡 = 𝛾𝑡𝜆𝑡𝐳𝑡−1 + 𝐱𝑡

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑡𝛿𝑡𝐳𝑡.

(2.18)

It turns out that updating with eligibility traces actually leads to a new approxim-

ation target13, called the 𝜆-return and defined by:

Definition 2.1 (λ-return)

For some value function 𝑣 ∶ 𝒮 → R, we denote by 𝐺𝜆
𝑡 the λ-return, denoted 𝐺𝜆

𝑡 and
12We can think of TD(1) as a form of every-visit Monte Carlo under exponential averaging determ-

ined by 𝛼.
13See Sutton and Barto (2018, Chapter 12, pg. 287-) for further details.

15



defined as:

𝐺𝜆
𝑡 ≝ 𝑅𝑡+1 + 𝛾𝑡+1(1 − 𝜆𝑡+1)𝑣(𝑆𝑡+1) + 𝛾𝑡+1𝜆𝑡+1𝐺𝜆

𝑡+1

=
∞

∑
𝑛=1

(
𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘𝜆𝑡+𝑘)(𝑅𝑡+𝑛 + 𝛾𝑡+𝑛(1 − 𝜆𝑡+𝑛)𝑣(𝑆𝑡+𝑛)),
(2.19)

where we use the convention that ∏𝑗
𝑖 𝑎𝑖 = 1 for 𝑖 > 𝑗. For constant 𝛾 and 𝜆, it

simplifies to

𝐺𝜆
𝑡 = ∑

𝑛=1
(𝛾𝜆)𝑛−1(𝑅𝑡+𝑛 + 𝛾(1 − 𝜆)𝑣(𝑆𝑡+𝑛). (2.20)

Different values of λ induce a different approximation target, which in turn lead to

a different fixed-point for the weights14:

𝛉TD(λ) = [𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1(𝐈 − 𝐏𝜋𝚪)𝐗]−1𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1𝐫𝜋

= 𝐀−1
𝜆 𝐛𝜆,

(2.21)

where
𝐀𝜆 ≝ 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1(𝐈 − 𝐏𝜋𝚪)𝐗,

𝐛𝜆 ≝ 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪𝚲)−1𝐫𝜋.
(2.22)

Values of λ less than one lead to a biased solution, but the updates tend to have

lower variance. Empirically, some amount of bootstrapping usually speeds learn-

ing. For constant λ with linear function approximation, TD(λ) will eventually con-

verge (Tsitsiklis and Van Roy 1997; Mahmood 2017), but the value that works best

can be highly problem dependent.

2.6 Differential Equations and Stochastic Approxima-

tion

Proving that a learning algorithm behaves reliably, in particular that it is stable

and convergent, can be done in a variety of ways, but one of the most powerful

techniques invokes concepts from the theory of differential equations.

We start by observing that many stochastic approximation schemes have the
14See Sutton, Mahmood and White (2015) for a very readable derivation of this result, as well as

Mahmood’s thesis (Mahmood 2017) for a detailed examination of general value functions, including a
surprising result on the instability of on-policy TD(λ) with state-dependent bootstrapping.

16



general form:

𝐳𝑛+1 = 𝐳𝑛 + 𝛼𝑛𝐘𝑛+1, (2.23)

for some sequence of 𝑑-dimensional random variables {𝐘𝑛}.

Each 𝐘𝑛 might represent e.g. stochastic gradients, but could also stand for some

more exotic means of updating the parameter vector 𝐳. Of particular interest is

when {𝐘𝑛} is such that there is some continuous function 𝐟 ∶ R𝑑 → R𝑑 such that

𝐟 (𝐳𝑛+1) = E[𝐘𝑛+1|𝐘0, 𝐘1, … , 𝐘𝑛, 𝐳0], (2.24)

allowing us to write (2.23) as:

𝐳𝑛+1 = 𝛼𝑛[𝐟 (𝐳𝑛) + 𝐌𝑛+1]. (2.25)

Here:

∘ {𝛼𝑛} denotes a sequence of real-valued stepsizes.

∘ 𝑓 ∶ R𝑑 → R𝑑 denotes a deterministic map

∘ {𝐌𝑛+1} = 𝐘𝑛+1 − 𝐟(𝐳𝑛) is a 𝑑-dimensional noise sequence.

We can interpret (2.25) as a noisy Euler scheme15 for the following differential

equation:

̇𝐳(𝑡) = 𝐟(𝐳(𝑡)). (2.26)

The evolution of (2.26) only corresponds to the iterates of (2.23) when there is no

noise16 and the stepsize approaches zero. At first glance, this might seem excessively

restrictive. However, under the right conditions, the two systems are similar enough

that we can learn about the behavior of the SA algorithm by analyzing the limiting

ODE, which is fortunate because deriving results about continuous systems can be

much easier.

To permit comparison between the SA method and its limiting ODE at arbitrary
15A discretization of a continuous ordinary differential equation. In general, Euler schemes are

numerical methods for solving ODEs, see Press et al. (2007, Chapter 17, pg. 907) or a similar work
on numerical computing for further details.

16That is, 𝐌𝑛+1 = 𝟎 ∀𝑛 ≥ 0

17



points in time, we define the interpolated ODE. Let 𝑡𝑛 be defined as

𝑡𝑛+1 ≝ 𝑡𝑛 + 𝛼𝑛 =
𝑛

∑
𝑘=0

𝛼𝑘, with 𝑡0 ≝ 0, (2.27)

then the interpolated ODE, denoted 𝐳(𝑡), is:

𝐳(𝑡) ≝ 𝐳(𝑡𝑛) + (𝑡 − 𝑡𝑛
𝛼𝑛

)[𝐳(𝑡𝑛+1) − 𝐳(𝑡𝑛)]. (2.28)

Then 𝐳(𝑡) has the value of 𝐳𝑛 for 𝐳(𝑡𝑛), and for 𝑡 ∈ (𝑡𝑛, 𝑡𝑛+1) is the convex combin-

ation of 𝐳𝑛 and 𝐳𝑛+1. If we can establish that 𝐳(𝑡) remains “close” to the limiting

ODE, then proving results about 𝐳(𝑡) provides a means of establishing a similar

claim for the associated SA scheme.

2.6.1 The Limiting ODE of TD(0)

To give a concrete example, we examine TD(0) in the ODE framework. For conveni-

ence, we assume that the rewards depend only on the state-state transition17:

Assumption 2.1 (Transition Rewards)

The rewards for a given transition is independent of the action taken:

𝑟(𝑠, 𝑎, 𝑠′) = 𝑟(𝑠, 𝑠′) ≝ E𝜋[𝑅𝑡+1|𝑆𝑡 = 𝑠, 𝑆𝑡+1 = 𝑠′]. (2.29)

With 𝓐. 2.1 in mind, we define the expected reward matrix and vector as

𝐑 ≝ [[[𝑟(𝑖, 𝑗)]]] ∈ R𝑁×𝑁 for 𝑖, 𝑗 = 1, 2, … , 𝑁,

𝐫 ≝ [[[𝑟(𝑖)]]] ∈ R𝑁 for 𝑖 = 1, 2, … , 𝑁.
(2.30)

Furthermore, we assume that the transitions are sampled independently from an

identical distribution:

Assumption 2.2 (Independent transition samples)

The sequence {(𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛)}∞

𝑛=1 are independent and identically distributed samples

of (𝑠, 𝑟, 𝑠′).
17 𝓐. 2.1 serves to simplify the notation and consequently the proofs, but does not really affect the

conclusions we can draw. Similar results can be proved when the reward is action dependent, but they
are more complicated to express because we must invoke tensor notation to describe them.

18



𝓐. 2.2 is commonly employed in the literature18, although it is somewhat unreal-

istic. As a consequence, 𝐱(𝑠𝑛) = 𝐱𝑛 and other quantities that depend only on the

current transition are also i.i.d.

Then for a transition (𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛), the TD(0) updates have the same form as (2.25):

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝑟𝑛 + 𝛉⊤
𝑛(𝛾′

𝑛𝐱′
𝑛 − 𝐱𝑛)]𝐱𝑛 (2.32)

= 𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1], (2.33)

where 𝐠 ∶ R𝑑 → R𝑑 is the “mean” or “expected” update, and represents the change in

the weights we would observe on average sampling over (𝑠, 𝑟, 𝑠′). It is defined by

𝐠(𝛉) ≝ 𝐛 − 𝐀𝛉 = −𝐀[𝛉 − 𝛉∗] (2.34)

where 𝛉∗ = 𝐀−1𝐛, with the matrix 𝐀 and the vector 𝐛 given by19:

𝐀 = 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪)𝐗 𝐀 ∈ R𝑑×𝑑, (2.35)

𝐛 = 𝐗⊤𝐃𝜋𝐫𝜋 𝐛 ∈ R𝑑. (2.36)

The noise is denoted 𝐌𝑛+1 and is defined as:

𝐌𝑛+1 ≝ 𝛿𝑛(𝛉𝑛)𝐱𝑛 − 𝐠(𝛉𝑛) = [𝑟𝑛 + 𝛉⊤
𝑛(𝛾′

𝑛𝐱′
𝑛 − 𝐱𝑛)]𝐱𝑛 − [𝐛 − 𝐀𝛉𝑛], (2.37)

18 As others have noted (Dalal et al. 2017, footnote 1), this assumption does not hold in practice;
however its use is standard in establishing reinforcement learning results. Other conditions that might
replace it are not necessarily more realistic, e.g. Tsitsiklis and Van Roy (1997) requires exponential
mixing for the Markov chain. For an aperiodic, irreducible Markov chain, the mixing time is indeed ex-
ponential (Levin and Peres 2017, Theorem 4.9) in the sense that the distance between the distribution
after 𝑘 time-steps and the stationary distribution 𝐝𝜋 shrinks as

∥𝐬⊤
0 𝐏𝑘

𝜋 − 𝐝𝜋∥1 ≤ 𝐶𝜉𝑘 (2.31)

for some 𝐶 > 0 and 𝜉 ∈ (0, 1) with arbitrary initial distribution 𝐬0. For 𝜉 close to zero, mixing is
rapid enough as to make the samples effectively i.i.d., but for 𝜉 close to one the samples are highly
correlated.
However, simulations tend to agree with the results derived under the i.i.d. assumption, suggesting

that a more careful analysis might succeed in removing it. Intriguingly, such an analysis might also
provide indications for convergence acceleration methods if it reveals situations under which the i.i.d.
assumption falls apart.
Even if that proves intractable, modifications to the algorithms could unify implementation with

theory. For example, in online learning with deep networks, it is common to use a replay buffer with
randomized sampling. This reduces correlation between individual samples; transformations applied
to the features (Ghiassian et al. 2018) can also help in this regard.

19In essence, 𝐀 = E𝜋[𝐱𝑛(𝛾′
𝑛𝐱′

𝑛 − 𝐱𝑛)⊤] and 𝐛 = E𝜋[𝐱𝑛𝑟𝑛], which can be found by rearranging
(2.32) and taking the expected value.

19



where

𝛿𝑛(𝛉) ≝ 𝑟𝑛 + 𝛉⊤(𝛾′
𝑛𝐱′

𝑛 − 𝐱𝑛) (2.38)

is the TD error with weights 𝛉 and a sample (𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛).

Then the limiting ODE of (2.34) is:

𝛉̇(𝑡) = 𝐠(𝛉(𝑡)) = 𝐛 − 𝐀𝛉(𝑡) = −𝐀(𝛉(𝑡) − 𝛉∗). (2.39)

Equation (2.39) has a closed form solution if 𝐀 is invertible20:

𝛉(𝑡) = 𝑒−𝑡𝐀(𝛉0 + ∫
𝑡

0
𝑒𝜏𝐀𝐛 d𝜏)

= 𝑒−𝑡𝐀𝛉0 + 𝑒−𝑡𝐀𝐀−1(𝑒𝑡𝐀 − 𝐈)𝐛

= 𝐀−1𝐛 + 𝑒−𝑡𝐀(𝛉0 − 𝐀−1𝐛)

= 𝛉0𝑒−𝑡𝐀 + 𝐀−1𝐛(𝐈 − 𝑒−𝑡𝐀),

(2.40)

where 𝛉0 is the initial value, i.e. 𝛉(0) = 𝛉0.

In fact it can be shown that 𝐀 is invertible (c.f . Bertsekas 2012, Chapter 6.3),

and furthermore that it is positive definite21. That is, the eigenvalues of 𝐀 have

positive real part, which implies that lim𝑡→∞ 𝑒−𝐀(𝑡−𝑠) = 0. Therefore:

lim
𝑡→∞

𝛉(𝑡) = lim
𝑡→∞

(𝛉0𝑒−𝑡𝐀 + 𝐀−1𝐛(𝐈 − 𝑒−𝑡𝐀))

= ����:0𝛉0𝑒−𝑡𝐀 + 𝐀−1𝐛 − ������:0
𝑒−𝑡𝐀𝑒−𝑡𝐀

= 𝐀−1𝐛 = 𝛉∗,

(2.41)

as might be expected.

Recognizing 𝐀−1𝐛 = 𝛉∗ as the TD fixed point, (2.40) can be rewritten as:

𝛉(𝑡, 𝑠, 𝛉𝑠) = 𝛉∗ + 𝑒−𝐀(𝑡−𝑠)(𝛉𝑠 − 𝛉∗) (2.42)

where we use 𝛉(𝑡, 𝑠, 𝛉𝑠) to denote the solution of (2.39) at time 𝑡 starting from time

𝑠 with initial value 𝛉𝑠. Written like this, it is obvious that TD(0)’s limiting ODE

(2.42) converges to 𝛉∗ as time goes to infinity.
20See Hirsch, Smale and Devaney (2013, Chapter 6, pg. 132.).
21In the sense that 𝐳⊤𝐀𝐳 > 0 for 𝐳 ∈ R𝑑 and 𝐳 ≠ 𝟎.

20



While it is reassuring that the limiting ODE (2.39) has the same solution as the

SA scheme (2.33), we need to verify that the ODE approach accurately captures

the behavior of the discrete time updates. Under some reasonable assumptions, this

is indeed the case, and eventually the sequence {𝛉𝑛} generated by (2.33) becomes

arbitrarily close to the trajectory of (2.42).

We delay stating the relevant results, however, because we are interested in the

convergence of a broader class of algorithms, which will be described in the following

section.

2.6.2 Two Timescale Convergence

Convergence analyses for algorithms like TD(0) benefit from the fact that the expec-

ted update (and therefore the limiting ODE) have some “nice” form. In Section 2.6.1,

we noted that 𝐀 is invertible, so 𝛉̇ = −𝐀(𝛉 − 𝛉∗) has a closed form solution, and

since 𝐀 is positive definite we could show that asymptotically 𝛉(𝑡) → 𝛉∗.

Sadly, not every algorithm has such a convenient form. In particular, there are

those with more complicated update methods, where some parameters are updated

at different rates or with separate rules for some sub-components.

Fortunately, we can take advantage of existing results on “two-timescale” stochastic

approximation schemes. These results hold for algorithms with update rules of the

form:

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛, 𝛉𝑛) + 𝐍𝑛+1], (2.43)

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝐠(𝐰𝑛, 𝛉𝑛) + 𝐌𝑛+1], (2.44)

where 𝐰 ∈ R𝑑1 , 𝛉 ∈ R𝑑2 , 𝛽𝑛 and 𝛼𝑛 are stepsizes, 𝐡 ∶ R𝑑1 × R𝑑2 → R𝑑1 and

𝐠 ∶ R𝑑1 × R𝑑2 → R𝑑2 are deterministic functions, and 𝐍𝑛+1 ∈ R𝑑1 and 𝐌𝑛+1 ∈ R𝑑1

are noise sequences.

The key to establishing convergence for such schemes is to treat one of the com-

ponents as acting on a “faster” timescale relative to the other22. With sufficiently
22In the parlance of differential equations, this is part of the theory of “singularly perturbed ODEs”.

21



separated timescales, the slow iterates appears almost constant to the fast compon-

ent; from the perspective of the slow component, the fast part seems to be a rapidly

equilibrated transient23.

For the purposes of analysis, we can regard

𝐰̇(𝑡) = 𝐡(𝐰(𝑡), 𝛉) (2.45)

as representing the fast component, with 𝛉 held fixed. If we assume that (2.45) has

an asymptotically stable equilibrium as a function of 𝛉 (say 𝐰∗(𝛉)), then we would

expect the slow ODE to behave like:

𝛉̇(𝑡) = 𝐠(𝐰∗(𝛉(𝑡)), 𝛉(𝑡)). (2.46)

This can be interpreted as saying that, on the slower timescale, the fast part is

effectively a function of the slow component because it reaches equilibrium (provided

one exists) with such alacrity.

There is a substantial amount of previous work on two-timescale systems, but for

our purposes the results from Borkar (2008) will suffice. We begin by stating the

needed assumptions:

Assumption 2.3 (Stepsize Sequence)

The stepsize sequences {𝛼𝑛} and {𝛽𝑛} satisfy
∞

∑
𝑘=0

𝛽𝑘 =
∞

∑
𝑘=0

𝛼𝑘 = ∞,
∞

∑
𝑘=0

𝛽2
𝑘 + 𝛼2

𝑘 < ∞, lim
𝑛→∞

𝛼𝑛
𝛽𝑛

= 0, (2.47)

with 𝛽𝑘, 𝛼𝑘 > 0 for 𝑘 ∈ N.

Which is to say {𝛽𝑘} and {𝛼𝑘} are sequences of positive scalars whose sum has

no finite limit, but the sum of each sequence’s squares is finite.

This assumption is similar to the standard Robbins-Munro conditions, but the

additional restriction on the ratio of the stepsizes leads to timescale separation.
23An analogy might be drawn to algorithms with a nested loop structure, where after each step in

the outer loop, the inner loop is repeated until its updates converge (or at least are smaller than some
tolerance).

22



Hearkening back to (2.27), if we regard time elapsed for the slow component as

𝑇𝛼(𝑛) = ∑𝑛
𝑖=0 𝛼𝑖, and 𝑇𝛽(𝑛) = ∑𝑛

𝑖=0 𝛽𝑖 for the fast component, then 𝓐. 2.3 ensures

that 𝑇𝛼(𝑛)/𝑇𝛽(𝑛) → 0. We can interpret this as saying the slow component runs

for a shorter time than the fast component, given the same number of iterations.

The next assumption ensures that the limiting ODE has a unique solution:

Assumption 2.4 (Lipschitz Mapping)

The maps 𝐡 ∶ R𝑑1 × R𝑑2 → R𝑑1 and 𝐠 ∶ R𝑑1 × R𝑑2 → R𝑑1 are Lipschitz24.

The following conditions ensure that the martingale noise cannot cause divergence:

Assumption 2.5 (Martingale Difference Sequence)

The sequences {𝐍𝑛} and {𝐌𝑛} are a square-integrable martingale difference se-

quences with respect to the family of filtrations

ℱ𝑛 = 𝜎(𝐰0, 𝛉0, 𝐍1, 𝐌1, … , 𝐍𝑛, 𝐌𝑛) = 𝜎(𝐰0, 𝛉0, {(𝐍𝑘, 𝐌𝑘) ∶ 𝑘 ≤ 𝑛}). (2.49)

Assumption 2.6 (Martingale Bound)

For all 𝑛 ∈ N there exists some 𝐾𝑚 > 0 such that

E[‖𝐍𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2],

E[‖𝐌𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2],
(2.50)

which is to say the martingale difference sequences {𝐍𝑛} and {𝐌𝑛} are bounded

from above in terms of the norms of the iterates.

Assumption 2.7 (Bounded Iterates)

The iterates of (2.43) and (2.44) remain bounded almost surely:

sup
𝑛

(‖𝐰𝑛‖ + ‖𝛉𝑛‖) < ∞ a.s. (2.51)

We also need that each of (2.45) and (2.46) converges on their respective times-

cales:

24Recall that a function is Lipschitz if there exists some positive scalar 𝐶 such that for all 𝐲, 𝐳 ∈ R𝑑:

‖𝐠(𝐲) − 𝐠(𝐳)‖ ≤ 𝐶‖𝐲 − 𝐳‖. (2.48)

23



Assumption 2.8 (Fast Component Convergence)

The fast component,

𝐰̇(𝑡) = 𝐡(𝐰(𝑡), 𝛉), (2.45)

has a globally asymptotically stable equilibrium that is a function of 𝛉, which we

denote by 𝐰∗(𝛉). Furthermore, 𝐰∗ ∶ R𝑑2 → R𝑑1 is Lipschitz continuous.

Assumption 2.9 (Slow Component Convergence)

The slow timescale ODE,

𝛉̇(𝑡) = 𝐠(𝐰∗(𝛉(𝑡)), 𝛉(𝑡)), (2.46)

has a globally asymptotically stable equilibrium 𝛉∗.

Provided these conditions hold, then we can apply some results from Borkar (2008)

regarding the system’s convergence25:

Lemma 2.1 (Fast Timescale Convergence)

Assume 𝓐. 2.1 to 2.9. Then the iterates of (2.43) and (2.44) converge almost surely

to the internally chain transitive invariant sets of the ODE 𝐰̇(𝐰(𝑡), 𝛉(𝑡)), 𝛉̇(𝑡) = 0.
That is, (𝐰𝑛, 𝛉𝑛) → {(𝐰∗(𝛉), 𝛉) ∶ 𝛉 ∈ R𝑑2}.

This lemma essentially states that 𝐰𝑛 will asymptotically track 𝐰∗(𝛉𝑛) with prob-

ability one, and leads to the main result we will use:

Theorem 2.2 (Overall Convergence)

Assume 𝓐. 2.1 to 2.9.

Then the iterates of (2.43) and (2.44) converge to (𝐰∗(𝛉∗), 𝛉∗) almost surely.
More precisely:

Pr( lim
𝑛→∞

(𝐰𝑛, 𝛉𝑛) = (𝐰∗, 𝛉∗)) = 1 (2.52)

which states that the iterates of the stochastic approximation scheme will ulti-

mately converge to the fixed point of the two-timescale ODE.

25See Chapter 6 of Borkar 2008, in particular Lemma 1 and Theorem 2.

24



CHAPTER 3

FUNCTiONS OF THE RETURN

In this chapter, we discuss learning functions of the return as an alternative to

modifying the return to make a problem more amenable to reinforcement learning.

We describe some of the ways this formulation can make task specifications more

precise or flexible, particularly when a problem has a natural return associated with

it that only needs adjustment in order to clarify what we wish to predict or optimize.

We then review previous work touching on estimating functions of the return,

along with some proposed extensions. We discuss methods for estimating the mo-

ments of the return, and describe how to use these moments to approximate more

general functions using parametric methods or Taylor series. We also provide an

overview of distributional reinforcement learning, which provides an alternative way

of approximating functions of the return.

3.1 The Reward Hypothesis in Practice

The reward hypothesis in reinforcement learning states that everything that we might

want to optimize can be formulated as a return:

That all of what we mean by goals and purposes can be thought of as the
maximization of the expected value of the cumulative sum of a received scalar
signal (called reward).1

Assuming that achieving a goal is quantifiable2, then the reward hypothesis is, if

not self-evidently true, at least not immediately falsifiable.
1Reinforcement Learning: An Introduction, page 53. According to the chapter notes, it was first

suggested by Michael Littman in a personal communication with the authors.
2That is, we have some way of representing success as a number– it might be binary (whether the

goal was accomplished or not) or real-valued when there are degrees of success.

25



Sometimes the form that the rewards (and thus the return) should take is obvious.

For example, in shortest path problems, the objective is to select a route that goes

from one location to another with minimum total cost. The costs of each move map

to the (negative) transition reward, and the return is then the undiscounted sum of

these rewards. These sorts of problems are easier for agents to learn, because every

transition is informative.

Other tasks are somewhat more difficult, because even if we know what the return

should be, the rewards are sparse, i.e., mostly zero, and so the agent receives no

feedback over long periods of time. When it does receive a non-zero reward, it is

hard to gauge which transitions were responsible for it. For example, in board games

such as Chess or Go, the return might be one of {1, −1, 0} depending if the agent

wins, loses, or draws, provided by a reward on the final move. The reward for all

the preceding moves is zero, because the outcome of the game is indeterminate until

the end.

Board games can last for hundreds of moves, but they can be simulated effi-

ciently, so sparsity issues can be overcome by training the agent through self-play at

superhuman speeds. More complicated games, such as DotA 2, can last for tens of

thousands of frames3 before the outcome is reached; they are also less amenable to

simulation. To make learning more tractable, an experimenter might modify the re-

ward function to incentivize behavior they expect to be conducive to the underlying

goal. Early efforts in computer Chess, for example, provided bonuses for capturing

an opponent’s pieces or placing the enemy king in check. These bonuses can conflict

with the directive to win—material advantage is irrelevant if you ultimately lose the

game—but sometimes a flawed reward function is better than one that is excessively

sparse.

More complex or abstract goals may not even have an obvious return, let alone a

clearly defined reward. For example:

∘ Producing a great work of art,
3The average game takes around thirty or forty minutes, with a 30Hz update rate, giving 54, 000−

72, 000 time-steps for a typical match.

26



∘ Investing funds to achieve a comfortable level of wealth,

∘ Playing a game in an entertaining fashion,

∘ Preparing a delicious meal,

∘ Generating an appropriate response to a question,

∘ Controlling a robot in a graceful manner.

Note the many adjectives employed in the tasks described above. We can formu-

late a return for a game-playing agent and teach it to win, but those victories might

be cheapened if they are the result of a boring strategy that only a machine would

have the patience to execute. The real purpose of playing a game is to have fun, but

it is not clear how to express this4 without recourse to external evaluation.

That is, we can still define a return that captures whether the agent has succeeded

at the actual goal if we incorporate human consultation5, although this might intro-

duce problems of its own. Feedback can be subjective and inconsistent; even if an

agreeable metric of success can be determined, collecting samples will be expensive6.

These issues are not insurmountable, but can make training the agent too difficult

or costly in practice.

So while the reward hypothesis remains intact, our goal to produce a successful

learning agent may be infeasible depending on the problem in question.

As when dealing with sparse rewards, the usual approach is to modify the task

specification to make it easier to learn, ideally without deviating too much from the

original version of the problem. Typically, this involves coming up with a proxy

for the underlying objective that is easier to measure or compute. This strategy is

required so frequently that it is easy to conflate the proxy task with the original

goal. However, differences between the real objective and the proxy can lead to

unexpected or undesirable behavior from the learning agent.

For example, we might approximate the goal “generate an appropriate reply to a

question” by having our agent answer queries on a social media website and reward
4i.e., to put the“fun” in “function”.
5To check whether our agent has produced a great work of art, we merely have to let it create

something, and then wait decades or centuries in order to find out whether it was well-received.
6In terms of financial cost or the time and effort needed to acquire them.

27



it according to the feedback from that site’s other users. Insofar as our definition

of “appropriate” is based on approbation, this proxy is reasonable. However, if the

real goal of our project was to correct misinformation, then this proxy might teach

the agent to produce responses that merely seem correct, thereby exacerbating the

problem we were trying to solve.

The problem of codifying our intentions such that learning is feasible while avoid-

ing undesired behavior is of substantial practical and theoretical interest.

While we do not have a solution in general, we note that many interesting tasks

have a natural reward associated with them, one that almost captures the spirit of

what we wish to predict or optimize. We believe that in such cases, rather than

using reward shaping or modifying the problem specification, it would be better

to instead learn the obvious prediction target and then adjust it as circumstance

demands. The strategy we have in mind is learning to estimate functions of the

return of the form:

𝜓𝜋(𝑠) = E
𝜋
[𝑓(𝐺𝑡)|𝑆𝑡 = 𝑠]. (3.1)

This approach can avoid pitfalls arising from changing the task specification while

allowing us to formulate our predictions and goals more precisely. It is distinct

from merely modifying the value function after learning, as generally E𝜋 [𝑓(𝐺𝑡)] ≠
𝑓(E𝜋[𝐺𝑡]).

We provide some examples to illustrate how this could be useful:

Example: Route Selection If we were training an autonomous car to transport

people around, then the obvious choice for the approximation target would be “time

required to reach a destination”7, corresponding to a reward of −1 for each time-step
where the agent has not yet arrived at the goal. An agent trained with these rewards

will learn to choose the fastest route, and its passengers will be happy insofar as

they value their time. This setup is also conducive to learning: as the agent goes

from the start to its destination, it can update its estimate for the travel time at
7Ignoring things like fuel costs, distance travelled, or (as seems fashionable) passenger safety.

28



each point along the way.

However, when travelling to an appointment where punctuality is crucial, the

route that is fastest on average is not necessarily ideal, if it is prone to the occa-

sional unpredictable delay. The risk of such a delay causing you to arrive late could

outweigh the benefit of a few minutes saved. Rather, the better policy is one that

ensures you will make it to your destination on time, even if it is a bit slower than

the alternative.

0 15 30 45 60 75 90 105

t

f X
(t

)

Probability Density

X1 ∼ N (60, 7.5)

X2 ∼ N (55, 15)

0 15 30 45 60 75 90 105

t

F
X

(t
)

FX1(75) = 0.98
FX2(75) = 0.91

Cumulative Distribution

Figure 3.1: An example of when optimizing for the best travel time on average can be
counterproductive if there is an additional requirement to arrive before a certain time. Here we
model two different routes as having normally distributed arrival times, with 𝑋1 ∼ 𝒩(60, 7.5)
and 𝑋2 ∼ 𝒩(55, 15). The second route (corresponding to 𝑋2) is quicker in expectation, but if
we want to arrive in 75 minutes or less, we find that we will be late approximately 9% of the
time. The first route is slower on average, but we will only be late about 2% of the time if we
choose it instead.

We could, of course, change the formulation of the problem to match the goal of

“reaching the destination on time”, perhaps by setting the reward to 1 if we arrive

on schedule and 0 if we are late, or something along similar lines. To accommodate

anxious travellers, the agent could perhaps keep track of how to make it from one

place to another under a panoply of different time budgets using off-policy learning.

While we have salvaged the reward hypothesis, in practice this makes the problem

significantly more complicated. The agent would have to learn policies for each

possible time budget, possibly more depending on whether the travellers need to

reach their destination within a certain time frame or would merely prefer to not be

29



unfashionably late.

If, instead, we kept the “natural” rewards, but learned to estimate the distribution

of the return (rather than just its mean), we would be able to compute E𝜋[𝑓(𝐺𝑡)]
for different choices of 𝑓(⋅). We believe that learning general facts about the envir-

onment and then adapting them to specific needs provides a more extensible, and

potentially more efficient8 approach to designing and training learning agents.

Example: Investing The goal of a trading algorithm might be to maximize its

profit, and so an obvious choice for the reward would be the gain or loss from its

trades. This simple reward function provides a reasonable baseline for measuring

performance, but most market participants also care about the risk associated with

their investments. Volatile securities might be a source of short-term profit, but over

longer time-spans, assets with more consistent returns can produce higher growth.

One might object that this can be addressed by refining how we measure perform-

ance to take compounding into effect without having to use functions of the return.

Even so, the existence of many different financial products which appeal to different

investors points to a deeper issue: the point of investing is not so much maximizing

the value of one’s accounts so much as maximizing the utility derived from those

funds9. Rather than learning a slightly different value function for each investor, we

could instead learn to predict the possible outcomes for different asset allocations

and then evaluate how desirable each choice is on an individual basis.

3.2 Why Not Just Directly Estimate?

If learning to predict or optimize functions of the return could be useful, why is this

approach not in common use? Mainly, it is because this is difficult to do without

removing the reasons we employ reinforcement learning in the first place.
8Insofar as estimating the distribution of the return can be done reliably and that a function of the

distribution can be computed in a convenient manner.
9Quoting William Micawber in Dickens’ Great Expectations, “Annual income twenty pounds, annual

expenditure nineteen nineteen and six, result happiness. Annual income twenty pounds, annual ex-
penditure twenty pounds ought and six, result misery.” A budget shortfall can be extremely stressful,
much more so than having an equivalent surplus is pleasant.

30



One key advantage offered by RL methods is that they can learn in the present,

even when the ultimate outcome has yet to be revealed. That is, they can adapt by

trial-and-error without requiring full knowledge of their actions’ future effects.

The clearest way to see this is by following the math. First, note the return’s

recursive form:

𝐺𝑡 ≝
∞

∑
𝑛=0

𝑅𝑡+𝑛+1
𝑛−1
∏
𝑘=1

𝛾𝑡+𝑘 = 𝑅𝑡+1 + 𝛾𝑡+1𝑅𝑡+2 + 𝛾𝑡+1𝛾𝑡+2𝑅𝑡+3 + ⋯

= 𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1.
(2.2)

If the environment is Markovian, then the value (expected return) of a given state

under policy 𝜋 can be expressed as a Bellman equation:

𝑣𝜋(𝑠) ≝ E
𝜋
[𝐺𝑡|𝑆𝑡 = 𝑠] = E

𝜋,𝑠
[𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1]

= E
𝜋,𝑠

[𝑅𝑡+1] + E
𝜋,𝑠

[𝛾𝑡+1𝑣𝜋(𝑆𝑡+1)].
(3.2)

Without knowing the true value function 𝑣𝜋, we can still estimate the value of a

state using an approximation of the value function, say ̂𝑣:

̂𝑣(𝑠) = E
𝜋,𝑠

[𝑅𝑡+1 + 𝛾𝑡+1 ̂𝑣(𝑆𝑡+1)]

≈ 𝑣𝜋(𝑠).
(3.3)

We could then modify ̂𝑣 to make it more consistent with itself10 thereby bringing

it closer to 𝑣𝜋, or adjust 𝜋 to improve the expected return, all without waiting to

observe the rest of the reward sequence.

However, if we consider the expectation of a nonlinear function of the return,

things become dicier. It is generally no longer possible to separate the expected

return into a term for the current reward and a term associated with the return

from the next state, as 𝑓(𝐺𝑡) ≠ 𝑓(𝑅𝑡+1) + 𝑓(𝛾𝑡+1𝐺𝑡+1) unless 𝑓(⋅) is linear.

Of course, we could just record the full return for each state, compute 𝑓(𝐺𝑡), and
then approximate 𝑢(𝑠) = E𝜋[𝑓(𝐺𝑡)|𝑆𝑡 = 𝑠] as if we were doing supervised learning.

For the class of problems where we would like to use reinforcement learning11, this
10For example, using temporal difference methods (see Section 2.5).
11Problems that benefit from online, incremental improvement, as well as those with computation

31



knowledge is cold comfort.

Unless we can somehow formulate E𝜋[𝑓(𝐺𝑡)] as a Bellman equation, it would seem
we must either try a different sort of algorithm, or resign ourselves to learning some-

thing other than our preferred prediction target. Fortunately, we are not reduced

to barbarity just yet.

3.3 Estimating Functions of the Return

Having argued for the desirability of learning to estimate functions of the return, we

now proceed to describe how this might be done. Broadly speaking, there are two

main lines of attack:

1. Learn the moments of the return, and use these to approximate functions of

the return.

2. Learn to estimate the distribution of the return and evaluate the function on

this distribution.

The first approach builds on the work of Sobel (1982), Tamar, Castro and Mannor

(2016), White and White (2016), Sato, Kimura and Kobayashi (2002) and Munos

and Moore (1999), while the distributional approach is a relatively recent develop-

ment. We briefly describe both techniques in the following sub-sections.

3.3.1 Moment Estimation

The moments of a probability distribution provide a way to characterize that distri-

bution in terms of how its probability mass is located relative to some point. The

term “moment” itself derives from an analogy with physics12, where the moment of

inertia summarizes how the mass of a system is distributed. As in physics, the mo-

ments of a distribution depend on where you measure from; typically, we consider

the moments either with reference to zero or to the distribution’s mean.
or memory constraints.

12According to David (1995), it was introduced by Karl Pearson in a letter to Nature (Pearson 1893),
wherein he describes a method of fitting curves to a binomial distribution.

32



The 𝑛-th moment (sometimes referred to as a raw moment) of a random variable

𝑋 (denoted 𝜇𝑛) is defined as

𝜇𝑛 ≝ E[𝑋𝑛] = ∫
∞

−∞
𝑥𝑛𝑓𝑋(𝑥)d𝑥, (3.4)

where 𝑓𝑋(⋅) is the probability density function for 𝑋.

The first moment is just the expected value of 𝑋, and is common enough that

we typically write 𝜇 in place of 𝜇1. These raw moments are somewhat difficult

to interpret for 𝑛 ≥ 2, so it is common to instead consider the “higher moments”

centered around the mean13.

The 𝑛-th central moment, which we denote by 𝑐𝑛, is given by:

𝑐𝑛 ≝ E[(𝑋 − 𝜇)𝑛] = ∫
∞

−∞
(𝑥 − 𝜇)𝑛𝑓𝑋(𝑥)d𝑥 (3.5)

For 𝑛 = 2, we have 𝑐2 = Var [𝑋], the variance of 𝑋. It can be thought of as a

measure of dispersion for 𝑋. When the distribution is tightly concentrated around

the mean, the variance is low; if most of the probability mass is far from the mean,

then the variance will be higher.

The higher central moments measure the lopsidedness (for 𝑛 odd) or tailedness

of the distribution (when 𝑛 is even). These can be useful to know, but for even

knowing a few moments allows us to express a number of common distributions14.

Although the central moments are a bit easier to interpret, sometimes it is easier

to work with raw moments instead. The raw moments and the central moments are

related by a binomial transformation, so if we know 𝑛 moments of either type, we

can convert between the two kinds:

𝑐𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)(−1)𝑛−𝑘𝜇𝑘𝜇𝑛−𝑘

1 ,

𝜇𝑛 =
𝑛

∑
𝑘=0

(𝑛
𝑘)𝑐𝑘𝜇𝑛−𝑘

1 .
(3.6)

13In physics, for 𝑛 = 2, the corresponding raw moment would be the moment of inertia with
respect to the origin, which might be useful as part of some larger calculation. This is informative
in probability theory, since the origin can be somewhat arbitrary; we define the raw moments with
respect to zero primarily because it’s a unique reference point on the real line.

14For example, we only need to know the mean and the variance to determine the form of a Gaussian
distribution.

33



3.3.2 The Return’s Second Moment as a Bellman Equation

The return is a random variable, so its second moment for state 𝑠 can be expressed

using (3.4) as:

𝑣(2)
𝜋 (𝑠) ≝ E

𝜋
[𝐺2

𝑡 |𝑆𝑡 = 𝑠]. (3.7)

As observed by Sobel (1982), it is possible to formulate a Bellman equation for the

second moment, provided we have access to the true value function 𝑣𝜋. To see this,

we expand 𝐺2
𝑡 from its definition (2.2), yielding:

𝐺2
𝑡 = (𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1)2

= 𝑅2
𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1 + 𝛾2

𝑡+1𝐺2
𝑡+1.

(3.8)

Then, taking the expectation, we get:

𝑣(2)
𝜋 (𝑠) = E

𝜋,𝑠
[𝐺2

𝑡 ] = E
𝜋,𝑠

[𝑅2
𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1 + 𝛾2

𝑡+1𝐺2
𝑡+1]

= E
𝜋,𝑠

[𝑅2
𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1] + E

𝜋,𝑠
[𝛾2

𝑡+1𝐺2
𝑡+1]

= E
𝜋,𝑠

[𝑅(2)
𝑡+1] + E

𝜋,𝑠
[𝛾2

𝑡+1𝑣(2)
𝜋 (𝑆𝑡+1)],

(3.9)

where we use 𝑅(2)
𝑡+1 = 𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1. Observe that 𝑅(2)
𝑡+1 can be expressed as

depending only the transition (𝑠, 𝑠′) using 𝑣𝜋(⋅). This is obviously true for the 𝑅2
𝑡+1

component, and for the cross-term we have:

E
𝜋,𝑠

[𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1] = ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′) E
𝜋,𝑠,𝑠′

[𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1]

= ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)𝛾(𝑠′)𝑟(𝑠, 𝑠′) E
𝜋,𝑠,𝑠′

[𝐺𝑡+1]

= ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)𝛾(𝑠′)𝑟(𝑠, 𝑠′)𝑣𝜋(𝑠′),

(3.10)

where we first use the law of total expectation to expand 𝛾𝑡+1𝑅𝑡+1𝐺𝑡+1, and note

that, given the Markov property, the discount and rewards are independent of the

subsequent return conditioned on 𝑠′, allowing us to extract them from the expecta-

tion, so we can substitute 𝑣𝜋(𝑠′) for E𝜋,𝑠,𝑠′ [𝐺𝑡+1].

34



If we define 𝑟(2)
𝜋 ∶ 𝒮 → R via:

𝑟(2)
𝜋 (𝑠) ≝ E

𝜋
[𝑅(2)

𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)[𝑟2(𝑠, 𝑠′) + 2𝛾(𝑠′)𝑟(𝑠, 𝑠′)𝑣𝜋(𝑠′)], (3.11)

then we can write a Bellman equation for the second moment of the return:

𝑣(2)
𝜋 (𝑠) = E

𝜋
[𝐺2

𝑡 |𝑆𝑡 = 𝑠] = 𝑟(2)
𝜋 (𝑠) + ∑

𝑠′
𝑝𝜋(𝑠, 𝑠′)𝛾2(𝑠′)𝑣(2)

𝜋 (𝑠′). (3.12)

It is then easy to express the variance of the return:

𝑢𝜋(𝑠) = E
𝜋,𝑠

[𝐺2
𝑡 ] − E

𝜋,𝑠
[𝐺𝑡] = 𝑣(2)

𝜋 (𝑠) − 𝑣2
𝜋(𝑠). (3.13)

Sobel also notes that 𝑢𝜋 itself can be expressed as a Bellman equation:

𝑚𝜋(𝑠) ≝ −𝑣2
𝜋(𝑠) + ∑

𝑠′
𝑃𝜋(𝑠, 𝑠′)(𝑟(𝑠, 𝑠′) + 𝛾(𝑠′)𝑣𝜋(𝑠′))2,

𝑢𝜋(𝑠) = 𝑚𝜋(𝑠) + ∑
𝑠′

𝑝𝜋(𝑠, 𝑠′)𝛾2(𝑠′)𝑢𝜋(𝑠′).
(3.14)

Later, in Section 4.3, we will show that (3.13) and (3.14) amount to the same thing.

The preceding equations assume that the true value function is available, which is

not usually true in situations where reinforcement learning is called for. Developing

a practical learning algorithm required some additional work, which we summarize

in the next section.

3.3.3 Learning the Second Moment of the Return

Building on the work of Sobel (1982), Tamar, Castro and Mannor (2016) and White

and White (2016) developed algorithms for estimating the second moment of the

return and therefore the return’s variance. Their approaches posit that, rather than

using 𝑣𝜋 in (3.11), we might instead use an approximate value function instead, which

could learned in parallel.

For some arbitrary value function 𝑣 ∶ 𝒮 → R and discount ̄𝛾 ∶ 𝒮 → [0, 1], we define:

𝑅̂(2)
𝑡+1 ≝ 𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1), (3.15)

̂𝐺(2)
𝑡 = 𝑅̂(2)

𝑡+1 + ̄𝛾𝑡+1 ̂𝐺(2)
𝑡+1 =

∞
∑
𝑛=1

𝑅̂(2)
𝑡+𝑛

𝑛−1
∏
𝑘=1

̄𝛾𝑡+𝑘. (3.16)

35



Note that ̂𝐺(2)
𝑡 is a valid return, and could be targeted by any reinforcement learning

algorithm by using 𝑅(2) instead of 𝑅 as the cumulant and ̄𝛾 in place of 𝛾 as the

discount factor. If 𝑣 = 𝑣𝜋 and ̄𝛾 = 𝛾2, then E𝜋[ ̂𝐺(2)
𝑡 ] = E𝜋[𝐺2

𝑡 ], so the algorithm

would learn to approximate the return’s second moment.

Then it would seem that learning to estimate the second moment of the return

is just a matter of learning 𝑣 ≈ 𝑣𝜋 and making the appropriate substitutions to

generate this new target. However, there is a potential hazard to this approach—

note the tacit assumption in (3.16) that 𝑣(⋅) does not change. So if we aim to learn

both 𝑣 and 𝑣(2) simultaneously, E𝜋[ ̂𝐺(2)
𝑡 |𝑆𝑡 = 𝑠] will change over time, and we have

to wonder whether this will cause our estimator to diverge.

As it turns out, using 𝑣 in place of 𝑣𝜋 can yield convergent approximation schemes

even when 𝑣 is non-constant. Tamar, Castro and Mannor (2016) show this by ex-

pressing the problem in terms of jointly estimating 𝑣 and 𝑣(2) and demonstrating

that the resulting system is convergent. They show that convergence holds even

under linear function approximation; with an elegant argument based on norm equi-

valence they even avoid the need to employ separate time-scales for the estimators.

Their results immediately lend themselves to variants of standard RL algorithms,

such as the versions of TD(0) and LSTD they describe in their paper.

White and White (2016) extend the framework to learning the second moment

of the λ-return, with the aim of adaptively setting λ to optimize the bias-variance

trade-off for the value estimate15. The expressions they derive generalize earlier

results significantly, accounting for variable 𝛾 and 𝜆 with straightforward extensions

to off-policy estimation. They first expand from the definition of the λ-return:

(𝐺𝜆
𝑡 )2 = (𝑅𝑡+1 + 𝛾𝑡+1[(1 − 𝜆𝑡+1)𝑣(𝑆𝑡+1) + 𝜆𝑡+1𝐺𝜆

𝑡+1])2

= (𝑅𝜆
𝑡+1)2 + 2𝑅𝜆

𝑡+1𝛾𝑡+1𝜆𝑡+1𝐺𝜆
𝑡+1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑅̄(2)
𝑡+1

+𝛾2
𝑡+1𝜆2

𝑡+1(𝐺𝜆
𝑡+1)2, (3.17)

where 𝑅𝜆
𝑡+1 ≝ 𝑅𝑡+1 + 𝛾𝑡+1(1 − 𝜆𝑡+1)𝑣(𝑆𝑡+1). Taking the expectation as in (3.9)

15Recall that higher 𝜆 tends to reduce the bias for the TD(λ) fixed-point, but at the cost of increasing
the variance of the approximation target; its overall error is the combination of the bias squared and
the variance.

36



and (3.10), we get:

E
𝜋
[𝑅̄(2)

𝑡+1] = E
𝜋
[(𝑅𝜆

𝑡+1)2 + 2𝑅𝜆
𝑡+1𝛾𝑡+1𝜆𝑡+1𝐺𝜆

𝑡+1]

= E
𝜋
[𝑅2

𝑡+1 + 2𝛾𝑡+1(1 − 𝜆𝑡+1)𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆𝑡+1)2𝑣2(𝑆𝑡+1)]

+ 2 E
𝜋
[𝛾𝑡+1𝜆𝑡+1𝑅𝑡+1𝑣𝜆(𝑆𝑡+1) + 𝛾2

𝑡+1𝜆𝑡+1(1 − 𝜆)𝑣𝜆(𝑆𝑡+1)𝑣(𝑆𝑡+1)],

(3.18)

where 𝑣𝜆(𝑠) ≝ E𝜋,𝑠[𝐺𝜆
𝑡 ] is the expected value of the λ-return using value function 𝑣.

If we assume that 𝑣𝜆(𝑠) ≈ 𝑣(𝑠) and make the appropriate substitutions, we get:

E
𝜋
[𝑅̄(2)

𝑡+1] ≈ E
𝜋
[𝑅2

𝑡+1 + 2𝛾𝑡+1(1 − 𝜆𝑡+1)𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆𝑡+1)2𝑣2(𝑆𝑡+1)]

+ 2 E
𝜋
[𝛾𝑡+1𝜆𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1)𝛾2

𝑡+1𝜆𝑡+1(1 − 𝜆)𝑣2(𝑆𝑡+1)]

= E
𝜋
[𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆2

𝑡+1)𝑣2(𝑆𝑡+1)],

(3.19)

which allows us to define versions of (3.15) and (3.16) for the λ-return:

𝑅̂(2),𝜆
𝑡+1 = 𝑅2

𝑡+1 + 2𝛾𝑡+1𝑅𝑡+1𝑣(𝑆𝑡+1) + 𝛾2
𝑡+1(1 − 𝜆2

𝑡+1)𝑣2(𝑆𝑡+1) (3.20)

̂𝐺(2),𝜆
𝑡 = 𝑅̂(2),𝜆

𝑡+1 + ̄𝛾𝑡+1 ̂𝐺(2),𝜆
𝑡+1 =

∞
∑
𝑛=1

𝑅̂(2),𝜆
𝑡+𝑛

𝑛−1
∏
𝑘=1

̄𝛾𝑡+𝑘. (3.21)

For (3.21) we get E𝜋[ ̂𝐺(2),𝜆
𝑡 ] = E𝜋[(𝐺𝜆

𝑡 )2] if 𝑣 = 𝑣𝜆 and ̄𝛾 = 𝛾2𝜆2. In particular, with

𝜆 = 1 and ̄𝛾 = 𝛾2, we recover (3.15) and (3.16), which is to say that ̂𝐺(2),𝜆=1
𝑡 is an

approximation for the Monte Carlo return’s second moment.

Note that both 𝑅̂(2),𝜆
𝑡+1 and ̂𝐺(2),𝜆

𝑡+1 are still well-defined even if 𝑣𝜆 ≠ 𝑣, or if ̄𝛾 ≠ 𝛾2𝜆2,

although we would no longer be estimating the second moment of the λ-return.

In practice, the value function learned by an RL agent will approximate 𝑣𝜆, so

substituting 𝑣 for 𝑣𝜆 is not unreasonable. Furthermore, since 𝑣𝜆 is usually just a

proxy for 𝑣𝜋
16, then we could argue that any reasonably accurate value function

could be used when defining (3.20).

As White and White (2016) and Sherstan et al. (2018) point out, this gives us

the ability to estimate the second moment of the λ-return using a value function

learned with a different amount of bootstrapping17, so long as 𝑣 is “close enough” to
16Absent function approximation, the fixed-point for 𝑣𝜆 is 𝑣𝜋.
17Or even to estimate the second moment of multiple λ-returns using a single value function.

37



𝑣𝜆. Tamar, Castro and Mannor (2016) do this implicitly, describing an algorithm

which learns the value function via TD(0), but targets the second moment of the

Monte Carlo return.

We provide one possible version of the algorithm (which we refer to as VTD)

in Appendix C, listed as Algorithm 3. That algorithm has three bootstrapping

hyperparameters: one for the base component, which uses TD(λ) to learn the value

function; another for the second moment estimator, which is also TD(λ) based but

with a different cumulant); and the third hyperparameter, which is used to define

the cumulant as in (3.20).

We close this subsection by noting an alternative approach for estimating the

variance in terms of the temporal difference errors, as observed by Munos and Moore

(1999) and formulated as TD-style algorithm by Sato, Kimura and Kobayashi (2002).

Using the squared TD error as a cumulant can yield a target for the return’s variance,

as we will show in Chapter 4. Tamar, Castro and Mannor (2016) note that the

issue with this approach is that it leads to a non-linear equation for the variance,

which makes analyzing the algorithm substantially harder. In later chapters we will

show how some of these difficulties can be overcome; we provide expressions for the

approximation target’s fixed-point and prove that the algorithm converges.

3.3.4 Learning Higher Moments of the Return

Building on Section 3.3.3, we note that we can in fact construct approximation

targets for higher moments of the return. The formula for the 𝑛-th power of the

return is:
𝐺𝑛

𝑡 ≝ (𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1)𝑛

= 𝑅(𝑛)
𝑡+1 + 𝛾𝑛

𝑡+1𝐺𝑛
𝑡+1,

(3.22)

where

𝑅(𝑛)
𝑡+1 ≝

𝑛−1
∑
𝑘=0

(𝑛
𝑘)𝛾𝑘

𝑡+1𝑅𝑛−𝑘
𝑡+1 𝐺𝑘

𝑡+1. (3.23)

38



So the 𝑛-th moment of the return can be written as E[𝑅(𝑛)
𝑡+1] + 𝛾𝑛

𝑡+1 E[𝐺𝑛
𝑡+1], which

is similar to a Bellman equation, although 𝑅(𝑛)
𝑡+1 includes terms that contain powers

of 𝐺𝑡+1, so it does not quite have the desired recursive form.

However, as in Section 3.3.3, we can use estimates of 𝐺(𝑛)
𝑡+1 to produce an approx-

imation target suitable for online estimation. If we have an estimate for the value

function of the first 𝑛 − 1 moments (denoted 𝑣(𝑛)(⋅), with 𝑣(𝑛)(𝑠) ≈ E𝜋[𝐺𝑛
𝑡 |𝑆𝑡 = 𝑠],

we can define a new target for the next, ̂𝐺𝑛:

̂𝐺𝑛 ≝ (
𝑛−1
∑
𝑘=0

(𝑛
𝑘)𝛾𝑘𝑅𝑛−𝑘

𝑡+1 𝑣(𝑘)(𝑆𝑡+1)) + 𝛾𝑛 ̂𝐺𝑛
𝑡+1

= 𝑅̂(𝑛)
𝑡+1 + 𝛾𝑛 ̂𝐺𝑛

𝑡+1.
(3.24)

Here, 𝑅̂(𝑛)
𝑡+1 is given by:

𝑅̂(𝑛)
𝑡+1 ≝

𝑛−1
∑
𝑘=0

(𝑛
𝑘)𝛾𝑘𝑅𝑛−𝑘

𝑡+1 𝑣(𝑘)(𝑆𝑡+1). (3.25)

This new return is similar to (3.22), except we use 𝑣(𝑛)(𝑆𝑡+1) in place of 𝐺𝑛
𝑡+1 in the

binomial sum.

Ideally, we would have E𝜋[ ̂𝐺𝑛
𝑡 ] = E𝜋[𝐺𝑛

𝑡 ]. If our estimated value functions 𝑣(𝑘)(𝑠) =

E𝜋[𝐺𝑘
𝑡 |𝑆𝑡 = 𝑠] for 𝑘 = 1, 2, … , 𝑛 − 1, then this is indeed the case. However, because

each target is defined in terms of the previous approximate value functions, inac-

curacies can be magnified and learning more than the first few moments using this

approach can be difficult.

Nonetheless, even if our value functions for the lower moments are only approxim-

ate, then ̂𝐺𝑛
𝑡 is still well-defined, but will probably be a biased estimate of the true

𝐺𝑛
𝑡 . Following the example set by Tamar, Castro and Mannor (2016) and White

and White (2016), we note that a stable algorithm might still be derived. For the

curious, we provide pseudocode for such an algorithm (dubbed MOMENT-TD), given

in Algorithm 4 (Page 116) and originally reported by Bennett et al. (2019). It allows

for estimating arbitrary moments of the return, although at this point it has not

been studied in detail18.
18Partly this might be because of a lack of immediate usefulness, as trying to learn the (non-central)

39



3.3.5 Taylor Series of a Random Variable

The Taylor series is an expansion of a function around a point. For example, for a

function 𝑔 ∶ R → R, the Taylor series about 𝑎 ∈ R is

𝑓(𝑥) = 𝑓(𝑎) + 𝑓 ′(𝑎)(𝑥 − 𝑎) + 𝑓″(𝑎)
2 (𝑥 − 𝑎)2! + 𝑓 (3)

3! (𝑥 − 𝑎)3 + ⋯

=
∞

∑
𝑘=0

𝑓 (𝑘)(𝑎)
𝑘! (𝑥 − 𝑎)𝑘,

(3.26)

where 𝑓 (𝑘)(𝑎) denotes d𝑘𝑓
d𝑥𝑘 evaluated at 𝑎.

If 𝑔 ∶ R → R is a function whose Taylor series converges to 𝑔(𝑥) when evaluated

at any 𝑎 ∈ R, then we can express the expected value of a function of a random

variable using a Taylor series:

E[𝑔(𝑋)] = ∫
∞

−∞
𝑔(𝑥)𝑓𝑋(𝑥)d𝑥 = ∫

∞

−∞
[

∞
∑
𝑘=0

(𝑔(𝑘)(𝑎)
𝑘! )(𝑥 − 𝑎)𝑘]𝑓𝑋(𝑥)d𝑥, (3.27)

where 𝑓𝑋(⋅) is the probability density function for 𝑋.

We can get a more useful form if we can switch the order of summation and

integration. Let ℎ𝑘(𝑥) = (𝑔(𝑘)(𝑎)
𝑘! )(𝑥 − 𝑎)𝑘𝑓𝑋(𝑥). If ∫∞

−∞ ∑∞
𝑘=0 |ℎ𝑘(𝑥)| < ∞, the the

Fubini-Tonelli theorem applies, and we can swap the order of the operations:

∫
∞

−∞

∞
∑
𝑘=0

ℎ𝑘(𝑥)d𝑥 =
∞

∑
𝑘=0

∫
∞

−∞
ℎ𝑘(𝑥)d𝑥, (3.28)

that is,
∞

∑
𝑘=0

∫
∞

−∞
(𝑔(𝑘)(𝑎)

𝑘! )(𝑥 − 𝑎)𝑘𝑓𝑋(𝑥)d𝑥 =
∞

∑
𝑘=0

(𝑔(𝑘)(𝑎)
𝑘! ) ∫

∞

−∞
(𝑥 − 𝑎)𝑘𝑓𝑋(𝑥)d𝑥,

(3.29)

where we can extract 𝑔(𝑘)(𝑎)
𝑘! from the integral because it is constant given 𝑎.

For our purposes, there are two natural choices for 𝑎: 𝑎 = 0, or 𝑎 = 𝜇1. If 𝑎 = 0,
moments of the return tends to be stymied by numerical error. Our preliminary investigations indicate
that MOMENT-TD is reasonably accurate for the first few moments, but begins to degrade for 𝑛 > 4
or so.

40



then:
E[𝑔(𝑋)] =

∞
∑
𝑘=0

(𝑔(𝑘)(0)
𝑘! ) ∫

∞

−∞
𝑥𝑘𝑓𝑋(𝑥)d𝑥

=
∞

∑
𝑘=0

(𝑔(𝑘)(0)
𝑘! )𝜇𝑘.

(3.30)

If 𝑎 = 𝜇1, we get:

E[𝑔(𝑋)] =
∞

∑
𝑘=0

(𝑔(𝑘)(𝜇1)
𝑘! ) ∫

∞

−∞
(𝑥 − 𝜇1)𝑘𝑓𝑋(𝑥)d𝑥

=
∞

∑
𝑘=0

(𝑔(𝑘)(𝜇1)
𝑘! )𝑐𝑘.

(3.31)

The utility of this approach is somewhat blunted by the fact that it requires 𝑔(⋅)
to have an infinite radius of convergence, and the further requirement that 𝑋 must

have finite moments19. For stochastic approximation, it is more concerning that we

do not typically have access to the true moments, meaning that even if 𝑋 and 𝑔(⋅)
are well-behaved, our estimate for E[𝑔(𝑋)] from the Taylor expansion may be wrong

if our moment estimates are off.

Still, if we have a reasonable estimate for the mean and variance of the return,

then this gives us a quick way to approximate the expected value of 𝑔(𝐺𝑡). Noting
that 𝑐1 = E[𝑋 − E[𝑋]] = 0, we can use:

E𝜋,𝑠[𝑔(𝐺𝑡)] ≈
∞

∑
𝑘=0

(𝑔(𝑘)(𝑣(𝑠))
𝑘! )𝑐𝑘(𝑠) = 𝑔(𝑣(𝑠)) + �������:0

𝑔′(𝑣(𝑠))𝑐1(𝑠) + 1
2𝑔″(𝑣(𝑠))𝑢(𝑠) + ⋯

≈ 𝑔(𝑣(𝑠)) + 1
2𝑔″(𝑣(𝑠))𝑢(𝑠),

(3.32)

which is straightforward to compute and obviates the need to express 𝑔(𝐺𝑡) as a

return.

3.3.6 Parametric Approximation

If we have the first 𝑛 moments of a random variable, we might approximate it by

some parameterized distribution. We can then estimate the the expected value of a

function of that random variable using the parametric approximation as a stand-in.

Suppose we wanted to estimate E[𝑔(𝑋)] for some function 𝑔 ∶ R → R and 𝑋 a
19This is implicit in the requirement that ∫ ∑ |ℎ𝑛(𝑥)|d𝑥 < ∞.

41



random variable. The precise distribution for 𝑋 might be unknown, but it might be

similar enough to another distribution, allowing us to approximate 𝑋 by a random

variable, say 𝑋̂, from the known distribution. Then:

E[𝑔(𝑋)] ≈ E[𝑔(𝑋̂)] = ∫
∞

−∞
𝑝𝑋̂(𝑥)𝑔(𝑥)d𝑥. (3.33)

For example, given the mean and variance of 𝑋 (𝜇 and 𝑐2, respectively), we might

approximate 𝑋 as normally distributed, with 𝑋 ≈ 𝑋̂ ∼ 𝒩(𝜇, 𝑐2). We could then

estimate

E[𝑔(𝑋)] ≈ 1
√2𝜋𝑐2

∫
∞

−∞
exp{−1

2
(𝑥 − 𝜇)2

𝑐2
} 𝑔(𝑥)d𝑥,

which is relatively straightforward to calculate.

The validity of this approach is dependent on the distribution used for approxima-

tion, and in practice also on the accuracy of the values used in the parameterization.

If we have reason to believe that 𝑋 is distributed in a particular way, then it is

possible to achieve a close approximation with relatively scant information. Con-

veniently, many distributions can be parameterized in terms of their moments (like

the normal distribution used in the example above).

On the other hand, choosing a distribution for the approximation entails greater

complexity. In particular, part of the allure of TD methods is that they are “model-

free”, so by assuming that the returns have a certain form we are implicitly imposing

a model on the environment.

3.4 Distributional Reinforcement Learning

Distributional Reinforcement Learning is a relatively recent development in RL,

which seeks to expand what can be learned and approximated beyond the expected

return by considering the distribution of returns. In exchange for the increased

complexity this entails, it has a number of advantages, such as allowing us to better

characterize the possible results of a given policy, and it seems to interact beneficially

with function approximation using deep neural networks.

Our interest in this topic comes mainly from the fact that estimating the vari-
42



ance of the return is straightforward if we have an approximation of the return’s

distribution. Although estimating variance is not their primary use, distributional

RL algorithms exhibit state-of-the-art performance on various benchmarks, so we

would be remiss if we did not consider them in our comparisons.

The distributional RL algorithm we focus on is the C51 algorithm20 introduced

by Bellemare, Dabney and Munos (2017). The paper had a substantial impact

because it suggested that learning the distribution of the return could lead to better

performance, particularly in control tasks, and provided evidence for that claim in

the form of state-of-the-art results on the Arcade Learning Environment testbed.

We restrict ourselves to studying C51 instead of performing a more complete

survey of distributional methods, in part because it was the original distributional

algorithm21, but also due to concerns about scope and applicability. More recent

algorithms might perform better than C51 on various benchmarks, but some of

them are not quite “distributional” in the sense of learning a proper probability

distribution22. Since we are interested in estimating the variance of the return, we

prefer to deal with C51, which has a straightforward probabilistic interpretation,

and let it serve as an exemplar of distributional methods.

3.4.1 Mathematical Framework

We provide a summary of distributional RL, referring heavily to Lyle, Bellemare

and Castro (2019) who provide a good overview of the formalism. The notation

might be somewhat jarring for those mostly familiar with traditional reinforcement

learning, but this excursion is brief and mostly self-contained so hopefully the effect

is not excessively confusing.
20Because it is a categorical learning algorithm, and the original implementation by Bellemare,

Dabney and Munos (2017) suggested a support of 51 atoms for the distribution approximation. Some
recent papers also refer to it as CDRL, for “categorical distributional reinforcement learning”. We
will go along with the original nomenclature, because CDRL seems more apt to describe a class of
methods, rather than the particular algorithm we investigate.

21As noted by Bellemare et al., other work has considered reinforcement learning in terms of distri-
butions of the return, but usually for some secondary purpose, rather than as a task in itself.

22For example, the S51 algorithm introduced by Bellemare, Le Roux et al. (2019) is still referred to
as a distributional algorithm, but the distribution it learns is not necessarily a probability distribution.
S51 can assign negative weight to possible values of the return, and the weights do not necessarily
sum to one, so we cannot interpret the weights as corresponding to classical probabilities.

43



We use “ D=” to express distributional equality, mainly when drawing attention to

the fact that the equation in question is in terms of distributions rather than other

quantities. Denoting by 𝑍𝜋 ∶ 𝒮 → Dist(R) the return distribution function (see

Bellemare, Dabney and Munos 2017) under policy 𝜋, defined as:

𝑍𝜋(𝑠) D=
∞

∑
𝑡=0

𝛾𝑡𝑅(𝑆𝑡) 𝑆0 = 𝑠, 𝑆𝑡+1 ∼ 𝑃𝜋(⋅|𝑆𝑡), (3.34)

where 𝑅(𝑠) is the distribution of rewards given state 𝑠.
The distributional version of the Bellman equation is:

𝑍𝜋(𝑠) D= 𝑅(𝑠) + 𝛾𝑍𝜋(𝑆′), 𝑆′ ∼ 𝑃𝜋(⋅|𝑠) (3.35)

with 𝑆′ a random variable corresponding to the subsequent state23. This in turn

leads to the corresponding distributional Bellman operator:

𝒯𝜋𝑍𝜋(𝑠) D= 𝑅(𝑠) + 𝛾𝑃𝜋𝑍𝜋(𝑆). (3.36)

If we were working directly with the distributions, then the fact that the distri-

butional Bellman operator (3.36) is a contraction (Bellemare, Dabney and Munos

2017; Rowland et al. 2018) implies that it has a fixed-point, which could be found

by iteration. Sadly, this is not a situation we frequently encounter— typically, we

are unable to represent arbitrary distributions exactly.

To make this an actionable problem, we have to have some way of approximating

arbitrary probability distributions. One method of approximating a distribution

(and the one used by C51) is as a categorical distribution, which is to say as a

finite set of points which correspond to the possible values the approximation can

represent. To make this precise we first have to describe some additional concepts.

The Dirac delta distribution, sometimes referred to as the Dirac delta function24,

can be formulated as the derivative of the Heaviside step function:

𝛿(𝑥) ≝ d
d𝑥𝐻(𝑥). (3.37)

23We omit state-dependent discounting primarily because including it is superfluous in our limited
analysis, and to define it properly would complicate the explanation to no real benefit.

24Although some would argue that this terminology is incorrect, as depending on one’s definition it
may not be a proper function.

44



There is some unfortunate overlap in notation between the Dirac delta and the

temporal-difference error, but for the most part they are used in different contexts

so we defer to convention by using 𝛿 for both.

It can be thought of as a distribution sharply peaked at a point,

𝛿(𝑥) =
⎧{
⎨{⎩

+∞ if 𝑥 = 0

0 if 𝑥 ≠ 0
(3.38)

and normalized such that

∫
∞

−∞
𝛿(𝑥)d𝑥 = 1. (3.39)

We can now define the categorical distributions we will use to approximate the

distribution of the return. Such a distribution can be formalized as a weighted

combination of (fixed) Dirac deltas. Let 𝑧1 < 𝑧2 < ⋯ 𝑧𝐾 for some 𝐾 ≥ 1, with
𝑧𝑖 ∈ R for 𝑖 = 1, 2, … , 𝐾. Then we denote the set of possible distributions with

support 𝐳 as 𝒵, defined by:

𝒵 = {
𝐾

∑
𝑖=1

𝑝𝑖𝛿(𝑥 − 𝑧𝑖) ∶ 𝑝𝑖 ≥ 0,
𝐾

∑
𝑖=1

𝑝𝑖 = 1} . (3.40)

We might write the probability density function for such a distribution as:

𝑓𝑍(𝑥) =
𝐾

∑
𝑖=1

𝑝𝑖𝛿(𝑥 − 𝑧𝑖). (3.41)

Computing the expected value is straightforward:

E[𝑍] = ∫
∞

−∞
𝑥𝑓𝑍(𝑥)d𝑥 = ∫

∞

−∞
𝑥

𝐾
∑
𝑖=1

𝑝𝑖𝛿(𝑥 − 𝑧𝑖)d𝑥 =
𝐾

∑
𝑖=1

𝑧𝑖𝑝𝑖, (3.42)

where we use the fact that ∫∞
−∞ 𝛿(𝑥 − 𝑦)𝑓(𝑥)d𝑥 = 𝑓(𝑦). We get something similar

for variance, letting ̄𝑧 = E[𝑍], we find

V[𝑍] = ∫
∞

−∞
(𝑥 − ̄𝑧)2𝑓𝑍(𝑥)d𝑥 =

𝐾
∑
𝑖=1

(𝑧𝑖 − ̄𝑧)2𝑝𝑖. (3.43)

In fact, we can compute the expected value of arbitrary functions of 𝑍, although for
our purposes the usefulness of this approach depends on how accurately it approx-

imates 𝑍𝜋.

45



3.4.2 The C51 Algorithm

The categorical representation is essentially equivalent to the tabular setting dis-

cussed previously— we are assuming that we can use a separate distribution for

each state. Typically, we have to introduce some form of function approximation

for this method to be practical. Although earlier work has mainly used deep neural

nets for this purpose, it is entirely possible to run C51 using linear function approx-

imation.

Let ̂𝑍 ∶ 𝒮 → Dist(R) denote the parameterized approximation for the return’s

distribution. Let 𝐱(⋅) be a function 𝐱 ∶ 𝒮 → R𝑑 that maps states to features, and

let 𝐖𝐾×𝑑 be C51’s weight matrix. Then we use the softmax function to assign

probabilities to the possible values of 𝐳 based on 𝐱(𝑠), via

𝐩(𝑠) = 𝑒𝐖𝐱(𝑠)

∥𝑒𝐖𝐱(𝑠)∥1
, (3.44)

with the interpretation that ̂𝑍(𝑠) takes on value 𝑧𝑖 with probability 𝑝𝑖(𝑠), the 𝑖-th
entry of 𝐩(𝑠).

The use of the softmax function guarantees that the probabilities are positive (due

to the exponential), and that they sum to one (because of its inherent normalization).

Alternative parameterizations that do not enforce these guarantees may still result

in a functioning algorithm25, but not one that can be used for estimating functions

of the return, so they are less useful for estimating functions of the return.

Now that we have a means of representing arbitrary distributions in an approx-

imate fashion, we turn to the question of learning the distribution of the return via

reinforcement learning.

This is actually a fairly difficult problem. There are some complications from using

a categorical approximation for the distribution, and we will also be using function

approximation, further muddying the waters. It gets positively murky when we

consider that rather than having direct access to the distribution of 𝑅 and 𝑆′ (as

in (3.35)), we tend to only learn through samples of the form (𝑠, 𝑎, 𝑟, 𝑠′). All this
25In the sense that they arrive at a good control policy or value function.

46



before we even consider what loss function to use or update rule to apply!

To explain how these issues were resolved would essentially recapitulate Bellemare,

Dabney and Munos (2017), so instead we provide an outline of their approach.

1. Given a transition (𝑠, 𝑎, 𝑟, 𝑠′), compute ̂𝑍(𝑠) and ̂𝑍(𝑠′),

2. Create a pseudo-distribution 𝒯̂ ̂𝑍 = 𝑟 + 𝛾 ̂𝑍(𝑠′),

3. Project the probability masses from 𝒯̂ ̂𝑍 onto the support 𝐳 using the Cramér

projection, yielding Π𝐶𝒯̂ ̂𝑍,

4. Update the parameters of ̂𝑍 using the gradient of the cross-entropy loss between

Π𝐶𝒯̂ ̂𝑍 and ̂𝑍(𝑠).

The process of computing Π𝐶𝒯̂ ̂𝑍 is also shown in Fig. 3.2.

Z′ = PπZ Rπ and γZ′ TπZ ΠCTπZ

Figure 3.2: The projected distributional Bellman operator can be computed by taking an
estimate of the next state’s return distribution (𝑃𝜋𝑍), applying the discount 𝛾 to it and com-
bining it with the reward to get 𝒯𝜋𝑍, which is then projected onto the support 𝐳 to produce
Π𝐶𝒯𝑍.

In contrast to other methods, there does not seem to be a closed-form expression

for the fixed-point of C5126; however, it is interesting to note that in the LFA case

its update equation resembles TD(0) applied to distributions. Pseudocode for the

C51 algorithm under linear function approximation is given in Algorithm 5, and a

derivation of the update rule is provided in Appendix B.

26However, we can generate a close approximation for its fixed-point through iterative methods.

47



CHAPTER 4

THE 𝛿2-RETURN AND VARiANCE

In this chapter we examine a method for learning the variance of the return directly,

in contrast to the raw moment-based estimation used by VTD1.

We show how the squared temporal difference errors can be used as a cumulant2

with a well-defined return. If value function is exact (i.e., 𝑣 = 𝑣𝜋), then the 𝛿2-return

corresponds to E𝜋[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2], the variance of the return, and is in fact equi-

valent to the raw moment based approaches, albeit with more favorable numerical

properties. We also discuss the more typical case where we do not have access to the

true value function. In Section 4.5, we describe DVTD, an algorithm that targets

the 𝛿2-return and provide an argument for its convergence..

4.1 Variance and the 𝛿2-return

In analogy with the value function, which maps states to their expected return, we

might also imagine a variance function:

𝑢𝜋(𝑠) = E
𝜋

[(𝐺𝑡 − 𝑣𝜋(𝑠))2|𝑆𝑡 = 𝑠] = E
𝜋

[𝐺2
𝑡 |𝑆𝑡 = 𝑠]

⏟⏟⏟⏟⏟
𝑣(2)

𝜋 (𝑠)

− E
𝜋

[𝐺𝑡|𝑆𝑡 = 𝑠]2
⏟⏟⏟⏟⏟⏟⏟

𝑣2𝜋(𝑠)

.
(4.1)

Earlier, in Section 3.3.3, we discussed how the second moment can be expressed as

a Bellman equation, which in turn allows us to compute the variance as 𝑢𝜋(𝑠) =
1See Section 3.3, particularly Section 3.3.3.
2i.e., a reward-like signal.

48



𝑣(2)
𝜋 (𝑠) − 𝑣2

𝜋(𝑠). However, the form of 𝐺𝑡 − 𝑣𝜋(𝑠) suggests an alternative approach:

𝑢𝜋(𝑠) = E
𝜋
[(𝐺𝑡 − E[𝐺𝑡])2|𝑆𝑡 = 𝑠] = E

𝜋,𝑠
[(𝐺𝑡 − 𝑣𝜋(𝑠))2]

= E
𝜋,𝑠

[(𝑅𝑡+1 + 𝛾𝑡+1𝐺𝑡+1 − 𝑣𝜋(𝑠))2]

= E
𝜋,𝑠

[(𝑅𝑡+1 + 𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑠) + 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋,𝑠

[(𝛿𝜋
𝑡 + 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋,𝑠

[(𝛿𝜋
𝑡 )2 + 2𝛿𝜋

𝑡 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)) + 𝛾2
𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2]

= E
𝜋,𝑠

[(𝛿𝜋
𝑡 )2] + 2 E

𝜋,𝑠
[𝛿𝜋

𝑡 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))] + E
𝜋,𝑠

[𝛾2
𝑡+1𝑢𝜋(𝑆𝑡+1)],

(4.2)

where we use the superscript 𝜋 in 𝛿𝜋
𝑡 = 𝑅𝑡+1+𝛾𝑡+1𝑣𝜋(𝑆𝑡+1)−𝑣𝜋(𝑆𝑡) to draw attention

to the fact that the value function used is the true value function, 𝑣𝜋(⋅).

As with the expansion for the return’s second moment (see Section 3.3.2), the

cross-term prevents us from immediately identifying (4.2) as a Bellman equation.

But as it turns out, the cross-term 2𝛿𝜋
𝑡 𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)) is zero in expectation,

thus:

𝑢𝜋(𝑠) = E
𝜋
[𝛿2

𝑡 + 𝛾2
𝑡+1𝑢𝜋(𝑆𝑡+1)|𝑆𝑡 = 𝑠]. (4.3)

We can actually state a more general result that applies to the λ-return in addition

to the Monte Carlo return:

Theorem 4.1 (Variance of the λ-return from TD Errors)

Let 𝐺𝜆,𝜋
𝑡 = 𝑅𝑡+1 +𝛾𝑡+1(𝜆𝑡+1𝐺𝜆,𝜋

𝑡+1 +(1−𝜆𝑡+1)𝑣𝜋(𝑆𝑡+1)) be the λ-return given the
value function 𝑣(𝑠) = 𝑣𝜋(𝑠) = E𝜋[𝐺𝑡], and let 𝛿𝜋

𝑡 = 𝑅𝑡+1 +𝛾𝑡+1𝑣𝜋(𝑆𝑡+1)−𝑣𝜋(𝑆𝑡).

Then:

𝑢𝜆
𝜋(𝑠) ≝ V

𝜋
[𝐺𝜆,𝜋

𝑡 |𝑆𝑡 = 𝑠] = E
𝜋

[(𝛿𝜋
𝑡 )2 + 𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝜆,𝜋

𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2]

= 𝛿2
𝜋(𝑠) + ∑

𝑠′
𝑝𝜋(𝑠, 𝑠′)𝛾2(𝑠′)𝜆2(𝑠′)𝑢𝜆

𝜋(𝑠′),
(4.4)

where 𝛿2
𝜋(𝑠) = E𝜋[(𝛿𝜋

𝑡 )2|𝑆𝑡 = 𝑠].

Note that when 𝜆(𝑠) = 1 for all states, the λ-return is equivalent to the Monte
49



Carlo return, and (4.4) reduces to (4.3).

Before proving Theorem 4.1, we first justify our claim about the cross-term.

Lemma 4.2

Let {𝐶𝑡}𝑡=0 and {𝐵𝑡}𝑡=0 be sequences of random variables, with:

∘ 𝐶𝑡 = 𝑐(𝑆𝑡, 𝐴𝑡, 𝑅𝑡, 𝑆𝑡+1) + 𝜖𝑡, where 𝑐 ∶ 𝒮 × 𝒜 × ℛ × 𝒮 → R is a bounded

function mapping transitions to real numbers, and {𝜖𝑡} is a noise sequence

with mean zero,

∘ 𝐵𝑡 = 𝐺𝜆
𝑡 − 𝑣𝜋(𝑆𝑡).

Then:

E
𝜋
[𝐶𝑡𝐵𝑡+1|𝑆𝑡 = 𝑠] = 0. (4.5)

PROOF (LEMMA 4.2):

We prove this by simply expanding the expectation, noting that if we condition on

the transition (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1), then 𝐶𝑡 and 𝐵𝑡+1 are conditionally independent,

with E𝜋,𝑠[𝐵𝑡] = E𝜋,𝑠[𝐺𝜆
𝑡+1 − 𝑣𝜋(𝑆𝑡+1)] = 0.

First, observe that:

E
𝜋

[𝐶𝑡𝐵𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎) E
𝜋

[𝐶𝑡𝐵𝑡+1|𝑆𝑡=𝑠,𝐴𝑡=𝑎,𝑅𝑡+1=𝑟,𝑆𝑡+1=𝑠′].

(4.6)

Given (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1), then 𝐶𝑡 = 𝑐(𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1) + 𝜖𝑡 is effectively con-

stant, and can be taken out of the expectation:

E
𝜋,𝑠,𝑎,𝑟,𝑠′

[(𝑐(𝑠, 𝑎, 𝑟, 𝑠′) + 𝜖𝑡)𝐵𝑡+1] = E
𝜋,𝑠,𝑎,𝑟,𝑠′

[𝑐(𝑠, 𝑎, 𝑟, 𝑠′) + 𝜖𝑡] E
𝜋,𝑠,𝑎,𝑟,𝑠′

[𝐵𝑡+1]

= 𝑐(𝑠, 𝑎, 𝑟, 𝑠′) E
𝜋,𝑠,𝑎,𝑟,𝑠′

[𝐵𝑡+1].
(4.7)

From the Markov property, we have that E𝜋[𝐵𝑡+1|𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1] =

E𝜋[𝐵𝑡+1|𝑆𝑡+1]; furthermore, since 𝑣𝜋(𝑠) = E𝜋[𝐺𝜆
𝑡 |𝑆𝑡 = 𝑠] by definition, we have:

E
𝜋
[𝐵𝑡+1|𝑆𝑡+1] = E

𝜋
[𝐺𝜆

𝑡+1 − 𝑣𝜋(𝑆𝑡+1)|𝑆𝑡+1] = 0.

50



Thus:

E
𝜋

[𝐶𝑡𝐵𝑡+1|𝑆𝑡 = 𝑠] = ∑
𝑎

𝜋(𝑎|𝑠) ∑
𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑐(𝑠, 𝑎, 𝑟, 𝑠′) × 0 = 0. (4.8)

Since this holds for arbitrary 𝑆𝑡, the claim follows. ■

With Lemma 4.2 in hand, proving Theorem 4.1 is straightforward:

PROOF (THEOREM 4.1):

We asserted that:

𝑢𝜋(𝑠) ≝ V
𝜋
[𝐺𝜆,𝜋

𝑡 |𝑆𝑡 = 𝑠] = E
𝜋

[(𝛿𝜋
𝑡 )2 + 𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝜆,𝜋

𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2], (4.9)

where 𝐺𝜆,𝜋
𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1(𝜆𝑡+1𝐺𝜆,𝜋

𝑡+1 + (1 − 𝜆𝑡+1)𝑣𝜋(𝑆𝑡+1)) and 𝛿𝜋
𝑡 = 𝑅𝑡+1 +

𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡).

To show this, we expand from the definition:

V
𝜋
[𝐺𝜆,𝜋

𝑡 ] = E
𝜋
[(𝐺𝜆,𝜋

𝑡 − E[𝐺𝜆,𝜋
𝑡 ])2] = E

𝜋
[(𝐺𝜆,𝜋

𝑡 − 𝑣𝜋(𝑆𝑡))2]

= E
𝜋

[(𝑅𝑡+1 + 𝛾𝑡+1(𝜆𝑡+1𝐺𝜆,𝜋
𝑡+1 + (1 − 𝜆𝑡+1)𝑣𝜋(𝑆𝑡+1)) − 𝑣𝜋(𝑆𝑡))2]

= E
𝜋

[(𝑅𝑡+1 + 𝛾𝑡+1𝑣𝜋(𝑆𝑡+1) − 𝑣𝜋(𝑆𝑡) + 𝛾𝑡+1𝜆𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋

[(𝛿𝜋
𝑡 + 𝛾𝑡+1𝜆𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1)))2]

= E
𝜋

[(𝛿𝜋
𝑡 )2] + 2 E

𝜋
[𝛿𝑡𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))] + E

𝜋
[𝛾2

𝑡+1𝜆𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2].
(4.10)

Applying Lemma 4.2 by identifying 𝐶𝑡 with 𝛾𝑡+1𝛿𝑡, we note that

E𝜋 [𝛿𝑡𝛾𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))] = 0. Therefore we have:

V
𝜋
[𝐺𝜆,𝜋

𝑡 ] = E
𝜋

[(𝛿𝜋
𝑡 )2] + E

𝜋
[𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2]

= E
𝜋

[(𝛿𝜋
𝑡 )2 + 𝛾2

𝑡+1𝜆2
𝑡+1(𝐺𝜆,𝜋

𝑡+1 − 𝑣𝜋(𝑆𝑡+1))2],
(4.11)

as claimed. ■

51



4.2 Cumulants and Approximation Targets

Manipulating some of the quantities we work with becomes substantially easier if

they are expressed in terms of vectors and matrices (see Section 2.2). We describe

the notation we will be using, then show how it can be used for the cumulants and

their associated returns that we study.

4.2.1 Defining Cumulants

The Hadamard product, also known as the Schur product or entrywise product, is a

particularly useful tool for expressions involving transition probabilities. For 𝐀 and

𝐁 both 𝑚 × 𝑛 matrices, their Hadamard product is denoted 𝐀 ∘ 𝐁 and defined:

[𝐀 ∘ 𝐁]𝑖𝑗 ≝ [𝐀]𝑖𝑗[𝐁]𝑖𝑗 = 𝐴𝑖𝑗𝐵𝑖𝑗. (4.12)

By convention, we denote the elementwise power of a matrix as 𝐀(2) = 𝐀∘𝐀. When

denoting the elementwise power of vectors, we use the exponent without adornment,

so 𝐯2 = [𝑣2
1, 𝑣2

2, … , 𝑣2
𝑛]⊤, so as to reserve the parenthesized version for denoting things

like the second moment of the return as 𝐯(2)
𝜋 .

Using the Hadamard product, the expected reward 𝐫𝜋 is:

[𝐫𝜋]𝑖 = E
𝜋
[𝑅𝑡+1|𝑆𝑡 = 𝑖] = ∑

𝑗
𝑝𝜋(𝑖, 𝑗)𝑟(𝑖, 𝑗) = ∑

𝑗
𝑃𝑖𝑗𝑅𝑖𝑗

= [𝐏𝜋 ∘ 𝐑]𝟏,
(4.13)

where 𝟏 = [1, 1, … , 1]⊤ is the vector of ones, and

[𝐏𝜋]𝑖𝑗 ≝ 𝑝𝜋(𝑖, 𝑗),

[𝐑𝜋]𝑖𝑗 ≝ E
𝜋
[𝑅𝑡+1|𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗].

(4.14)

That is, 𝐏𝜋 is the transition matrix for policy 𝜋, and 𝐑𝜋 is the reward matrix3 for

that same policy. For remainder of this chapter, we will omit the subscript 𝜋 on
3Note that we tacitly assume that the reward function doesn’t depend on the action selected, e.g.

𝑟(𝑠, 𝑎, 𝑠′) = 𝑟(𝑠, 𝑠′). This simplifies the notation without really affecting the results. We could
incorporate action dependence, for example by using tensors or higher order arrays, but this tends
towards complication without providing additional insight.

52



these matrices, since we only consider the on-policy case.

A slightly more complicated example would be the TD error matrix. If we denote

by Δ𝑖𝑗 the expected TD error for a transition from state 𝑖 to state 𝑗, we observe:

Δ𝑖𝑗 = E
𝜋
[𝛿𝑡|𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗]

= E
𝜋
[𝑅𝑡+1 + 𝛾𝑡+1𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡)|𝑆𝑡 = 𝑖, 𝑆𝑡+1 = 𝑗],

(4.15)

so the matrix 𝚫 can be written:

𝚫 ≝ 𝐑 + 𝟏 ⊗ (Γ𝐯) − 𝐯 ⊗ 𝟏

= 𝐑 + 𝟏𝐯⊤
𝛾 − 𝐯𝟏⊤,

(4.16)

where we define 𝐯𝛾 ≝ 𝚪𝐯, and express the vector outer product using the transpose4.
The expected TD error vector is then:

𝛅 = (𝐏 ∘ 𝚫)𝟏 = (𝐏 ∘ 𝐑)𝟏 + (𝐏 ∘ (𝟏𝐯⊤
𝛾 ))𝟏 + (𝐏 ∘ (𝐯𝟏⊤))𝟏

= 𝐫 + 𝐏𝚪𝐯 − 𝐯.
(4.17)

The last line follows from the identity (𝐀 ∘ 𝐱𝐲⊤)𝐳 = 𝐱 ∘ (𝐀(𝐲 ∘ 𝐳)). When 𝐯 = 𝐯𝜋 =
𝐫 + 𝐏𝚪𝐯𝜋, it’s clear that 𝛅𝜋 = 𝟎, as expected.

The advantages of this notation become clear when expressing the cumulants and

targets for the moments of the return. Here, we focus on expressions for the Monte

Carlo return’s variance or second moment, although this approach could be modified

to yield formulas for the λ-return or the return’s higher moments.

The expected squared TD error in state 𝑖 is:

𝛿2(𝑖) ≝ E
𝜋
[𝛿2

𝑡 |𝑆𝑡 = 𝑖] = ∑
𝑗

𝑃𝑖𝑗Δ2
𝑖𝑗. (4.18)

Therefore we define:

𝛅(2) ≝ [𝐏 ∘ 𝚫(2)]𝟏. (4.19)

4Recall that, for some vectors 𝐚 and 𝐛 we have 𝐚 ⊗ 𝐛 = 𝐚𝐛⊤ and [𝐚𝐛⊤]𝑖𝑗 = 𝑎𝑖𝑏𝑗. In particular,
we have [𝟏𝐚⊤]𝑖,𝑗 = 𝑎𝑗 and [𝐚𝟏⊤]𝑖,𝑗 = 𝑎𝑖, and .

53



Similarly, Sobel’s variance cumulant (3.14) is, in vector form:

𝐦 ≝ −𝐯2 + 𝐏 ∘ [𝐑 + 𝟏 ⊗ (𝚪𝐯)](2)𝟏. (4.20)

We write the cumulant for the second moment (3.15) via:

𝐫(2) ≝ [(𝐏 ∘ 𝐑(2)) + 2(𝐏 ∘ 𝐑 ∘ (Γ𝐯)𝟏⊤)]𝟏. (4.21)

Its expected return (c.f . (3.16) is then:

𝐯(2) ≝ (𝐈 − 𝐏𝚪2)−1𝐫(2). (4.22)

The variance targets can therefore be expressed as:

𝐮SM ≝ 𝐯(2) − 𝐯2,

𝐮SOB ≝ (𝐈 − 𝐏𝚪2)−1𝐦,

𝐮DV ≝ (𝐈 − 𝐏𝚪2)−1𝛅(2),

(4.23)

noting that if 𝐈 − 𝐏𝚪 is invertible, then so is 𝐈 − 𝐏𝚪𝑛 for 𝑛 ≥ 1.

4.3 Equivalence of Expressions for the Variance

For derived quantities where 𝐯 = 𝐯𝜋, we use the subscript “𝜋”, e.g. 𝚫𝜋 = 𝐫+𝐏𝚪𝐯𝜋 −
𝐯𝜋 and 𝛅(2)

𝜋 = [(𝐏 ∘ 𝚫(2)
𝜋 )]𝟏. This might seem problematic for the variance of the

return, since we have three candidate expressions— which one to use for 𝐮𝜋? In fact,

they are equivalent when the value function is unbiased, as we will show presently.

Theorem 4.3

Let 𝐯 = 𝐯𝜋. Then the expressions from (4.23) are equivalent; furthermore they

correspond to the variance of the Monte Carlo return. That is,

𝐮𝜋 = (𝐈 − 𝐏𝚪2)−1𝛅(2)
𝜋⏟⏟⏟⏟⏟⏟⏟

𝑢DV

= (𝐈 − 𝐏𝚪2)−1𝐦𝜋⏟⏟⏟⏟⏟⏟⏟
𝑢SOB

= (𝐈 − 𝐏𝚪2)−1𝐫(2)
𝜋 − 𝐯2𝜋⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑢SM

, (4.24)

where

𝑢𝜋(𝑖) = E
𝜋
[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2|𝑆𝑡 = 𝑖]. (4.25)

54



As part of proving Theorem 4.3, we first establish some results that hold in general,

that is, even when 𝐯 ≠ 𝐯𝜋.

Lemma 4.4 Let 𝐦 and 𝐫(2) be defined as in (4.20) and (4.21) respectively. Then:

𝐦 = 𝐫(2) − (𝐈 − 𝐏𝚪2)𝐯2. (4.26)

PROOF (PROOF OF LEMMA 4.4):

We begin by simplifying 𝐫(2) a bit:

𝐫(2) = [(𝐏 ∘ 𝐑(2)) + 2𝐏 ∘ 𝐑 ∘ (𝐯𝛾𝟏⊤)]𝟏

= [𝐏 ∘ 𝐑(2)]𝟏 + 2[𝟏 ∘ (𝐏 ∘ 𝐑(𝟏 ∘ 𝐯𝛾))]

= (𝐏 ∘ 𝐑(2))𝟏 + 2(𝐏 ∘ 𝐑)𝚪𝐯,

(4.27)

where we use the identity (𝐀 ∘ 𝐱𝐲⊤)𝐳 = 𝐱 ∘ (𝐀(𝐲 ∘ 𝐳)). Next, we expand 𝐦:

𝐦 = −𝐯2 + 𝐏 ∘ [𝐑 + 𝟏𝐯⊤
𝛾 ](2)𝟏

= −𝐯2 + [𝐏 ∘ 𝐑(2)]𝟏 + 2[𝐏 ∘ 𝐑 ∘ (𝟏𝐯⊤𝛾 ))]𝟏⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐫(2)

+[𝐏 ∘ (𝟏𝐯⊤
𝛾 )(2)]𝟏

= 𝐫(2) − 𝐯2 + [𝐏 ∘ 𝟏(𝐯2
𝛾)⊤]𝟏

= 𝐫(2) − 𝐯2 + 𝐏𝐯2
𝛾,

(4.28)

in which the third line follows from another identity, (𝐚𝐜⊤)∘(𝐛𝐝⊤) = (𝐚∘𝐛)(𝐜∘𝐝)⊤.

Now, since 𝐯2
𝛾 = (𝚪𝐯)2 = 𝚪2𝐯2 since 𝚪 is diagonal, we then have:

𝐦 = 𝐫(2) − 𝐯2 + 𝐏𝚪2𝐯2 = 𝐫(2) − (𝐈 − 𝐏𝚪2)𝐯2 (4.29)

as claimed. ■

We can also write the DV cumulant in terms of the 𝐦 or 𝐫(2) cumulants:

Lemma 4.5 Let 𝐦, 𝐫(2), and 𝛅(2) be defined as in (4.20), (4.21), and (4.19) respect-

ively. Then:

𝛅(2) = 𝐦 − 2𝐯 ∘ 𝛅 = 𝐫(2) − (𝐈 − 𝐏𝚪2)𝐯2 − 𝐯 ∘ 𝛅. (4.30)

55



PROOF (PROOF OF LEMMA 4.5):

We start with the definition of 𝛅(2):

𝛅(2) = [𝐏 ∘ 𝚫(2)]𝟏

= [𝐏 ∘ (𝐑 + 𝟏𝐯⊤
𝛾 − 𝐯𝟏⊤)(2)]𝟏

= [𝐏 ∘ ((𝐑 + 𝟏𝐯⊤
𝛾 )(2) + (𝐯𝟏⊤)(2) − 2(𝐑 + 𝟏𝐯⊤

𝛾 ) ∘ (𝐯𝟏⊤))]𝟏.

(4.31)

We can extract 𝐦 from the above by recognizing

[𝐏 ∘ ((𝐑 + 𝟏𝐯⊤
𝛾 )(2))]𝟏 = 𝐦 + 𝐯2. (4.32)

Using (𝐀 ∘ 𝐱𝐲⊤)𝐳 = 𝐱 ∘ (𝐀(𝐲 ∘ 𝐳)) we get:

[𝐏 ∘ ((𝐑 + 𝟏𝐯⊤
𝛾 ) ∘ (𝐯𝟏⊤))]𝟏 = 𝐯 ∘ (𝐏 ∘ (𝐑 + 𝟏𝐯⊤

𝛾 ))𝟏. (4.33)

Furthermore, since [𝐏 ∘ (𝐯𝟏⊤)(2)]𝟏 = 𝐯2 we have

𝛅(2) = 𝐦 + 2𝐯2 − 2𝐯 ∘ (𝐏 ∘ (𝐑 + 𝟏𝐯⊤
𝛾 ))𝟏

= 𝐦 − 2𝐯 ∘ (𝐏 ∘ 𝚫)𝟏

= 𝐦 − 2𝐯 ∘ 𝛅,

(4.34)

thus proving the claim ■

The preceding results make Theorem 4.3 immediate:

PROOF (PROOF OF THEOREM 4.3):

From Lemma 4.4 we have

𝐦𝜋 = 𝐫(2)
𝜋 − (𝐈 − 𝐏𝚪2)𝐯2

𝜋, (4.35)

hence:

(𝐈 − 𝐏𝚪2)−1𝐦𝜋 = (𝐈 − 𝐏𝚪2)−1𝐫(2)
𝜋 − (𝐈 − 𝐏𝚪2)−1(𝐈 − 𝐏𝚪2)𝐯2

𝜋

= 𝐯(2)
𝜋 − 𝐯2

𝜋,
(4.36)

therefore the Sobel and SM expressions are equivalent when 𝐯 = 𝐯𝜋.

56



For the DV target, we observe that 𝛅𝜋 = 𝟎, so from Lemma 4.5 we have

𝛅(2)
𝜋 = 𝐦𝜋 − 2𝐯𝜋 ∘ 𝛅𝜋 = 𝐦𝜋, (4.37)

which implies that the DV and Sobel expressions for 𝐮𝜋 are equivalent, and there-

fore that the SM and DV expressions are also equivalent. ■

4.4 What if the Value Function is Biased?

When 𝐯 ≠ 𝐯𝜋, none of the targets corresponds to the true variance5. If the value

function is reasonably close to 𝐯𝜋, then our approximations for the variance can still

be useful6. However, if the value function is biased, we have to grapple with the

question: what does 𝐮DV represent?

Some insight can be gained by asking a different question: can we construct a

return that expresses the error of our approximate value function? It is easy to

show that the difference between our value function and the return corresponds to

the discounted sum of TD errors7. Let ℰ𝑡 ≝ 𝐺𝑡 − 𝑣(𝑆𝑡), and note that it can be

expressed recursively:

ℰ𝑡 = 𝐺𝑡 − 𝑣(𝑆𝑡) = 𝑅𝑡+1 + 𝛾𝐺𝑡+1 − 𝑣(𝑆𝑡) + 𝛾(𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡+1))

= 𝛿𝑡 + 𝛾ℰ𝑡+1 =
∞

∑
𝑛=0

𝛾𝑛𝛿𝑡+𝑛.
(4.38)

Taking the expectation, we see:

E
𝜋

[ℰ𝑡|𝑆𝑡 = 𝑠] = E
𝜋,𝑠

[𝐺𝑡] − E
𝜋,𝑠

[𝑣(𝑆𝑡)] = 𝑣𝜋(𝑠) − 𝑣(𝑠). (4.39)

So the expected value of ℰ𝑡 corresponds to the bias, but perhaps more interestingly,
5In all cases, the difference between 𝐮𝜋 and 𝐮̂ will be proportional to ‖𝐯𝜋 − 𝐯‖2, as one might

guess from the equations.
6For many applications, such as stepsize adaptation or other kinds of meta-learning (see White and

White (2016), particularly the experiments), so long as the variance estimate is broadly correct it can
be an improvement over having no estimate at all.

7For easier presentation, we use constant 𝛾, but the argument holds in the GVF setting with
state-dependent discounting.

57



the second moment of ℰ𝑡 is equivalent to the Mean Squared Return Error8:

RE( ̂𝑣) ≝ E
𝜋
[(𝐺𝑡 − ̂𝑣(𝑠))2] = ∑

𝑠∈𝒮
𝑑𝜋(𝑠) E[(𝐺𝑡 − ̂𝑣(𝑠))2|𝑆𝑡 = 𝑠]. (4.40)

with the obvious equivalence E𝜋[ℰ2
𝑡 ] = RE(𝑣).

While we can in fact construct a return for a value function’s bias, or even its

return error, it turns out to not be congenial to approximation. Consider the case

where we attempt to estimate the bias using the same features as for learning the

value function. For TD(λ) algorithms under linear function approximation, the

fixed-point for the weights is:

𝛉∗ = [𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)𝐗]𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1𝐫. (2.21)

Note that 𝐫 = (𝐈 − 𝐏𝚪)𝐯𝜋, so we can write:

𝐯𝛉 = 𝐗𝛉∗ = 𝐗[𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)𝐗]𝐗⊤𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)𝐯𝜋

= 𝐗(𝐗⊤𝐅𝜆𝐗⊤)−1𝐗⊤𝐅𝜆𝐯𝜋 = 𝚷𝜆𝐯𝜋,
(4.41)

where
𝐅𝜆 ≝ 𝐃(𝐈 − 𝐏𝚪𝚲)−1(𝐈 − 𝐏𝚪)

𝚷𝜆 ≝ 𝐗(𝐗⊤𝐅𝜆𝐗⊤)−1𝐗⊤𝐅𝜆.
(4.42)

Which is to say that the TD(λ) fixed-point can be interpreted as a projection of the

value function onto the approximation subspace of 𝐗 under a weighted L2 norm9.

If we try to estimate the bias vector 𝛆 = 𝐯𝜋 − 𝐯𝛉 = (𝐈 − 𝐏𝚪)−1𝛅, we see that:

𝛆̂𝛉 = 𝚷𝜆𝛆 = 𝚷𝜆(𝐈 − 𝐏𝚪)−1𝛅

= 𝚷𝜆(𝐈 − 𝐏𝚪)−1(𝐫 + 𝐏𝚪𝐯𝛉 − 𝐯𝛉)

= 𝚷𝜆(𝐈 − 𝐏𝚪)−1𝐫 + 𝚷𝜆(𝐈 − 𝐏𝚪)−1(𝐏𝚪 − 𝐈)𝐯𝛉

= 𝚷𝜆𝐯𝜋 − 𝚷𝜆𝐯𝛉 = 𝐯𝛉 − 𝐯𝛉

= 𝟎.

(4.43)

8From Sutton and Barto (2018, equation 11.24).
9This has been observed before (for example, by Sutton, Szepesvári and Maei (2009), Scherrer

(2010) and Maei (2011)) for the case of TD(0) and TD(1), and has presumably been noted in other
works.

58



This makes sense, since at an estimator’s fixed-point we would expect that its bias

to be minimal10. However, it implies that our estimator for 𝛆̂𝛉 will be zero for all

states, assuming we use the same approximation architecture that produced 𝐯𝛉.

If we try to construct a target ̂ℰ(2)
𝑡 like we did for ̂𝐺(2)

𝑡 in (3.16), we get:

̂ℰ(2)
𝑡 = 𝛿2

𝑡 + 2𝛾𝛿𝑡 ̂𝜀(𝑆𝑡+1)⏟⏟⏟⏟⏟⏟⏟
like 𝑅̂(2)

𝑡+1

+𝛾2 ̂ℰ(2)
𝑡+1, (4.44)

but since ̂𝜀𝛉(𝑠) = 0 for 𝐯 = 𝐯𝛉, this just becomes

̂ℰ(2)
𝑡 = 𝛿2

𝑡 + 𝛾2 ̂ℰ(2)
𝑡+1, (4.45)

which is to say that ̂ℰ(2)
𝑡 is equivalent to the 𝛿2-return at the value function’s fixed-

point. This comports with the fact that, when 𝐯 = 𝐯𝜋, RE is entirely comprised by

the variance, as we can see from the bias-variance decomposition:

RE(𝑣) = E
𝜋
[(𝐺𝑡 − 𝑣(𝑆𝑡))2] = E

𝜋
[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2]

⏟⏟⏟⏟⏟⏟⏟
variance

+ E
𝜋
[(𝑣𝜋(𝑆𝑡) − 𝑣(𝑆𝑡))2]

⏟⏟⏟⏟⏟⏟⏟⏟⏟
bias2

. (4.46)

Circling back to the original question about what the target represents, we could

either regard the 𝛿2-return as a proxy for the variance or the mean square return

error. But since the learning agent has no way of perceiving its own bias, we prefer

to think of 𝐮DV as representing the variance of the MDP as experienced by the agent.
10If that were not the case, we could use our estimate of 𝛆̂ to reduce the error further, thereby

producing a superior approximation, an apparent contradiction. If 𝛆̂ ≠ 𝟎, either 𝐯 is not at its
fixed-point, or we are comparing our approximation against a different objective than the one it
is minimizing. This is why TD(0) and TD(1) have different fixed points— they minimize different
objective functions (although they have the same solution when 𝐗 has rank equal to |𝒮|).

59



4.5 The Direct Variance TD Algorithm

This section introduces a TD-style algorithm targeting the 𝛿2-return for variance

estimation which we call Direct Variance Temporal Difference Learning, abbreviated

DVTD: a model-free, online, incremental learning algorithm.

The name is apt for two reasons:

1. It is essentially a temporal-difference algorithm, and enjoys many of the same

advantages as standard TD(λ). As with TD(λ), DVTD’s updates have time-

and memory-complexity of 𝒪(𝑛), where 𝑛 is the number of parameters.

2. Though similar to VTD in that it uses an estimate of the value function to

construct its approximation target, unlike VTD, it does not require further

computation to produce the variance— instead, it learns the variance directly.

We first present the update equations for DVTD(λ) in the tabular setting:

TABULAR DVTD(λ)

𝑧𝑡(𝑠) =
⎧{
⎨{⎩

1 + 𝛾𝑡𝜆𝑡𝑒𝑡−1(𝑠), if 𝑠 = 𝑆𝑡

𝛾𝑡𝜆𝑡𝑒𝑡−1(𝑠), if 𝑠 ≠ 𝑆𝑡

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡)
𝑣(𝑆𝑡) = 𝑣(𝑆𝑡) + 𝛼𝑡𝛿𝑡𝑒(𝑆𝑡)

̃𝛾𝑡 = 𝛾2
𝑡 𝜅2

𝑡

𝑅̃𝑡+1 = 𝛿2
𝑡

̃𝑧𝑡(𝑠) =
⎧{
⎨{⎩

1 + ̃𝛾𝑡𝜆̃𝑡 ̃𝑒𝑡−1(𝑠), if 𝑠 = 𝑆𝑡

̃𝛾𝑡𝜆̃𝑡 ̃𝑒𝑡−1(𝑠), if 𝑠 ≠ 𝑆𝑡

̃𝛿𝑡 = 𝑅̃𝑡+1 + ̃𝛾𝑡+1 ̃𝑣(𝑆𝑡+1) − ̃𝑣(𝑆𝑡)
̃𝑣(𝑆𝑡) = ̃𝑣(𝑆𝑡) + ̃𝛼𝑡 ̃𝛿𝑡 ̃𝑒(𝑆𝑡)

⎫}}}
⎬}}}⎭

TD Component

⎫}}}}}}
⎬}}}}}}⎭

DV Component

The TD component estimates the value function and produces the cumulant, 𝛿2
𝑡 ,

that is then fed into the DV component. The DV component is essentially just

another instance of TD(λ) using 𝛿2
𝑡 in place of 𝑅𝑡+1, a different discount factor, ̃𝛾,

and potentially different bootstrapping and stepsize (𝜆̃ and ̃𝛼 respectively).
60



Here we use ̃𝛾 = 𝛾2𝜅2, with different values of 𝜅 allowing us to estimate the

variance of different 𝜆-returns, such that 𝑢̂(𝑠) ≈ E𝜋[𝐺𝜅
𝑡 ] For example, with 𝜅 = 1,

DVTD estimates the variance of the Monte Carlo return, for 𝜅 = 0 it targets the

variance of the one-step TD error, and for 𝜅 = 𝜆 it learns the variance of the 𝜆-return
used by the TD component.

Schematically, the updates look something like this:

TD Component

DV Component

Rt+1

λt+1

γt+1

λ̃t+1

κt+1

γ̃t+1

δ2t

vt+1

ut+1

Figure 4.1

Under linear function approximation, the update equations are:

LiNEAR DVTD(λ)

𝐳𝑡 = 𝐱𝑡 + 𝛾𝑡𝜆𝑡𝐳𝑡−1

𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝛉⊤
𝑡 𝐱𝑡+1 − 𝛉⊤

𝑡 𝐱𝑡

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑡𝛿𝑡𝐳𝑡

̃𝛾𝑡 = 𝛾2
𝑡 𝜅2

𝑡

𝑅̃𝑡+1 = 𝛿2
𝑡

̃𝐳 = 𝐱𝑡 + ̃𝛾𝑡𝜆̃𝑡 ̃𝐳𝑡−1

̃𝛿𝑡 = 𝑅̃𝑡+1 + ̃𝛾𝑡+1𝐰⊤𝐱𝑡+1 − 𝐰⊤𝐱𝑡

𝐰𝑡+1 = 𝐰𝑡 + ̃𝛼𝑡 ̃𝛿𝑡 ̃𝐳𝑡

An example implementation of DVTD for linear function approximation is provided

in Algorithm 2 (Page 114).

We can observe that it is clearly 𝒪(𝑛) per time-step with respect to the number

of features, and requires approximately twice as much time and memory to estimate

both the value and variance of the return. Note that, while the basic algorithm
61



uses TD(λ) for both estimates, we could easily substitute alternate methods for

each component— for example, learning the value function with LSTD(λ) and the

variance with GTD(λ), or using a different representation for the two components.

The advantage of this simpler formulation is that it make analysis easier. In the

next section, we discuss the algorithm’s fixed-point and outline a proof of conver-

gence that uses existing results and extends them to DVTD.

4.6 Convergence Results

The ODE method involves comparing a discrete time stochastic approximation

scheme (in this case, DVTD) with a related ordinary differential equation, with

the goal of showing that:

1. The differential equation converges to some stable equilibrium,

2. The iterates of the approximation scheme become arbitrarily close to the tra-

jectory of the DE.

We described the general framework for this technique in Section 2.6 and now apply

it to DVTD. Our proof addresses a modified version of DVTD that makes a number

of assumptions, although in our experiments suggest that the algorithm is stable

and convergent even without these restrictions.

4.6.1 Setup and Assumptions

In order to apply the ODE method, we first have to establish that DVTD can in

fact be written in the required form:

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛, 𝛉𝑛) + 𝐍𝑛+1], (2.43)

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝐠(𝐰𝑛, 𝛉𝑛) + 𝐌𝑛+1]. (2.44)

62



For 𝜆 = 𝜆̃ = 0, DVTD’s iterates have the form:

𝛿𝑡 = 𝑅𝑡+1 + 𝛉⊤
𝑡 (𝛾𝑡+1𝐱𝑡+1 − 𝐱𝑡)

𝑅̃𝑡+1 = 𝛿2
𝑡

̃𝛿𝑡 = 𝑅̃𝑡+1 + 𝐰⊤
𝑡 ( ̃𝛾𝑡+1𝐱𝑡+1 − 𝐱𝑡)

𝛉𝑡+1 = 𝛉𝑡 + 𝛼𝑛𝛿𝑡𝐱𝑡

𝐰𝑡+1 = 𝐰𝑡 + 𝛽𝑡 ̃𝛿𝑡𝐱𝑡.

(4.47)

If we assume transitions are i.i.d. (𝓐. 2.2), we can condense DVTD’s iterates to:

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝑟𝑛 + 𝛉⊤
𝑛(𝛾𝑛𝐱′

𝑛 − 𝐱𝑛)]𝐱𝑛

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[ ̃𝑟𝑛 + 𝐰⊤
𝑛( ̃𝛾𝑛𝐱′

𝑛 − 𝐱𝑛)]𝐱𝑛,
(4.48)

with 𝑠𝑘 ∼ 𝑑𝜋(⋅), 𝑠′
𝑘 ∼ 𝑃𝜋(𝑠𝑘, ⋅), 𝑟𝑘 ∼ 𝑟(𝑠𝑘, 𝑠′

𝑘) and 𝛾𝑘 = 𝛾(𝑠′
𝑘). Then we can see that

the TD component fits the mould of (2.44), with

𝛉𝑛+1 = 𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]

𝐠(𝛉) = −𝐀𝛉 + 𝐛 = −𝐀[𝛉 − 𝛉∗]

𝐌𝑛+1 = 𝑟𝑛 + 𝛉⊤
𝑛(𝛾𝑛𝐱′

𝑛 − 𝐱𝑛) − 𝐠(𝛉𝑛) = 𝛿𝑛𝐱𝑛 − 𝐠(𝛉𝑛),

(4.49)

where
𝐀 = E𝜋[𝐱𝑘(𝐱𝑘 − 𝛾′

𝑘𝐱′
𝑘)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪)𝐗

𝐛 = E𝜋[𝑟𝑘 𝐱𝑘] = 𝐗⊤𝐃𝜋𝐫
(4.50)

are defined as usual11. To get −𝐀𝛉 + 𝐛 = −𝐀[𝛉 − 𝛉∗], we assume that 𝐀 is

nonsingular12, so 𝛉∗ = 𝐀−1𝐛 is well-defined, which allows us to substitute 𝐀𝛉∗ for

𝐛. We also note that 𝐠(𝛉, 𝐰) = 𝐠(𝛉) since the DV component does not affect the

TD part.

We can identify the analogues of 𝐀 and 𝐛 in the DV component as well, which

should be unsurprising given its roots as a TD method. Taking the expectation for
11See Section 2.6.1, particularly the material around (2.35) and (2.36).
12This is true even under state-dependent discounting provided that 𝐗 is full rank and 𝐏𝜋 is an

ergodic stochastic matrix. The interested reader can refer to Mahmood 2017, Theorem 32 (and the
rest of Chapter 9 if more context is desired).

63



an arbitrary transition at time 𝑘,

E𝜋[( ̃𝑟𝑘 + 𝐰⊤
𝑘 ( ̃𝛾𝑘𝐱′

𝑘 − 𝐱𝑘))𝐱𝑘] = E𝜋[ ̃𝑟𝑘𝐱𝑘]⏟
𝐛̃(𝛉)

+ E𝜋[(𝐰⊤
𝑘 ( ̃𝛾𝑘𝐱′

𝑘 − 𝐱𝑘))𝐱𝑘]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
𝐀̃

. (4.51)

Note that 𝐛̃ is not constant, in contrast to the TD component. It depends on 𝛉 via

̃𝑟𝑛 = 𝛿2
𝑛(𝛉), hence we write 𝐛̃(𝛉) to reflect that fact13. Conversely, the fact that 𝐀̃

does not depend on 𝛉 is also notable. Insofar as we are justified in assuming 𝐀 is

non-singular, then the same holds for 𝐀̃, provided ̃𝛾(𝑠) ∈ [0, 1) for all 𝑠 ∈ 𝒮.

Letting 𝚪̃ be the diagonal matrix with Γ̃𝑖𝑖 = 𝛾(𝑖), we can rewrite the above in

matrix notation:

𝐀̃(𝛉) = E𝜋[𝐱𝑘(𝐱𝑘 − 𝛾𝑘𝐱′
𝑘)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝐏𝜋𝚪̃)𝐗, (4.52)

𝐛̃(𝛉) = E𝜋[ ̃𝑟𝑘(𝛉) 𝐱𝑘] = 𝐗⊤𝐃𝜋 ̃𝐫(𝛉). (4.53)

We can then express the DV component in the desired form:

𝐰𝑛+1 = 𝐰𝑛 + 𝛽𝑛[𝐡(𝛉𝑛, 𝐰𝑛) + 𝐍𝑛+1] (4.54)

𝐡(𝛉, 𝐰) = −𝐀̃𝐰 + 𝐛̃𝛉 = −𝐀̃[𝐰 − 𝐰∗(𝛉)] (4.55)

𝐍𝑛+1 = ̃𝑟𝑛 + 𝐰⊤
𝑛( ̃𝛾𝑛𝐱′

𝑛 − 𝐱𝑛) − 𝐡(𝛉𝑛, 𝐰𝑛) = ̃𝛿𝑛(𝛉)𝐱𝑛 − 𝐡(𝛉𝑛, 𝐰𝑛), (4.56)

where we define 𝐰∗ ∶ R𝑑 → R𝑑 as the fixed-point for the DV component for a

particular TD component weight vector:

𝐰∗(𝛉) ≝ 𝐀̃−1𝐛̃(𝛉). (4.57)

While similar to the iterates for the TD component, the DV part is nonlinear in

𝛉. This makes the analysis more difficult, as 𝐡(𝛉, 𝐰) is non-Lipschitz, which denies

us the ability to simply apply standard theorems for convergence and stability. In

order to circumvent those issues, we make an additional assumption in the form of

a projection step.

Letting 𝐶 ⊂ R𝑑 be some compact set, chosen such that it is large enough to include
13We might also write 𝐛̃ (with the 𝛉 as subscript) as a shorthand.

64



all possible solutions for the 𝛉∗ and 𝐰∗, and define the projection 𝚼 ∶ R𝑑 → 𝐶 as:

𝚼(𝐳) ≝ argmin
𝐳̂∈𝐶

‖𝐳 − ̂𝐳‖. (4.58)

This obviates issues from possible divergence and in practice actually invoking the

projection does not seem to be necessary. While not ideal14, the use of a projection

step is fairly common in the literature.

We end up with updates of the form:

𝛉𝑛+1 = 𝚼(𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]), (4.59)

𝐰𝑛+1 = 𝚼(𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛) + 𝐍𝑛+1]). (4.60)

Finally, we also assume that the rewards and features are bounded:

Assumption 4.1 (Bounded Features)

The rewards are bounded with 𝑟𝑛 ≤ 𝐾𝑏 for all 𝑛 ≥ 0, as are the features, with

sup𝑠∈𝒮 ‖𝐱(𝑠)‖ ≤ 𝐾𝑏 for some scalar 𝐾𝑏 > 0.

This assumption is helpful for a number of reasons (as will become evident shortly).

It can be weakened somewhat, as we only really need bounds on the moments15, but

that complicates the analysis for dubious benefit.

With the foregoing in mind, we can state our convergence theorem:

Theorem 4.6 (DVTD Convergence for λ=0)

Let {(𝑠𝑛, 𝑠′
𝑛, 𝑟𝑛)}𝑛≥0 be a sequence of transitions that satisfies 𝓐. 2.1 and 2.2,

i.e., (𝑠, 𝑠′, 𝑟) is sampled i.i.d., with 𝑟𝑛 = 𝑟(𝑠𝑛, 𝑠′
𝑛). Assume that the features

𝐱𝑛 = 𝐱(𝑠𝑛) and rewards 𝑟𝑛 are bounded according as in𝓐. 4.1, and that the

stepsize sequences {𝛼𝑛} and {𝛽𝑛} are chosen such that 𝓐. 2.3 holds. Further

assume that 𝐀 and 𝐀̃ are positive definite matrices.

14While we would have preferred to provide a result without recourse to a projection step, the other
approaches we tried also seemed to entail artificial restrictions, such as mandating a particular stepsize
sequence.

15For the convergence of TD(0), for example, we need E𝜋[𝐱𝑛𝛿𝑛] = E𝜋[𝐱𝑛𝑟𝑛 + 𝐱𝑛(𝛾𝐱′ − 𝐱)⊤𝛉] to
be well-defined, which implies that 𝐱𝑛 needs to have a bounded second moment. The DV component
complicates this further, as 𝐱𝑛𝛿2

𝑛 shows up in the update equations, which would suggest that the
features to be bounded up to their fifth moment.

65



Then for updates of the form (4.59) and (4.60), we have that:

lim
𝑛→∞

(𝛉𝑛 , 𝐰𝑛) = (𝛉∗, 𝐰∗) w.p. 1. (4.61)

Our proof of Theorem 4.6 proceeds by verifying the conditions for Theorem 2.2.

Having fitted DVTD to the two-timescale framework, all that remains is to verify

the conditions (𝓐. 2.3 to 2.9)that undergird Theorem 2.2. We provide a sketch of

our reasoning in the following section, with more detailed exposition in Appendix A.

4.6.2 Proof Sketch

First, we note that some of the conditions are under experimenter control or true

based on the assumptions made in Section 4.6.1. For the stepsize requirement

(𝓐. 2.3), we assume it is satisfied by appropriate choice of {𝛼𝑛} and {𝛽𝑛}.

The projection step in (4.59) and (4.60) implicitly guarantees that the iterates

are bounded (𝓐. 2.7), and also that the various functions are Lipschitz 𝓐. 2.4. For

the TD component, we have:

𝐠(𝛉) = 𝐛 − 𝐀𝛉 = 𝐗⊤𝐃𝛅(𝛉) = −𝐀[𝛉 − 𝛉∗], (4.62)

which is clearly linear in 𝛉 and therefore Lipschitz. Showing that the DV component

is Lipschitz is more difficult, because while it is linear in 𝐰, it is nonlinear with

respect to 𝛉; however, due to the projection, this issue can be resolved.

To show that 𝐰∗(⋅) and 𝐡(⋅, ⋅) are Lipschitz, we first demonstrate that the TD error

is bounded, then use that to prove 𝛅(2)(𝛉) is bounded. As a bounded and continuous
function, 𝛅(2) is Lipschitz, and therefore so are the other functions, because they are

linear with respect to 𝛅(2).

Convergence of the TD component has been proved in a number of different

places16 which takes care of 𝓐. 2.9.
16E.g. Tsitsiklis and Van Roy 1997 for TD(λ), with finite sample analyses provided in Dalal et al.

2017; Bhandari, Russo and Singal 2018 under more general conditions.

66



A similar argument can be used to show the fast ODE converges, because with 𝛉
fixed, the DV component is essentially temporal difference learning with a modified

reward and discount factor. If the TD component is convergent (which we tacitly

assume), we can show that 𝐰∗(𝛉) = 𝐀̃−1 ̃𝐛(𝛉) exists and is the unique globally

asymptotically stable equilibrium point of the fast timescale ODE. Furthermore,

due to the projection step it is a Lipschitz function and therefore 𝓐. 2.8 is satisfied.

The only remaining assumptions we need to check are the noise bound, 𝓐. 2.6, as

well as verifying that {𝐌𝑛} and {𝐍𝑛} are martingale difference sequences. We can

actually show that ‖𝐌𝑛+1‖ and ‖𝐍𝑛+1‖ are bounded with respect to the weights,

which makes establishing bounds on E𝜋[‖𝐌𝑛+1‖2|ℱ𝑛] straightforward. It also im-

plies that they are square integrable, and since by construction {𝐌𝑛} and {𝐍𝑛}
both have expectation zero, we can conclude that they are indeed martingale differ-

ence sequences, validating 𝓐. 2.5.

Having verified the necessary assumptions, Theorem 2.2 applies, and we can im-

mediately conclude that Theorem 4.6 holds as well.

We note that in practical applications many of these assumptions may be violated

to a greater or lesser degree. In our experience, however, we have found DVTD to

be well-behaved even without using a projection step or decaying stepsize.

67



CHAPTER 5

EXPERiMENTS

To gather insight into DVTD, we examine its performance on some standard prob-

lems and compare it with alternative methods of estimating the variance of the

return.

We first consider a discrete MDP, referred to as the Modified Tamar Chain, which

is a variant of the bounded random walk used by Tamar, Castro and Mannor 2016.

For that series of experiments we compare the moment-based DVTD and VTD,

but also report on the performance of the C51 distributional reinforcement learning

algorithm. Later, we test DVTD and VTD in the more complicated Mountain Car

testbed. We performed experiments in a number of different environments, but

found that the outcomes were broadly similar; to avoid undue repetition we content

ourselves with reporting on these two illustrative cases.

Pseudocode for the algorithms used is given in Appendix C. The Python code

used in the actual experiments is also available online1.

5.1 Modified Tamar Chain

Random walk MDPs are fairly common in the stochastic approximation literature.

The MDP we analyze here was used in (Tamar, Castro and Mannor 2016), wherein

they estimate the variance via the second moment, making it an appropriate testbed

for comparison. We use a version with 11 states, as opposed to the original 32 states,

because the additional states made it harder to report on and visualize without

qualitatively affecting the results.
1https://github.com/rldotai/varcompfa

68

https://github.com/rldotai/varcompfa


The environment consists of a chain of states numbered 0 to 10, with the agent

starting in state 0 for all episodes. Each episode terminates when the agent reaches

state 10. In each non-terminal state 𝑖, the agent has a probability of transitioning

to state 𝑖+1 (“right”) with probability 0.7, and to state 𝑖−1 (“left”) with probability

0.3, except in state 0, where if the agent moves to the left it remains in the same

state. For each transition to a non-terminal state, the agent receives a reward of

-1; when transitioning to the terminal state it receives a reward of 0. We used a

constant discount factor of 1, meaning that each state’s value essentially represents

the expected time until termination.

An illustration of the MDP is provided in Fig. 5.1.

s0 s1 s2 · · · s8 s9 s10 s11

p = 0.7

r = −1

p = 0.7

r = −1

p = 0.3

r = −1

p = 0.3

r = −1

p = 0.7

r = −1

p = 0.7

r = −1

p = 0.3

r = −1

p = 0.3

r = −1

p = 0.7

r = −1

p = 0.3

r = −1

p = 0.7

r = −1

p = 0.3

r = −1

p = 0.3

r = −1

p = 0.7

r = 0

Figure 5.1: A modified version of an MDP from Tamar, Castro and Mannor (2016); essen-
tially it is a biased random walk. The agent starts each episode in state 0, with the episode
terminating once the agent reaches state 11. Its transition probabilities are biased so that it
tends to transition to the “right”, towards the terminal state.

5.1.1 Methodology

We conducted experiments to compare the algorithms across various hyperparameter

settings.

One way of evaluating a learning agent’s performance is by comparing its ap-

proximation with the actual function we seek to estimate. For value functions, this

is frequently the standard Mean Square Value Error, which measures the distance

between the learned value function and 𝑣𝜋. With 𝑑𝜋 ∶ 𝒮 → R the policy’s stationary

distribution, the value error is defined as2:

VE( ̂𝑣) ≝ ∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑣𝜋(𝑠) − ̂𝑣(𝑠))2] = E𝜋[(𝑣𝜋(𝑠) − ̂𝑣(𝑠))2]. (5.1)

2From Sutton and Barto (2018, Equation 9.1), although we are using the on-policy version of VE.
That is to say, the error is weighted with respect to the on-policy distribution; other weightings are
sometimes considered (e.g., the uniform distribution) but this is arguably the more natural choice.

69



The advantage of VE is that it measures the difference between ̂𝑣 and 𝑣𝜋 absent

noise or other distractions, and its minimum is zero, achieved when ̂𝑣 = 𝑣𝜋. Its

main drawback is that we have to be able to calculate 𝑣𝜋 and 𝑑𝜋, although this is

fairly straightforward for discrete MDPs.

We can also define analogous errors3 for the second moment and variance:

VE( ̂𝑣(2)) ≝ ∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑣(2)
𝜋 (𝑠) − ̂𝑣(2)(𝑠))2], (5.2a)

VE(𝑢̂) ≝ ∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑢𝜋(𝑠) − 𝑢̂(𝑠))2]. (5.2b)

For scaling reasons, we tend to report the Root Mean Square Value Error, abbreviated

RMSVE, which is simply:

RMSVE( ̂𝑣) ≝ (∑
𝑠∈𝒮

𝑑𝜋(𝑠)[(𝑣𝜋(𝑠) − ̂𝑣(𝑠))2])
1/2

= √VE( ̂𝑣). (5.3)

We plot the return’s expected value, second moment, and variance for the Tamar

Chain in Fig. 5.2.

Figure 5.2: The expected value, second moment, and variance of the return for the Modified
Tamar Chain problem versus state. The value function is roughly linear, except at the ends of
the chain, while the second moment is nonlinear. The variance is also roughly linear, except
near the starting states.

Representation We performed experiments with two different state representa-

tions. The first representation, referred to as tabular features4, with each state’s
3Which we also refer to as “value errors”, since VTD and DVTD both assign a value to states, and

the formula for those errors is the same as for the standard VE but using 𝑣(2)
𝜋 and 𝑢𝜋 used in place

𝑣𝜋 as the target function.
4Because each feature can be thought of as an entry in a table, one for each of the environment’s

states.

70



feature vector being given as:

[𝐱(𝑖)]𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗

0 if 𝑖 ≠ 𝑗
for 𝑖 ∈ 𝒮. (5.4)

For example, the feature vector for state 𝑠 = 1 is given by 𝐱(1) = [0, 1, 0, … , 0, 0]⊤.

The second representation, which we call Modified Tamar Features, uses a rescaled

version of the features provided by Tamar, Castro and Mannor (2016). The original

representation consisted of two sets of features, one for the value estimator, 𝐱̃val(𝑠) =
[1, 𝑠]⊤, and another for the variance estimator, 𝐱̃var(𝑠) = [1, 𝑠, 𝑠2]⊤. We found those

features could produce instability, since the relative magnitudes of the features for

each state can vary widely. For example, with 𝐱̃var the largest feature vector has a

norm two orders of magnitude greater than that of the smallest5.

To address this, we rescaled the features while keeping the general scheme:

𝐱val(𝑠) ≝ [1, (𝑠 + 1)
|𝒮| ]

⊤
= [1, (𝑠 + 1)

11 ]
⊤

, (5.5a)

𝐱var(𝑠) ≝ [1, (𝑠 + 1)
|𝒮| , (𝑠 + 1)2

|𝒮|2 ]
⊤

= [1, (𝑠 + 1)
|𝒮| , (𝑠 + 1)2

121 ]
⊤

. (5.5b)

As the modified features are only subject to a linear transformation, the algorithms’

fixed points for 𝐯 and 𝐮 were unchanged, but the rescaling permits a wider choice

of stepsize and removes a potential source of numerical error.

5.1.2 Tabular Experiments

In the tabular case, the estimators can represent the return’s expected value, second

moment, and variance exactly. It is the simplest setting available, and helps verify

that our implementation works correctly. The tabular setting is also useful when

examining the algorithms under function approximation: if we discover unexpected

or undesirable behaviour in the FA case, then by comparing with the tabular results

we can determine whether the fault lies with the algorithms themselves or is an

artifact of the representation we used.
5That is, ‖𝐱̃(0)‖ = 1, while ‖𝐱̃(10)‖ ≈ 100

71



We ran the experiment twelve times, with each run consisting of 125,000 time-

steps, using a constant stepsize of 𝛼 = 0.01 for all time-steps.

When 𝜆 = 𝜆̄ = 0, DVTD and VTD appear to be equivalent, producing very similar

estimates at each point in time, with similar error curves. However, for other choices

of 𝜆 or 𝜆̄, the transient estimates are observably different, with noticeably different

RMSVE curves, as can be seen in Fig. 5.3.

0 20000 40000 60000 80000 100000 120000

step

0

10

20

30

40

50

60

70

R
M

S
V

E

λ = 0.0 λ = 0.0 α = 0.010 α = 0.010

Root Mean Square Value Error vs Time

0 20000 40000 60000 80000 100000 120000

step

0

10

20

30

40

50

60

70

R
M

S
V

E

λ = 0.0 λ = 0.9 α = 0.010 α = 0.010

Root Mean Square Value Error vs Time

0 20000 40000 60000 80000 100000 120000

step

0

50

100

150

200

R
M

S
V

E

λ = 0.9 λ = 0.0 α = 0.010 α = 0.010

Root Mean Square Value Error vs Time

0 20000 40000 60000 80000 100000 120000

step

0

10

20

30

40

50

60

70

R
M

S
V

E

λ = 0.9 λ = 0.9 α = 0.010 α = 0.010

Root Mean Square Value Error vs Time

DVTD VTD TD(λ)

Figure 5.3: RMSVE for different choices of 𝜆 and 𝜆̄, with the same stepsize. The top left
has 𝜆 = 𝜆̄ = 0; top right 𝜆 = 0 and 𝜆̄ = 0.9; bottom left 𝜆 = 0.9 and 𝜆̄ = 0.0; bottom right
𝜆 = 𝜆̄ = 0.9. The average error is plotted as a solid line, while shaded regions represent the
square root of the variance.
In the table-lookup setting, all the algorithms we use should be able to represent

their targets perfectly, although with constant stepsize there will typically be a

certain amount of steady-state error due to noise. Here, nonzero values of 𝜆 or 𝜆̄ are

somewhat counterproductive because they entail greater variance without reducing

the bias. Indeed, we observe that the lowest asymptotic error is achieved when

72



𝜆 = 𝜆̄ = 0.

TD(λ) exhibits a roughly exponential convergence rate to its asymptote, which

was accelerated when using higher values of 𝜆, whereas DVTD and VTD seem to

have roughly two phases to their convergence. At the beginning of each experiment,

their error either decreased slowly or (in VTD’s case) had a transient spike6, before

eventually heading towards their respective asymptotes. We observe that these

phases seemed to correspond to some threshold level of accuracy for the TD’s value

estimate. Once the value estimate was sufficiently close to 𝑣𝜋, they both began to

approach their fixed-point at a faster rate7.

Both DVTD and VTD converge faster for higher values of 𝜆 and 𝜆̄, albeit with
higher asymptotic noise. This is also the case for TD(λ), but the additional noise

from higher 𝜆 is almost unnoticeable in comparison. Finally, we note that across

all the experiments we performed, DVTD had lower asymptotic error, faster conver-

gence, and less noise relative to VTD.

5.1.3 Function Approximation

Next, we consider the algorithms under function approximation. Using the Modified

Tamar Features from (5.5), the value function cannot be perfectly captured8. We

first examine the algorithms’ behaviour analytically, and then compare how they

perform in simulated experiments.

Analytical Results

If the value function is not exact, the approximation target for DVTD is no longer

the true variance of the return, nor is VTD’s target the true second moment. This

problem is compounded by the fact that such a target may also be imperfectly

representable with the given features, so we are effectively making an approximation
6Intriguingly, VTD only seemed to experience high transient error when 𝜆 ≠ 𝜆̄, and it seemed to

perform best when 𝜆 = 𝜆̄. We note that this also holds for the other settings of 𝜆 and 𝜆̄ that we tried,
but further experiments are needed to gauge whether this is mere coincidence rather than because of
some underlying principle.

7This is particularly noticeable for 𝜆 = 𝜆̄ = 0, where the error curves are roughly sigmoidal.
8Because (5.5a) is a linear function of the state number, while the the expected return for the MDP

is nonlinear (see Fig. 5.2).

73



from an approximation. Furthermore, the approximation targets and the algorithms’

fixed-points are impacted by the bootstrapping hyperparameters 𝜆 and 𝜆̄.

Performing a full hyperparameter sweep can be quite time consuming if done via

simulated experiments. Fortunately, using the methods described in Section 2.5, we

can compute the required quantities analytically, which provides a straightforward

way of evaluating the fixed-points of the algorithms.

For each value of 𝜆, we computed the value function from TD(λ)’s fixed-point, and

used that to compute the approximation targets E𝜋[𝐻𝑡] and E𝜋[ ̂𝐺2
𝑡 ]. We then solved

for DVTD and VTD’s respective fixed-points for different choices of 𝜆̄. Altogether,
we sampled (𝜆, 𝜆̄) = {0.0, 0.05, … , 1.0}×{0.0, 0.05, … , 1.0}, for a total of 441 different
points. We plot the results in Fig. 5.4.

λ

0.0

0.5

λ

0.0

0.5

1.0

∥ ∥ u
π
−
u

d
v
t
d

∥ ∥ D
π

3.0

4.5

6.0

7.5

DVTD Value Error

λ

0.0

0.5

λ

0.0

0.5

1.0

∥ ∥ u
π
−
u

v
t
d

∥ ∥ D
π

12

15

18

VTD Value Error

Figure 5.4: The RMSVE for the fixed-points of DVTD (left) and VTD (right) on the Tamar
Chain task as a function of 𝜆 and 𝜆̄ using the Modified Tamar Features.

The most noteworthy observation is that DVTD’s fixed-point has lower RMSVE

than VTD, even when pitting VTD’s best hyperparameter settings against DVTD’s

worst.

The behavior of the fixed-points’ RMSVE as a function of bootstrapping was

somewhat unexpected. We predicted the accuracy of the estimates would improve

with higher 𝜆 or 𝜆̄, but we instead observe that DVTD’s error increases slightly as

a function of 𝜆̄; VTD’s RMSVE decreases with higher 𝜆̄, but its minimum when 𝜆
is at 𝜆 = 0.8 rather than at 𝜆 = 1.

74



Simulation Experiments

While analytical results can be informative, we also seek to evaluate how DVTD

performs with real data.

1. Does it converge to the predicted fixed-points?

2. How does it behave under varied hyperparameters?

3. Is it robust and stable enough to be used in practice?

To answer these questions, we performed a number of experiments using different

bootstrapping (𝜆 and 𝜆̄) as well as varied stepsizes (𝛼 and ̄𝛼). For comparative

purposes, we include VTD and C51 as alternative variance estimation methods.

The typical experiment has error curves like that of Fig. 5.5. As in the earlier tab-

ular experiments (Section 5.1.2), DVTD and VTD exhibited two-phase convergence,

meandering until the value estimate (from TD(λ)) reached a certain level of accur-

acy, at which point their RMSVE begins to decrease. Interestingly, the RMSVE

for C51’s value estimates also flattened out well before its variance estimation error.

During the transient and steady-state periods, VTD had significantly higher noise

than the other algorithms; C51’s estimates were more consistent, albeit at the price

of much slower convergence.

To provide additional context, in Fig. 5.6, we plot the RMSVE curves for different

values of 𝜆 and 𝜆̄ with constant stepsize. Overall, we found that DVTD outperforms

VTD and C51 in terms of asymptotic RMSVE. This is somewhat expected from

the analytical results— DVTD’s fixed-point has the lowest RMSVE of all the vari-

ance estimators, so insofar as it converges (and we haven’t made a mistake in our

calculations), then it should have the best performance.

For the moment-based algorithms (DVTD and VTD), the increased accuracy of ̂𝑣
from higher values of 𝜆 was generally not worth the additional noise incurred. Both

DVTD and VTD appear to magnify the effects of variance in the value function,

to the point that their asymptotic error seems to hover above their predicted fixed-

75



0 50000 100000 150000 200000 250000

step

0

50

100

150

200

250
R

M
S

V
E

Root Mean Square Value Error vs Time

0 10000 20000

1

10

100

DVTD VTD TD(λ) C51 (Variance) C51 (Value)

Figure 5.5: A plot of the RMSVE for the TD, DVTD, VTD, and C51 algorithms vs time in
the Tamar Chain environment under function approximation. Inset is a log-scale plot of the
starting time-steps. The analytical fixed-points for each algorithm are shown as dotted lines.

points9. We can observe that for 𝜆 = 0, their error curves hover around their

predicted fixed points; higher values have better asymptotic errors but these are not

easily reached. On the other hand, C51 benefits from higher values of λ without

exhibiting much increase in variance.

While we know (from the earlier analysis) that DVTD’s fixed-point degrades

slightly with higher 𝜆̄, our experiments revealed that this was a minor problem

compared to the effect of the greater noise. Increasing 𝜆̄ did accelerate convergence,

but only once the value estimate was close enough to its asymptote for the approx-

imation targets to be stable. For every choice of bootstrapping or stepsize, DVTD

exhibited lower variance relative VTD. When comparing DVTD and VTD, we con-

jecture that this will hold for arbitrary hyperparameter settings, so long as VTD

and DVTD share the same hyperparameters, since it has been observed to be the
9This is understandable in light of the fact that they are using TD’s value function, which for

constant stepsize will be of the form ̂𝑣 = 𝑣TD + noise. The expressions for both algorithms’ fixed-
points include a term for the squared value function, meaning that the effect of the noise does not
average out. In experiments with decreasing stepsize, we observed that both DVTD and VTD do in
fact converge to their analytic fixed-points.

76



case in every experiment we performed.

In contrast, C51 produced remarkably consistent estimates, even with higher ̄𝛼
and 𝜆. This fact, along with the slower convergence for C51 relative to VTD and

DVTD when using the same stepsize, suggested that a straightforward comparison

across different choices of ̄𝛼 might not be appropriate. Even for very high stepsize

( ̄𝛼 = 0.5), C51 was very stable and appeared to converge to its fixed-point, while

VTD and DVTD’s asymptotes were noticeably above their predicted fixed-point.

We can see this in Fig. 5.7 and as part of the montage in Fig. 5.9.

While C51’s stability at higher stepsizes was impressive, we note that it nonethe-

less failed to converge before DVTD, and even with ̄𝛼 = 0.5, C51’s variance estimate
still takes longer to converge than DVTD does with 𝛼 = ̄𝛼 = 0.015625 (shown in

Fig. 5.8); at such low stepsizes, DVTD exhibits comparable stability.

77



λ = 0.0 λ = 0.0 α = 0.010 α = 0.016 λ = 0.0 λ = 0.5 α = 0.010 α = 0.016

λ = 0.0 λ = 0.9 α = 0.010 α = 0.016 λ = 0.0 λ = 1.0 α = 0.010 α = 0.016

λ = 0.5 λ = 0.0 α = 0.010 α = 0.016 λ = 0.5 λ = 0.5 α = 0.010 α = 0.016

λ = 0.5 λ = 0.9 α = 0.010 α = 0.016 λ = 0.5 λ = 1.0 α = 0.010 α = 0.016

λ = 0.9 λ = 0.0 α = 0.010 α = 0.016 λ = 0.9 λ = 0.5 α = 0.010 α = 0.016

λ = 0.9 λ = 0.9 α = 0.010 α = 0.016 λ = 0.9 λ = 1.0 α = 0.010 α = 0.016

λ = 1.0 λ = 0.0 α = 0.010 α = 0.016 λ = 1.0 λ = 0.5 α = 0.010 α = 0.016

λ = 1.0 λ = 0.9 α = 0.010 α = 0.016 λ = 1.0 λ = 1.0 α = 0.010 α = 0.016

DVTD VTD C51 (Variance) DVTD Fixed Point VTD Fixed Point C51 (Variance) Fixed Point

Figure 5.6: Simplified plots of the RMSVE for DVTD, VTD, and C51 in the Tamar Chain
task under function approximation with various hyperparameters. The y-axis is linear until
𝑦 = 10, after which it has a logarithmic scale. Each algorithm’s fixed-point as determined
analytically is shown with a dotted line. 78



0 50000 100000 150000 200000 250000

step

0

100

1000

10000
R

M
S

V
E

λ = 0.0 λ = 0.0 α = 0.250 α = 0.250

Root Mean Square Value Error vs Time

DVTD VTD TD(λ) C51 (Variance) C51 (Value)

Figure 5.7: A plot of the RMSVE for the TD, DVTD, VTD, and C51 algorithms over time
in the Tamar chain environment under function approximation.

0 50000 100000 150000 200000 250000

step

0

50

100

150

200

250

R
M

S
V

E

λ = 0.0 λ = 0.0 α = 0.016 α = 0.016

Root Mean Square Value Error vs Time

DVTD VTD TD(λ) C51 (Variance) C51 (Value)

Figure 5.8: A plot of the RMSVE for the TD, DVTD, VTD, and C51 algorithms over time
in the Tamar chain environment under function approximation.

79



λ = 0.0 λ = 0.0 α = 0.004 α = 0.004 λ = 0.0 λ = 0.0 α = 0.008 α = 0.008

λ = 0.0 λ = 0.0 α = 0.016 α = 0.016 λ = 0.0 λ = 0.0 α = 0.031 α = 0.031

λ = 0.0 λ = 0.0 α = 0.062 α = 0.062 λ = 0.0 λ = 0.0 α = 0.125 α = 0.125

λ = 0.0 λ = 0.0 α = 0.250 α = 0.250 λ = 0.0 λ = 0.0 α = 0.500 α = 0.500

DVTD VTD C51 (Variance) DVTD Fixed Point VTD Fixed Point C51 (Variance) Fixed Point

Figure 5.9: Simplified plots of the RMSVE for DVTD, VTD, and C51 in the Tamar Chain
environment with function approximation, showing the effects of varying stepsize on the al-
gorithms’ performance. The y-axis is linear until 𝑦 = 10, after which it uses a logarithmic
scale. Each algorithm’s fixed point is shown with a dotted line.

80



5.1.4 Summary

We found that all algorithms were capable of producing reasonable estimates for the

variance of the return, with DVTD’s fixed-point having the lowest RMSVE, followed

by VTD and then C51. From the analytical results we observed that the accuracy of

the value function strongly determines how good the approximation targets are, yet

in practice any benefit from a better ̂𝑣 tends to be overshadowed by the increased

variance from higher 𝜆. With suitably chosen stepsize parameters, all algorithms

were capable of reaching their predicted fixed-points.

In general, DVTD performed at least as well and usually better relative to VTD

for every choice of hyperparameters we investigated, in terms of convergence rate

and stability, in both the tabular setting and under function approximation. Both

moment-based variance learning algorithms had two phases to their convergence,

appearing to begin an abrupt descent in their error curves once the value function

was sufficiently accurate but before it reached its asymptote. We also observed

that C51’s value estimate converged before its variance estimate, although without

the two-phased behavior seen with DVTD and VTD. Notably, C51 was much more

stable compared to the moment-based variance approximation algorithms, although

at the price of much slower convergence.

Insofar as we are interested in learning the variance of the return, DVTD appears

to be clearly preferable over VTD and C51, although further experiments in other

domains would be needed to establish if this is consistently true.

81



5.2 Mountain Car

The mountain car problem (Singh and Sutton 1996) is a standard reinforcement

learning test domain, which models an underpowered car as it attempts to climb a

hill from a starting point at the base of a valley. The car cannot simply drive up the

hill from its initial position due to its limited acceleration. Instead, it has to build

up speed by rolling some distance up one hill, and then reversing direction towards

the other hill. Each reversal increases the height to which it can climb before it runs

out of speed, until eventually it has built up enough energy to reach the summit. In

this domain, the desired control policy one that can reach the summit in the fewest

time steps.

1.2 1.0 0.8 0.6 0.4 0.2 0.0 0.2 0.4 0.6
Position

0.000

0.001

0.002

0.003

0.004

0.005

0.006

U

Goal

Start

Mountain Car
Potential Energy vs. Position

Figure 5.10: Here we show the car’s potential energy as a function of position. This domain
is essentially a physics problem where the agent needs to gather sufficient energy to reach the
summit. The agent can accelerate forwards, backwards or idle; as depicted, “forwards” means
to the right. It does not have enough acceleration to drive directly to the goal starting from
rest at the hill’s base, but the problem can be solved by rocking back and forth to build up speed.
Mountain Car was chosen as a test case because the dynamics are deterministic,

yet function approximation is needed to account for the continuous state space. In

a sense, the “true” variance in this problem is zero (assuming the policy is fixed and

deterministic), but from the agent’s perspective, it will appear to be stochastic so

82



long as the representation is imperfect.

The state space represents the car’s position and velocity, 𝐬𝑡 = (𝑥𝑡, 𝑣𝑡) ∈ 𝒮 ⊆ R2.

The goal is reached when the agent’s position is greater than 0.5, regardless of its
velocity. For all non-terminal steps the reward is −1. At each time step 𝑡, the agent
can choose to accelerate backwards, idle, or accelerate forwards; the action space is

then 𝑎𝑡 ∈ {0, 1, 2} = 𝒜.

The car has a maximum velocity of ±0.07, and its position is bounded by [−1.2, 0.6].
When it would exceed these limits, its position/velocity is clipped to keep it in

bounds, except if it reaches the minimum position with negative velocity (𝑥 ≤
−1.2, 𝑣 < 0), its velocity is set to zero and its position is set to −1.2.

The preceding verbiage can be summarized via the following update equations:

𝛼car = 0.001 ̄𝑣𝑡+1 = 𝛼acc(𝑎𝑡 − 1) + 𝛼grav cos (3𝑥𝑡) ̄𝑥𝑡+1 = 𝑥𝑡 + ̃𝑣+1

𝛼grav = −0.0025 ̃𝑣𝑡+1 = clip[ ̄𝑣𝑡+1, −0.07, 0.07] 𝑥𝑡+1 = clip[ ̄𝑥𝑡+1, −1.2, 0.6]
𝑣𝑡+1 = 0 if 𝑥𝑡+1 = −1.2, else ̃𝑣𝑡+1

(5.6)

5.2.1 Experiment Setup

For our experiments, we first trained a control agent to solve the task starting from

a variety of points within the state space, using the implementation of Mountain

Car provided by OpenAI Gym (Brockman et al. 2016).

The control agent was Q(λ), which was selected because it is fast to train and

deterministic when selecting actions greedily10. We used a discount parameter of

𝛾𝑡 = 0.9999 for all non-terminal 𝑡, which reflects the task’s objective of training

the agent to reach the summit in the minimum time. Exploration was incentivized

using optimistic initialization and ε-greedy action selection11, with 𝜖 = 0.002. The
learning rate was a constant 𝛼 = 0.01, and we chose 𝜆 = 0.5 somewhat arbitrarily.

10Other algorithms or different parameterizations might be better at solving the task, but since we
only sought to generate a dataset on which we could test DVTD and VTD, Q(λ) was sufficient.

11E.g., for 𝜖 = 0.0 the action is chosen to maximize the state-action value, but for 𝜖 = 1/3 the
agent would pick a random action a third of the time.

83



The features used were normalized radial basis functions (NRBF), which map

the continuous, low-dimensional state space into a higher dimensional (but much

sparser) feature vector12.

A radial basis function (RBF) is a function of the form:

RBF(𝐬) = exp {−(𝐬 − 𝛈)⊤𝚺(𝐬 − 𝛈)} , (5.7)

where 𝐬, 𝛈 ∈ 𝒮 ⊆ R𝑛 and 𝚺 ∈ R𝑛×𝑛
+ . The parameter 𝛈 controls where the function is

centered (i.e., has the highest activation), and 𝚺 determines the shape of the RBF.

The “normalized” aspect of NRBFs comes from the fact that after computing

the activations of the individual RBFs, we rescale their values such that they sum

to unity. Given radial basis functions {𝑓1, … , 𝑓𝑑}, with each 𝑓𝑖 having its own

corresponding 𝛈𝑖 and 𝚺𝑖, the 𝑖-th NRBF is given by:

̄𝑓𝑖(𝐬) = NRBF𝑖(𝐬) = 𝑓𝑖(𝐬)
∑𝑗 𝑓𝑗(𝐬) = 𝑒−(𝐬−𝛈𝑖)⊤𝚺𝑖(𝐬−𝛈𝑖)

∑𝑗 𝑒−(𝐬−𝛈𝑗)⊤𝚺𝑗(𝐬−𝛈𝑗) . (5.8)

We chose the centers of the RBFs along a uniform 30×30 grid over the state space,
for a total of 900 features. As such, care had to be taken with 𝚺 to ensure the features

have appropriate scale. Mountain Car’s state space is [−1.2, 0.6] × [−0.07, 0.07],
meaning that the the basis functions are somewhat closer for the velocities compared

to the positions. A rule of thumb (Kretchmar and Anderson 1997) suggests that the

scaling should be proportional to 𝐼2
𝑖 , where 𝐼𝑖 is the size of the interval for dimension

𝑖 of the state space. Employing this rule ensured that there was not too much overlap
between the neighboring basis functions, and by setting the off-diagonal entries of

𝚺 to zero, the resulting RBFs had circular level sets.

After training, the control agent was able to reach the goal from arbitrary initial

positions, usually taking at most 130 steps to reach the goal. We visualize the
12 We also ran experiments using tile coding, another method for converting a continuous state

space into a sparse feature vector amenable to linear TD methods, but the results were very similar to
the NRBF case. With a sufficient number of tiles, the policies learned were essentially the same, and
the agents had comparable performance. This similarity also held when learning the value via NRBFs
and the variance using tile coding (or vice-versa), and likewise when using a different representation
for the control policy and the value/variance estimators.

84



resulting behavior by plotting the agent’s trajectories from various different starting

states in Fig. 5.11.

Figure 5.11: Trajectories produced by the control policy from various initial starting positions
Mountain Car. Each point in the run is colored according to the Monte Carlo return from that
point, which is proportional to the number of steps before reaching the goal.
We then froze the policy and used it to generate datasets for policy evaluation.

Figure 5.11 indicates that the agent tends to proceed along certain flows through

the state space, and some regions are only visited if the agent starts in them. This

becomes a bit of a problem if the actions are selected greedily (e.g., with 𝜖 = 0), as
most trajectories originating from a particular state will be identical13. As we are

interested in how well the algorithms approximate variance, we opted to set 𝜖 = 0.2,
in order to inject more stochasticity into the policy and to induce the trajectories

to cover more of the state space.

The standard Mountain Car setup initializes the agent randomly with position

between −0.6 and −0.4 and zero velocity. In order to focus on the parts of the state

space that are accessible with the standard initialization, the datasets we generated

had initial states restricted to the sub-interval [−1.0, 0.2]×[−0.02, 0.04]. We sampled

from a 40 × 40 grid over that sub-interval, restarting from the same state ten times
13Even with just mostly greedy action selection, the trajectories tend to be fairly similar.

85



for a total of 16, 000 episodes, yielding about 1.5 million transitions in total.

The data thus generated was used to evaluate the algorithms with different hy-

perparameters. TD(λ) provided the value estimates used by both DVTD and VTD

over different settings of 𝜆, 𝜆̄, and 𝜅. All algorithms shared the same stepsize of

𝛼 = 0.05.

This produced a fairly large quantity of data to analyze14. To avoid boring the

reader, we omit presenting most of the results, merely stating that what is included

is representative of the algorithms’ behavior across the experiments we performed.

5.2.2 Evaluation Methods

For the Tamar Chain experiments (Section 5.1), we could calculate the true value

function and variance analytically, which provided a reasonable benchmark for eval-

uating our agents’ performance. Mountain Car has a continuous state space15, which

makes determining 𝑣𝜋 and 𝑢𝜋 substantially harder.

When the true value function is unavailable, we normally fall back on an approx-

imation of 𝑣𝜋, or measure our performance a more readily available error signal, such

as the Mean Square Return Error16 The advantage of RE is that it doesn’t require

knowledge of 𝑣𝜋, allowing us to measure the performance of value-estimating al-

gorithms using only empirical data. However, we are keen to gauge how well DVTD

estimates the variance, which is regrettably defined in terms of 𝑣𝜋: Var [𝐺𝑡] =
E𝜋[(𝐺𝑡 − 𝑣𝜋(𝑆𝑡))2]. Accordingly, we elect to make an approximation for 𝑣𝜋 and use

it to estimate the variance, using this approximation as the benchmark for DVTD

(and VTD).

One common approximation method is grid discretization, which entails dividing

the state space into a grid of 𝑛-dimensional cells. Each state is mapped to a cell,
14Furthermore, the experimental setup that we settled on was obtained through exploratory work

where we iterated through many variations of parameter settings, features, and initial conditions.
The total amount of Mountain Car data thus produced was on the order of terabytes, even under
compression.

15At least in theory— the implementation we used represented position and velocity with 64-bit
floats, meaning the state space was ultimately discrete. Even so, there are approximately 1087 distinct
coordinate pairs (𝑠𝑥, 𝑠𝑣) ∈ 𝒮, which is still rather daunting.

16Recall (from (4.40)) that RE( ̂𝑣) ≝ E𝜋[(𝐺𝑡 − ̂𝑣(𝑠))2].

86



with nearby states tending to share the same cell. Then we can approximate state

functions (e.g., 𝑣𝜋) by taking an average of the sampled values of those functions with

respect to each cell. With a sufficiently fine discretization, this tends to accurately

capture the behavior of the function being approximated17.

For our Mountain Car experiments, we chose to use a uniform discretization,

decomposing each dimension of the state space into the same number of sub-intervals.

The grid-based approximation of the value, second moment, and variance is then:

𝑣GRiD(𝑠) ≝ Average[𝐺𝑡|𝑆𝑡 ∈ 𝜒(𝑠)], (5.9a)

𝑣(2)
GRiD(𝑠) ≝ Average[𝐺2

𝑡 |𝑆𝑡 ∈ 𝜒(𝑠)], (5.9b)

𝑢GRiD(𝑠) ≝ 𝑣(2)
GRiD(𝑠) − (𝑣GRiD(𝑠))2, (5.9c)

where 𝜒(𝑠) is an indexing function that maps states to their corresponding cell within
the grid. We plot the value function approximation for uniform grid discretization

with varying refinement in Fig. 5.12.

As can be seen in Fig. 5.12, choosing the grid’s refinement is a bit of a balancing

act: if it’s too coarse we lose detail, but if it’s too fine then many cells will not be

visited. With a 64 × 64 grid we achieve a compromise between coverage of the state

space and level of detail, so that discretization would seem to be a reasonable choice

for approximating 𝑣𝜋.

Estimating the return’s variance with grid discretization via (5.9c) produces sim-

ilar results as when estimating its value, as can be seen in Fig. 5.13.

Most of the states evince relatively low variance, except along a spiral-shaped

portion, where the variance is higher (≈ 750−1250). This spiral seems to correspond
to a possible discontinuity in the value function estimates in Fig. 5.12, which would

seem to be confirmed by the trajectory plot in Fig. 5.11. In states near the spiral,

the agent may need to make an additional pass to build up more speed before it can

reach the goal, but its representation is not up to the task of identifying whether

this is the case or not. The effect is magnified from setting 𝜖 = 0.2, as the agent
17With some caveats: the function in question should ideally be continuous within each cell, and

each cell should contain enough samples for the average to be representative.

87



8× 8 16× 16 32× 32 64× 64

128× 128 256× 256 512× 512 1024× 1024

−200 −175 −150 −125 −100 −75 −50 −25 0

v̂(s)

Approximate Value vs Grid Refinement

Figure 5.12: The effects of using various levels of discretization fineness for value function
approximation in Mountain Car. For each level of discretization, we calculate ̂𝑣 following
(5.9a). A cell’s colour reflects the average of the returns observed from that state; when no
samples for a cell were available, we leave it uncoloured.

88



8× 8 16× 16 32× 32 64× 64

128× 128 256× 256 512× 512 1024× 1024

0 250 500 750 1000 1250 1500 1750 2000

û(s)

Approximate Variance vs. Grid Refinement

Figure 5.13: Effects of discretization fineness on variance approximation in Mountain Car.
For each level of discretization, we calculate 𝑢̂ using (5.9c)

89



may indeed be able to reach the goal without backtracking on if it acts greedily, but

randomly selecting an inopportune action might force it to make another pass. This

would tend to cause more variability in regions where (under the greedy policy) it

will barely make it to the goal, while states where it has a comfortable margin for

error will be less affected.

5.2.3 Performance

First, we quickly check that TD(λ) learns a reasonable estimate of the value function,

before moving on to the variance estimators. We also compare the value function

from TD(λ) with the least squares solution, as that is in some sense the best solution

under the given features. The results are plotted in Fig. 5.14 for 𝜆 = 0.9.

Grid Discretization TD(λ) Least Squares

−175 −150 −125 −100 −75 −50 −25 0

v̂(s)

Comparing Value Estimates

Figure 5.14: A comparison of value function estimates for Mountain Car via three different
approaches: a 64 × 64 grid discretization, TD(λ) with 𝜆 = 0.9, and the least squares solution.
The value functions agree to the extent that they almost visually indistinguishable,

which inspires confidence in our approximation for 𝑣𝜋 as well as the performance

of our TD(λ) implementation. For other values of 𝜆, TD returned similar value

functions, with performance tending to increase along with 𝜆, as can be seen in

Fig. 5.15.

90



λ = 0.0 λ = 0.5 λ = 0.9 λ = 1.0

−175 −150 −125 −100 −75 −50 −25 0

v(s) = θ>x(s)

TD(λ) Under Different Choices of λ

Figure 5.15: The value functions learned by TD(λ) with different choices of 𝜆. While
generally similar, higher values of 𝜆 seem to produce a crisper separation between the different
parts of the state space.
For estimating variance, DVTD performed capably, although (as discussed earlier)

it is difficult to make this statement precise without access to the true value function

𝑣𝜋. Instead we can compare it with the approximation found via discretization, as

well as the least squares variance estimate. We plot the various approximations

side-by-side in Fig. 5.16.

Discretization DVTD Least Squares

−200 0 200 400 600 800 1000

û(s)

Comparing Variance Estimates

Figure 5.16: We plot estimates for the variance of the return in Mountain Car using three
different approaches. First, a 64 × 64 grid discretization, then the estimates from DVTD (with
𝜆 = 𝜆̄ = 0.9), and finally the least squares approximation for variance.
The results from DVTD show high agreement with those obtained from the other

methods. Its estimates appear a bit blurrier than those from the grid discretization,
91



λ = 0.0

λ = 0.0

λ = 0.5 λ = 0.9 λ = 1.0

λ = 0.5

λ = 0.9

λ = 1.0

0 200 400 600 800 1000

u(s) = w>x(s)

DVTD Under Different Choices of λ and λ

Figure 5.17: Estimates for the variance of the return in Mountain Car, from DVTD with
different choices for 𝜆 and 𝜆̄. With less bootstrapping (higher 𝜆 or 𝜆̄), the estimates become
noticeably sharper.

but that can be attributed to the fact that DVTD is using far fewer features18.

However, as in our other experiments in Section 5.1, we found that the hyperpara-

mters needed tuning to achieve the best result. In Fig. 5.17 we plot the approxima-

tions found by DVTD with different choices of 𝜆 and 𝜆̄.

It becomes apparent that DVTD benefits from having a more accurate value

function (i.e., higher 𝜆), but even with 𝜆 = 0 it can still produce a credible estimate

for the variance if 𝜆̄ is close to one. On the other hand, with 𝜆 = 1 it seems to

work reasonably well for any choice of 𝜆̄. It produced the best estimates when both
18DVTD used a 30 × 30 = 900 NRBF grid, while the discretization had 64 × 64 = 4096 cells.

92



bootstrapping hyperparameters were closer to one, and was the least accurate when

𝜆 = 𝜆̄ = 0. Notably, it did not tend to produce negative estimates except as a sort

of ringing artifact near regions of high variance.

For comparison, our attempts to use VTD for variance approximation produced

substantially worse results. We tried a variety of hyperparameter settings19 and

were unable to produce reasonable estimates. VTD’s approximation for various 𝜆
and 𝜆̄ are plotted in Fig. 5.18.

No choice of bootstrapping lead to particularly good estimates, although the spiral

pattern was always somewhat in evidence. For most choices of 𝜆̄ and 𝜆, VTD’s
estimate was obviously incorrect for large portions of the state space. This was

most noticeable for states corresponding to the mountain’s “base”, whose value tends

to be the lowest (as it takes the most time to reach the goal from those states).

This suggests that numerical instability was to blame, with relatively small errors

in the value or second moment estimates leading to large errors when calculating

variance20. Even in the best-case scenario, with 𝜆 = 𝜆̄ = 0.9, VTD produced a

somewhat reasonable result, although it has noticeable ringing artifacts.

5.2.4 Summary

DVTD once again manages to produce creditable estimates for the variance of the

return. The estimates it produces are dependent on having a good value function,

requiring a bit of care when selecting 𝜆, although for 𝜆 = 0 it can still achieve a

decent approximation so long as 𝜆̄ is relatively high. While some hyperparameter

settings were better than others, in none of our experiments did we find DVTD to

diverge or produce wildly incorrect estimates. In contrast, VTD tended to be much

less stable, and produced worse estimates for the variance when compared to DVTD

for the various values of 𝜆 and 𝜆̄ we tested.
19Including varying the stepsize, although we don’t include those results here.
20For example, the states near the base of the mountain have values around −180, meaning that

(180 ± 9) spans 29241 to 35721, a spread of about 6000. The highest estimate for variance across
all states using any of the other methods we tried was around 1200, meaning that a ±5% difference
can cause VTD’s to over- or underestimate by five times the range of the other approaches.

93



λ = 0.0

λ = 0.0

λ = 0.5 λ = 0.9 λ = 1.0

λ = 0.5

λ = 0.9

λ = 1.0

−2000 −1000 0 1000 2000 3000 4000 5000

u(s) = w>x(s)− (θ>x(s))2

VTD Under Different Choices of λ and λ

Figure 5.18: Estimates for the return’s variance in Mountain Car learned by VTD under
different choices for 𝜆 and 𝜆̄. For display purposes, we clipped the estimates to lie
within [−2000, 5000]. The actual range observed was between −20000 and 25000.

94



CHAPTER 6

CONCLUSiONS & FUTURE WORK

We conclude this thesis with a summary of its contributions and a discussion of

some avenues for future research.

6.1 Summary

This thesis was motivated by the desire to extend reinforcement learning algorithms

to estimating quantities beyond the expected return while retaining the advantages

of temporal difference methods.

In Chapter 3, we outlined why learning more elaborate predictions might be useful,

with a particular focus on learning the moments of the return. We described how

estimates of the return’s moments could then be used to predict functions of the

return using Taylor series or parametric methods. In the process, we generalized

a TD-style algorithm for estimating the second moment of the return to arbitrary

higher moments.

We then turned our attention towards the problem of estimating the return’s

second central moment, that is, the variance. A good estimate of the return’s vari-

ance has numerous uses; however, the existing approaches came with certain draw-

backs. The second moment method, while attractive from a theoretical standpoint,

tends to suffer from numerical issues in practice. Algorithms that learn to approx-

imate the return’s distribution tend to require substantially more computational

resources relative to vanilla TD(λ).

To avoid those disadvantages, we instead sought to estimate the variance directly.

In Chapter 4, we described the 𝛿2-return, an approximation target formed from the
95



appropriately discounted sum of temporal difference errors. We showed that given

an accurate value function, the 𝛿2-return corresponds to the variance of the return,

and was in fact had the same expected value as the targets used by the second

moment methods. Additional analysis explored the properties of this target when

the value function is biased and how it can be modified to approximate the variance

of arbitrary 𝜆-returns, in addition to the usual Monte Carlo return. Some of the

results in this chapter may be of independent interest for RL researchers.

We then described an algorithm (in Section 4.5) for learning the variance using

the 𝛿2-return using temporal difference methods, called Direct Variance Temporal

Difference Learning, or DVTD. Similar to TD(λ), DVTD is an efficient online learn-

ing algorithm, which allows the agent to learn an approximation of the return’s

variance directly and in an incremental fashion. Being based on TD(λ), it permits

the use of eligibility traces, and can even be used to estimate the variance of different

λ-returns than the one targeted by its value function approximator.

As DVTD is nonlinear, the usual contraction-based techniques for proving conver-

gence did not apply directly. In response to this issue, we showed that a modified

version of the algorithm that incorporates a projection step can be proved convergent

using the ODE method. This projection step is generally unnecessary in practice,

so the result indicates that the unmodified version will not diverge in typical use.

We sketch the convergence proof in Section 4.6 and provide the complete result in

Appendix A.

To validate our analysis and compare DVTD with alternatives, we then performed

a number of experiments in some simple domains focusing on the linear function

approximation setting. The results of our experiments are detailed in Chapter 5;

however, the main findings can be summarized as follows:

1. Across many different hyperparameter settings, DVTD is converges more quickly

relative to the equivalent second moment based algorithm VTD or the distri-

butional RL algorithm C51.

2. When increasing the stepsize or bootstrapping, DVTD never diverged before

VTD. As VTD is known to be convergent, this supports our contention that
96



DVTD is viable even without the projection step needed in the convergence

proof.

3. C51 exhibited exemplary stability at the expense of a much slower convergence

rate; however, when DVTD’s stepsize was reduced to produce similarly stable

estimates, DVTD still converged more quickly.

4. DVTD’s asymptotes provided better estimates of the return’s variance com-

pared to the alternatives we tested, even under function approximation.

5. DVTD produced reasonable estimates for the return’s variance across all hy-

perparameter settings. In contrast, VTD was very sensitive to the choice of

bootstrapping. In the Mountain Car domain, VTD was prone to estimating

implausibly high or even negative values for the variance of the return.

Further experiments in different domains or with different approximation architec-

tures are needed to test whether DVTD’s superior performance holds in general, but

the available evidence suggests that it is the best option for estimating the return’s

variance if one wishes to use temporal difference methods.

6.2 Future Work

The obvious directions for future work involve applying the variance of the re-

turn (and possibly the return’s higher moments) to improve the performance of

our agents.

Modifying Behavior Using Variance Estimates After developing an algorithm

for learning a value function, the next step is usually to apply it towards policy im-

provement in the control setting. Variance might be particularly useful here, as it

can be used to enforce a notion of safety by avoiding actions with high variance, or

conversely, to guide exploration by prioritizing high-variance policies. Some work

in this vein (Jain, Khetarpal and Precup 2018) has already demonstrated how the

squared TD error can be used as a proxy for the “controllability” of an agent, which

the authors used to tune a policy gradient algorithm referred to as Safe Option-Critic.

97



They found incorporating a penalty from 𝛿2 could improve the agent’s performance

relative to the baseline in a number of domains within the Arcade Learning Envir-

onment. It seems likely that a similar algorithm making use of the full 𝛿2-return

could further increase performance.

Higher Moment Estimation in Practice As discussed in Chapter 3, sometimes

the “natural” formulation of the return does not capture salient aspects of the task.

A better objective might be expressed as a function of the return, which could be

approximated using estimates of the return’s moments.

Before this approach becomes practical we need to better characterize algorithms

for learning these higher moments; our experiments with VTD suggest that further

work is needed to achieve adequate stability and accuracy. We would seek to identify

situations where these algorithms will produce reliable estimates of the moments of

the return and to determine tighter performance bounds.

However, there is some indication that these higher moments can in fact be useful.

In the course of writing this thesis, we compared estimates of the return’s distri-

bution from C51 versus a normal approximation using DVTD’s value and variance

estimates. An example from the Tamar Chain environment is plotted in Fig. 6.1.

98



−50 −40 −30 −20 −10 0

Z

p
(z

)

Comparing Distribution Estimates

cdf

C51 Normal Approximation

Figure 6.1: Estimates for the distribution of the return from a state (specifically, State 2
in the Tamar Chain MDP) under linear function approximation. We used the value and
variance estimates from DVTD to approximate the return’s distribution as a standard normal,
comparing it with the distribution estimate found by C51.
The normal approximation is similar to C51’s estimate, but does not capture the distribution’s
left-tailedness and has a visibly different mode.

In this case the parametric approximation was not particularly accurate, but this is

to be expected given that C51 uses far more parameters and is specifically designed

to approximate distributions.

However, upon incorporating one additional moment (the skew), we found that

the parametric approximation improved significantly; a fitted skew normal largely

agrees with the distribution estimated by C51, as can be seen in Fig. 6.2.

99



−50 −40 −30 −20 −10 0

Z

p
(z

)

Comparing Distribution Estimates

cdf

C51 Skew Normal Approximation

Figure 6.2: The distribution of the return from a state (specifically, State 2 in the Tamar
Chain MDP), as estimated by C51 (under linear function approximation) and a fitted skew-
normal. Inset, we also provide the associated cumulative distribution functions.
They show a surprising amount of agreement, with similar modes and appropriately decaying
tails. The estimated distribution from C51 has some concentration of probability mass at the
left edge of the support, indicating that a portion of the returns were more negative than could
be represented.

This sort of accuracy might not be universally attainable (particularly if the return

distribution is multimodal) but it suggests that moment-based methods could be

competitive with the more elaborate distributional approach.

Alternatively, comparing the estimate for the variance from, say, DVTD with the

variance estimated by C51 would allow us to check that they are performing properly.

It might also be possible to accelerate distributional algorithms by initializing them

estimated distributions obtained from the faster moment learning algorithms.

100



APPENDiX A

DVTD CONVERGENCE DETAiLS

Here we present a more detailed version of DVTD’s convergence proof from Sec-

tion 4.6. We use the two-timescale convergence results from Borkar 2008, described

in Section 2.6, in particular Theorem 2.2. Essentially, we show that a version of

DVTD1 satisfies the conditions (𝓐. 2.1 to 2.9) of the general convergence theorem,

implying Theorem 4.6.

For Theorem 4.6 to hold, we had to make some initial assumptions, in particular

that the transitions were sampled i.i.d. (𝓐. 2.2) from the on-policy distribution and

that the rewards and features were bounded2 (𝓐. 4.1). Furthermore, we assume

that the feature matrix 𝐗 ∈ R𝑁×𝑑 is full rank.

In terms of notation, we specify transitions as (𝑠𝑛, 𝑟𝑛, 𝑠′
𝑛), and we use 𝐱𝑛 ≝

𝐱(𝑠𝑛), 𝐱′
𝑛 ≝ 𝐱(𝑠′

𝑛), and 𝛾𝑛 ≝ 𝛾(𝑠′
𝑛). We use 𝛾 = max𝑠∈𝒮 𝛾(𝑠), to allow us to

simultaneously establish results for both the GVF and constant discounting settings.

Unless otherwise specified, we take ‖⋅‖ to be the Euclidean norm, with ‖⋅‖𝐌 the

weighted norm with respect to some matrix 𝐌3.

We also take for granted that the stepsize sequence is chosen appropriately (𝓐. 2.3),

with the TD component corresponding to the slow timescale and identifying the DV

component with the fast timescale. Additionally, the DVTD variant we analyze
1A summary of the various quantities involved is provided in Table A.1 (Page 109.
2With ‖𝐱(𝑠)‖ ≤ 𝐾𝑏 for all 𝑠 ∈ 𝒮 and |𝑟𝑛| < 𝐾𝑏 for 𝑛 ≥ 0.
3e.g., ‖𝐳‖𝐌 ≝ (𝐳⊤𝐌𝐳)1/2 = ‖𝐌𝐳‖.

101



incorporates a projection step:

𝛉𝑛+1 = 𝚼(𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]), (4.59)

𝐰𝑛+1 = 𝚼(𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛) + 𝐍𝑛+1]), (4.60)

where 𝚼 ∶ R𝑑 → 𝐶 is a projection that restricts the iterates to a compact set

𝐶 ⊂ R𝑑 chosen such that it contains all possible equilbria for the associated ordinary

differential equations:

𝛉̇ = 𝐠(𝛉) = −𝐀[𝛉 − 𝛉∗] = 𝐛 − 𝐀𝛉,
𝐰̇ = 𝐡(𝛉, 𝐰) = −𝐀̃[𝐰 − 𝐰∗(𝛉)] = 𝐛̃(𝛉) − 𝐀̃𝐰.

If a point is an equilibrium in the unprojected system, then it remains an equilibrium

under projection. By employing a projection, we ensure that the update equations

(and their corresponding ODEs) will be Lipschitz, which is immensely helpful for

proving that (4.59) and (4.60) converge to a unique solution4 We tacitly assume that

the initial 𝛉0 and 𝐰0 are chosen to be within 𝐶 in order to streamline the exposition.

With the preceding in mind, we can then establish the truth of the remaining

assumptions.

Lemma A.1 (Bounded Iterates)

The iterates 𝛉𝑛 and 𝐰𝑛 are bounded in accordance with 𝓐. 2.7:

sup
𝑛

(‖𝐰𝑛‖ + ‖𝛉𝑛‖) ≤ ∞ a.s. (A.1)

PROOF (LEMMA A.1):

The bound is immediately evident due to the projection step. We defined 𝐾𝐶 ≝
sup𝐳∈𝐶 ‖𝐳‖, and since the updates in (4.59) and (4.60) are contained within 𝐶 for

all 𝑛 ≥ 0, then we have

‖𝛉𝑛‖, ‖𝐰𝑛‖ ≤ 𝐾𝐶 < ∞ ∀ 𝑛 ≥ 0 (A.2)
■

4Further information on this strategy is available in Nagurney and Zhang 1996, Chapters 2-3;
examples of applications in a reinforcement learning context can be found in Yu 2017; Sutton, Maei
et al. 2009.

102



For later convenience, we establish the positive definiteness of 𝐀 and 𝐀̃ as the

consequence of a more general result:

Lemma A.2 (Positive Definiteness of Update Matrices)

For 𝑘 ∈ N such that 𝑘 > 0, let 𝐀(𝑘) ∈ R𝑑×𝑑 be defined as:

𝐀(𝑘) ≝ 𝐗⊤𝐃(𝐈 − 𝐏𝚪(𝑘))𝐗, (A.3)

where 𝐏 ∈ R𝑁×𝑁 is an irreducible stochastic matrix, with stationary distribution

𝐝, 𝐃 = diag(𝐝), and 𝚪 ∈ R𝑁×𝑁 is a diagonal matrix with 0 ≤ Γ𝑖𝑖 ≤ 1 which has

at least one entry less than one.

If 𝐗 ∈ R𝑁×𝑑 is full rank, then 𝐀(𝑘) is positive definite.

PROOF (LEMMA A.2):

From our assumption that 𝐗 is full rank, we have for all 𝐲 ∈ R𝑑 that 𝐳 = 𝐗𝐲 ≠ 𝟎
unless 𝐲 = 𝟎. We can then observe that for any positive definite matrix 𝐌:

𝐳⊤𝐌𝐳 = 𝐲⊤𝐗⊤𝐌𝐗𝐲 > 0 for 𝐲 ≠ 𝟎.

Therefore we just need to show that 𝐃(𝐈 − 𝐏𝚪(𝑛)) is positive definite. This

can be seen as a consequence of diagonal dominance (as in Sutton, Mahmood and

White 2015, pg. 6), stemming from the fact that 𝐏 is a stochastic matrix, and for

𝑛 > 0, the matrix 𝐏𝚪(𝑛) is substochastic.

Thus 𝐀(𝑘) is positive definite for 𝑘 ∈ N, 𝑘 > 0. ■

Note that 𝐀(1) = 𝐀 and 𝐀(2) = 𝐀̃ are therefore both positive definite.

We will also make use of bounds on the TD error:

Lemma A.3 (Bounding 𝛿(𝛉))
Assume 𝓐. 2.2 and 4.1 hold and that the TD component updates as in (4.59). Let

𝐾𝐶 ≝ sup𝐳∈𝐶 ‖𝐳‖. Then:

|𝛿𝑛(𝛉)| = ∣𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱𝑛)⊤𝛉∣ ≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖) ≤ 𝐾𝛿, (A.4)

where we define 𝐾𝛿 ≝ 𝐾𝑏 + (1 + 𝛾)𝐾𝑏𝐾𝐶

103



In addition, for the expected TD error vector, 𝛅(𝛉), we have:

‖𝛅(𝛉)‖𝐃 ≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖𝐃) ≤ 𝐾𝛿. (A.5)

PROOF (LEMMA A.3):

The proof is simple given our assumptions. Starting from the definition,

|𝛿𝑛(𝛉)| = ∣𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱𝑛)⊤𝛉∣

≤ |𝑟𝑛| + ∣𝛾𝑛(𝐱′
𝑛)⊤𝛉∣ + ∣𝐱⊤

𝑛𝛉∣

≤ 𝐾𝑏 + 𝛾‖𝐱′
𝑛‖‖𝛉‖ + ‖𝐱𝑛‖‖𝛉‖

≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖),

(A.6)

from the bounds on the features and the rewards. Noting that 𝛉𝑛 ∈ 𝐶 for all

𝑛 ≥ 0, we have 𝐾𝐶 ≥ ‖𝛉‖, and therefore:

|𝛿𝑛| ≤ 𝐾𝑏(1 + (1 + 𝛾)‖𝛉‖) ≤ 𝐾𝑏(1 + (1 + 𝛾)𝐾𝐶) = 𝐾𝛿 (A.7)

as claimed.

We can follow a similar procedure for the second part of the lemma:

‖𝛅(𝛉)‖𝐃 = ‖𝐫 + (𝐏𝚪 − 𝐈)𝐗𝛉‖𝐃 ≤ ‖𝐫‖𝐃 + ‖(𝐏𝚪 − 𝐈)𝐗𝛉‖𝐃. (A.8)

Observe that ‖𝐫‖ ≤ 𝐾𝑏; for the other term we have:

‖(𝐏𝚪 − 𝐈)𝐗𝛉‖𝐃 ≤ ‖(𝐏𝚪 − 𝐈)𝐗‖‖𝛉‖𝐃 ≤ (‖𝐏𝚪𝐗‖ + ‖𝐗‖)‖𝛉‖𝐃

≤ (1 + 𝛾)𝐾𝑏‖𝛉‖𝐃 ≤ (1 + 𝛾)𝐾𝑏𝐾𝐶.
(A.9)

Combining, we get the desired result:

‖𝛅(𝛉)‖𝐃 ≤ 𝐾𝑏 + (1 + 𝛾)𝐾𝑏𝐾𝐶 = 𝐾𝛿. (A.10)
■

Lemma A.4 (Slow Component Convergence)

The slow component 𝛉̇ = 𝐠(𝛉) = 𝐛 − 𝐀𝛉 has a globally asymptotically stable

equilibrium 𝛉∗, as required by 𝓐. 2.9.

104



PROOF (LEMMA A.4):

From Lemma A.2 we have that 𝐀 is positive definite. This implies that it is

invertible, and therefore that 𝛉∗ = 𝐀−1𝐛 exists; furthermore we can write the

ODE as 𝛉̇ = 𝐛 − 𝐀𝛉 = −𝐀(𝛉 − 𝛉∗). By assumption, 𝛉∗ ∈ 𝐶, so now we just need

to show that it is a globally asymptotically stable equilibrium of (2.34).

This can be demonstrated in a number of ways, but perhaps the most immediate

is the Lipaunov method. Using 𝑉 (𝛉) = ‖𝛉 − 𝛉∗‖2 as our Liapunov function, we

have:

d𝑉
d𝑡 = ⟨∇𝛉𝑉 , 𝛉̇⟩ =

𝑑
∑
𝑖=1

𝜕𝑉
𝜕𝜃𝑖

𝜕𝑔𝑖(𝛉) = −2(𝛉 − 𝛉∗)⊤𝐀(𝛉 − 𝛉∗), (A.11)

and since 𝐀 is positive definite, we have that ̇𝑉 (𝛉) < 0 for 𝛉 ≠ 𝛉∗ Clearly,

𝑉 (𝛉) > 0 for 𝛉 ≠ 𝛉∗, and 𝑉 (𝛉∗) = ̇𝑉 (𝛉∗) = 0, so 𝑉 (⋅) is a valid Liapunov function
for the slow component 𝛉̇.

Then the equilibrium 𝛉∗ exists and is globally asymptotically stable. ■

Lemma A.5 (Lipschitz Functions)

The functions 𝛅(2) ∶ R𝑑 → R𝑁 , 𝐛̃ ∶ R𝑑 → R𝑑, and 𝐰∗ ∶ R𝑑 → R𝑑 defined via:

𝛅(2)(𝛉) = E
𝜋
[𝛿2

𝑛(𝛉)],

𝐛̃(𝛉) = E
𝜋
[𝐱𝑛𝛿2

𝑛(𝛉)] = 𝐗⊤𝐃𝛅(2)(𝛉),

𝐰∗(𝛉) = 𝐀̃−1𝐛̃(𝛉),

(A.12)

are Lipschitz on 𝐶.

PROOF (LEMMA A.5):

From the earlier Lemma A.3, we have that 𝛅 ∶ R𝑑 → R𝑁 is bounded on 𝐶 with

‖𝛿𝑛(𝛉)‖ ≤ 𝐾𝛿 for some 𝐾𝛿 ≥ 0. The function 𝛅(⋅) is actually itself Lipschitz, since:

‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃 = ‖𝐫 + (𝐏𝚪 − 𝐈)𝐗𝛉1 − 𝐫 − (𝐏𝚪 − 𝐈)𝐗𝛉2‖𝐃

= ‖(𝐏𝚪 − 𝐈)𝐗(𝛉1 − 𝛉2)‖𝐃

≤ ‖(𝐈 − 𝐏𝚪)𝐗‖𝐃‖𝛉1 − 𝛉2‖𝐃

≤ (1 + 𝛾)𝐾𝑏 = 𝐾𝛿.

(A.13)

105



This can be used to demonstrate that 𝛅(2) is Lipschitz on 𝐶.

For 𝛅(2)
𝑛 ∶ R𝑑 → R𝑑, we have:

𝛿(2)
𝑛 (𝛉) = E

𝜋
[𝛿2

𝑛(𝛉)] = V
𝜋
[𝛿𝑛(𝛉)] + E

𝜋
[𝛿𝑛(𝛉)]2 = 𝜈2 + 𝛅2(𝛉) = 𝜈2 + 𝛅(𝛉) ∘ 𝛅(𝛉),

(A.14)

where we use 𝜈2 = V𝜋[𝛿𝑛(𝛉)], noting that it is constant given 𝓐. 2.2. Therefore:

∥𝛅(2)(𝛉1) − 𝛅(2)(𝛉2)∥𝐃 = ∥𝛅2(𝛉1) − 𝛅2(𝛉2)∥𝐃

= ‖(𝛅(𝛉1) + 𝛅(𝛉2)) ∘ (𝛅(𝛉1) − 𝛅(𝛉2))‖𝐃

≤ ‖𝛅(𝛉1) + 𝛅(𝛉2)‖‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃

≤ 2𝐾𝛿‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃,

(A.15)

where we use the fact that 𝛅 is bounded on 𝐶. Then we can see:

∥𝛅(2)(𝛉1) − 𝛅(2)(𝛉2)∥𝐃 ≤ 2𝐾𝛿‖𝛅(𝛉1) − 𝛅(𝛉2)‖𝐃 ≤ 2𝐾2
𝛿 ‖𝛉1 − 𝛉2‖𝐃. (A.16)

So 𝛅(2)(⋅) is Lipschitz on 𝐶.

This immediately implies that 𝐛̃(⋅) and 𝐰∗(⋅) are also Lipschitz on 𝐶, since they

are both linear maps with respect to 𝛅(2). ■

Lemma A.6 (Fast Component Convergence)

The fast component 𝐰̇ = 𝐡(𝐰(𝑡), 𝛉) has a globally asymptotically stable equilibrium
that is a function of 𝛉, denoted 𝐰∗(𝛉), where 𝐰∗ ∶ R𝑑 → R𝑑 is Lipschitz continuous.

PROOF (LEMMA A.6):

We know from Lemma A.5 that 𝐰∗(⋅) is Lipschitz on 𝐶, which suffices for our

purposes thanks to the projection step.

From Lemma A.2, we have that 𝐀̃ is positive definite and therefore invertible,

so 𝐰∗(𝛉) = 𝐀̃−1𝐛̃(𝛉) is unique. By inspection, we can see that 𝐰̇ = 𝐡(𝛉, 𝐰) =
𝐛̃ − 𝐀̃𝐰 = 0 when 𝐰 = 𝐰∗. What remains is to show that this equilibrium is

globally asymptotically stable.

As it turns out, we can use the same reasoning as in Lemma A.4. Let

106



𝑉𝛉(𝐰) = ‖𝐰 − 𝐰∗(𝛉)‖2 be our Liapunov function for some (fixed) choice of 𝛉. It
is obviously positive for 𝐰 ≠ 𝐰∗(𝛉), and 𝑉𝛉(𝐰∗(𝛉)) = ̇𝑉𝛉(𝐰∗(𝛉)) = 0. Examining
the derivative with respect to time, we see:

d𝑉𝛉
d𝑡 = ⟨∇𝐰𝑉𝛉, 𝐡(𝛉, 𝐰)⟩ = −2(𝐰 − 𝐰∗(𝛉))⊤𝐀̃(𝐰 − 𝐰∗(𝛉)) ≤ 0. (A.17)

It is in fact negative for 𝐰 ≠ 𝐰∗(𝛉) due to the aforementioned positive-definiteness
of 𝐀̃.

Therefore 𝐰∗(𝛉) is a unique globally asymptotically stable equilibrium for 𝐰̇ =
𝐡(𝐰(𝑡), 𝛉) as claimed. ■

Lemma A.7 (Noise Bound)

The noise sequences {𝐌𝑛} and {𝐍𝑛} are bounded by some 𝐾𝑚 > 0 such that:

E[‖𝐍𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2],

E[‖𝐌𝑛+1‖2|ℱ𝑛] ≤ 𝐾𝑚[1 + ‖𝐰𝑛‖2 + ‖𝛉𝑛‖2].
(A.18)

PROOF (LEMMA A.7):

We first establish bounds on the TD component’s noise.

‖𝐌𝑛+1‖ = ‖𝐱𝑛𝛿𝑛(𝛉𝑛) − (𝐛 − 𝐀𝛉𝑛)‖

≤ ∥𝐱𝑛(𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱)⊤𝛉∥ + ‖𝐛 − 𝐀𝛉𝑛‖

≤ ‖𝐱𝑛‖(|𝑟𝑛| + 𝛾‖𝐱′
𝑛‖ + ‖𝐱𝑛‖)‖𝛉𝑛‖ + ‖𝐛‖ + ‖𝐀‖‖𝛉𝑛‖

≤ 𝐾2
𝑏 (1 + (1 + 𝛾)‖𝛉‖) + ‖𝐛‖ + ‖𝐀‖‖𝛉𝑛‖

= 𝐾2
𝑏 + ‖𝐛‖ + (𝐾2

𝑏 (1 + 𝛾) + ‖𝐀‖)‖𝛉‖,

(A.19)

where we used 𝓐. 4.1, which also guarantees that ‖𝐛‖ and ‖𝐀‖ are finite. Let

𝐾𝑚 = max𝐾2
𝑏 + ‖𝐛‖, (𝐾2

𝑏 (1 + 𝛾) + ‖𝐀‖). Then:

‖𝐌𝑛+1‖ ≤ 𝐾𝑚(1 + ‖𝛉‖). (A.20)

From Young’s inequality, 𝑎𝑏 ≤ 𝑎𝑝/𝑝 + 𝑏𝑞/𝑞 for 𝑎, 𝑏 ≥ 0 and 𝑝, 𝑞 > 1 such that

1/𝑝 + 1/𝑞 = 1. In particular, if 𝑝 = 𝑞 = 2, and 𝑎 = 1, we have 𝑏 ≤ 1+𝑏2
2 . We can

107



therefore see that:

‖𝐌𝑛+1‖2 ≤ 𝐾2
𝑚(1 + ‖𝛉‖)2 = 𝐾2

𝑚(1 + ‖𝛉‖2 + 2‖𝛉‖) ≤ 2𝐾2
𝑚(1 + ‖𝛉‖2), (A.21)

■

which gives us a bound on ‖𝐌𝑛+1‖ similar to the lemma’s statement. Setting

𝐾𝑚 = 2𝐾2
𝑚 completes the proof.

A bound for ‖𝐍𝑛+1‖ in terms of ‖𝐰‖ can be derived in a similar manner by

following essentially the same steps and making use of Lemma A.3.

Lemma A.8 (Martingale Noise)

The noise sequences {𝐌𝑛+1} and {𝐍𝑛+1} are martingale difference sequences.

PROOF (LEMMA A.8):

We first show that {𝐌𝑛+1} and {𝐍𝑛+1} have expectation zero, which follows from
their definition and the i.i.d. assumption (𝓐. 2.2). We have:

𝐌𝑛+1 = 𝐱𝑛(𝑟𝑛 + (𝛾𝑛𝐱′
𝑛 − 𝐱)⊤𝛉𝑛) − 𝐛 − 𝐀𝛉𝑛 = 𝐱𝑛𝛿𝑛(𝛉𝑛) − 𝐠(𝛉𝑛). (A.22)

Examining the expectation of 𝛿𝑛(𝛉𝑛)𝐱𝑛 yields:

E
𝜋
[𝐱𝑛𝛿𝑛] = E

𝜋
[𝐱𝑛(𝑟𝑛 + (𝛾𝑛𝐱′

𝑛 − 𝐱)⊤𝛉𝑛)]

= E
𝜋
[𝐱𝑛𝑟𝑛] + E

𝜋
[𝐱𝑛(𝛾𝑛𝐱′

𝑛 − 𝐱)⊤𝛉𝑛)]

= 𝐃𝐗⊤𝐫 + 𝐃𝐗⊤(𝚪𝐏𝐗 − 𝐗)𝛉𝑛

= 𝐛 − 𝐀𝛉𝑛,

(A.23)

and therefore:

E
𝜋
[𝐌𝑛+1] = E

𝜋
[𝐱𝑛𝛿𝑛] − (𝐛 − 𝐀𝛉𝑛) = 𝐛 − 𝐀𝛉𝑛 − (𝐛 − 𝐀𝛉𝑛). (A.24)

For 𝐍𝑛+1 the proof is basically identical and therefore omitted.

We can further note that Lemma A.7 implies that their expectations are

bounded with proportional to the iterates. Given that the iterates are themselves

bounded to be within 𝐶, we have that {𝐌𝑛+1} and {𝐍𝑛+1} are bounded, and

therefore square-integrable.

108



Therefore {𝐌𝑛+1} and {𝐍𝑛+1} are martingale difference sequences. ■

The combination of the preceding results implies that the iterates from (4.59)

and (4.60) satisfy the conditions from Theorem 2.2 and therefore (𝛉𝑛, 𝐰𝑛) → (𝛉∗, 𝐰∗(𝛉∗))
as 𝑛 → ∞.

DVTD ODE SUMMARY

TD(0) update 𝛉𝑛+1 = 𝚼(𝛉𝑛 + 𝛼𝑛[𝑟𝑛 + 𝛾𝛉⊤
𝑛𝐱′

𝑛 − 𝛉⊤
𝑛𝐱𝑛]𝐱𝑛)

= 𝚼(𝛉𝑛 + 𝛼𝑛[𝐠(𝛉𝑛) + 𝐌𝑛+1]) (4.59)

DV update 𝐰𝑛+1 = 𝚼(𝐰𝑛 + 𝛽𝑛[ ̃𝑟𝑛 + 𝛾̃𝐰⊤
𝑛𝐱′

𝑛 − 𝐰⊤
𝑛𝐱𝑛]𝐱𝑛)

= 𝚼(𝐰𝑛 + 𝛽𝑛[𝐡(𝐰𝑛) + 𝐍𝑛+1]) (4.60)

limiting ODE 𝛉̇ = 𝐠(𝛉) = 𝐛 − 𝐀𝛉 = −𝐀[𝛉 − 𝛉∗] (2.34)

𝐰̇ = 𝐡(𝛉, 𝐰) = 𝐛̃(𝛉) − 𝐀̃𝐰 = −𝐀̃[𝐰 − 𝐰∗(𝛉)] (4.55)

martingale noise 𝐌𝑛+1 = [𝑟𝑛 + 𝛾𝛉⊤
𝑛𝐱′

𝑛 − 𝛉⊤
𝑛𝐱𝑛]𝐱𝑛 − [𝐛 − 𝐀𝛉𝑛] (2.37)

𝐍𝑛+1 = [ ̃𝑟𝑛 + 𝛾̃𝐰⊤
𝑛𝐱′

𝑛 − 𝐰⊤
𝑛𝐱𝑛]𝐱𝑛 − [𝐛̃(𝛉𝑛) − 𝐀̃𝐰𝑛] (4.56)

related quantities 𝐀 = E𝜋,𝑑𝜋
[𝐱𝑛(𝐱𝑛 − 𝛾𝐱′

𝑛)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝛾𝐏𝜋)𝐗 (2.35)

𝐛 = E𝜋,𝑑𝜋
[𝐱𝑛𝑟𝑛] = 𝐗⊤𝐃𝜋𝐫𝜋 (2.36)

𝐀̃ = E𝜋,𝑑𝜋
[𝐱𝑛(𝐱𝑛 − 𝛾̃𝐱′

𝑛)⊤] = 𝐗⊤𝐃𝜋(𝐈 − 𝛾̃𝐏𝜋)𝐗 (4.52)

𝐛̃(𝛉) = E𝜋,𝑑𝜋
[𝐱𝑛 ̃𝑟𝑛] = 𝐗⊤𝐃𝜋𝐫̃𝜋(𝛉) (4.53)

DV target ̃𝑟𝑛 = E𝜋[𝛿2
𝑛(𝛉)]

𝐰∗(𝛉) = 𝐀̃−1𝐛̃(𝛉) (4.57)

projection operator 𝚼(𝐳) = argmin
𝐳̂∈𝐶

‖𝐳 − 𝐳̂‖ (4.58)

Table A.1: A summary of the various expressions for DVTD in the ODE framework.

109



APPENDiX B

C51 UNDER LiNEAR FUNCTiON

APPROXiMATiON

From the description of C51 (a distributional RL algorithm) provided by Bellemare,

Dabney and Munos (2017), we show that the update equations actually have a fairly

simple form under linear function approximation.

C51 parameterizes distributions as taking on 𝑁+1 possible discrete values, equally
spaced between 𝑧min and 𝑧max, with 𝑧𝑘 defined as:

𝑧𝑘 ≝ 𝑧min + 𝑘(𝑧max − 𝑧min
𝑁 ) = 𝑧min + 𝑘Δ𝑧, (B.1)

with Δ𝑧 = (𝑧max − 𝑧min)/𝑁 .

For every state 𝑠, it assigns a probability of the return taking on that value,

denoted 𝑝𝑖(𝑠), with ∑𝑁
𝑖=0 𝑝𝑖(𝑠) = 1 and 𝑝𝑖(𝑠) ≥ 0 for all 𝑖 ∈ {0, … , 𝑁} and 𝑠 ∈ 𝒮.

Here, we are assuming linear function approximation, with a feature function 𝜙 ∶
𝒮 → R𝐾. Let 𝜃𝑖 be the parameters for the 𝑖-th unit. Then 𝑝𝑖(𝑠) is defined as:

𝑝𝑖(𝑠) ≝ 𝑒𝜃⊤
𝑖 𝜙(𝑠)

∑𝑁
𝑗=0 𝑒𝜃⊤

𝑗 𝜙(𝑠) = 𝑒𝜃⊤
𝑖 𝜙(𝑠)

𝜎(𝑠) , (B.2)

where:

𝜎(𝑠) ≝
𝑁

∑
𝑗=0

𝑒𝜃⊤
𝑗 𝜙(𝑠). (B.3)

Regarding the parameters as a weight matrix Θ ∈ R𝑁+1×𝐾 allows us to write:

𝐩(𝑠) = 1
𝜎(𝑠)𝑒Θ𝜙(𝑠) (B.4)

C51 updates from samples of the distribution, which entails a sampled Bellman
110



operator ̂𝑇 . For a sample (𝑠, 𝑟, 𝑠′), it is defined as:

̂𝑇 𝑧𝑗 ≝ 𝑟 + 𝛾𝑧𝑗. (B.5)

In order to form the loss function, C51 projects arbitrary distributions onto the

supported values {𝑧0, 𝑧1, … , 𝑧𝑁} using the Cramér projection (denoted Π𝐶). The

projected update is denoted 𝐦(𝑠, 𝑠′) ∈ R𝑁+1, with 𝑚𝑖(𝑠, 𝑠′) given by:

𝑚𝑖(𝑠, 𝑠′) ≝ [Π𝐶 ̂𝑇 𝑍(𝑠)]𝑖 =
𝑁

∑
𝑗=0

[1 −
∣[ ̂𝑇 𝑧𝑗]𝑧max𝑧min − 𝑧𝑖∣

Δ𝑧 ]
1

0
𝑝𝑗(𝑠′), (B.6)

where [𝑥]𝑏𝑎 denotes that 𝑥 is “clipped” to be within [𝑎, 𝑏], that is:

[𝑥]𝑏𝑎 ≝ min(𝑏,max(𝑎, 𝑥)). (B.7)

The loss used in (Bellemare, Dabney and Munos 2017) was the cross-entropy loss:

ℒ ≝
𝑁

∑
𝑖=0

𝑚𝑖(𝑠, 𝑠′) log 𝑝𝑖(𝑠). (B.8)

Treating 𝑚𝑖(𝑠, 𝑠′) as independent of Θ (as in TD learning) we get the semi-gradient:

∇Θℒ = −
𝑁

∑
𝑖=0

𝑚𝑖∇Θ log 𝑝𝑖. (B.9)

Hereafter we stop specifying the state (i.e. use 𝑚𝑖 and 𝑝𝑖 in place of 𝑚𝑖(𝑠, 𝑠′) and
𝑝𝑖(𝑠)) where the meaning is clear.

Differentiating with respect to a single weight, we get:

𝜕 log 𝑝𝑖
𝜕𝜃𝑎𝑏

= 𝜕
𝜕𝜃𝑎𝑏

log(𝑒𝜃⊤
𝑖 𝜙

𝜎 ) = 𝜎
𝑒𝜃⊤

𝑖 𝜙
𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

. (B.10)

Further differentiation reveals:

𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

= 𝜕
𝜕𝜃𝑎𝑏

𝑒𝜃⊤
𝑖 𝜙

𝜎 = 1
𝜎

𝜕𝑒𝜃⊤
𝑖 𝜙

𝜕𝜃𝑎𝑏
− 𝑒𝜃⊤

𝑖 𝜙

𝜎2
𝜕𝜎

𝜕𝜃𝑎𝑏
. (B.11)

For the first term, we have:

𝜕𝑒𝜃⊤
𝑖 𝜙

𝜕𝜃𝑎𝑏
= 𝛿𝑖𝑎𝜙𝑏𝑒𝜃⊤

𝑖 𝜙, (B.12)

111



where define 𝛿𝑖𝑗 (the Kronecker delta) via:

𝛿𝑖𝑗 =
⎧{
⎨{⎩

1 if 𝑖 = 𝑗

0 otherwise
(B.13)

Evaluating the second term gives:

𝜕𝜎
𝜕𝜃𝑎𝑏

= 𝜕
𝜕𝜃𝑎𝑏

∑
𝑗

𝑒𝜃⊤
𝑗 𝜙 = ∑

𝑗

𝜕
𝜕𝜃𝑎𝑏

𝑒𝜃⊤
𝑗 𝜙 = ∑

𝑗
𝛿𝑗𝑎𝜙𝑏𝑒𝜃⊤

𝑗 𝜙 = 𝜙𝑏𝑒𝜃⊤
𝑎𝜙, (B.14)

so altogether we have:

𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

= 1
𝜎

𝜕𝑒𝜃⊤
𝑖 𝜙

𝜕𝜃𝑎𝑏
− 𝑒𝜃⊤

𝑖 𝜙

𝜎2
𝜕𝜎

𝜕𝜃𝑎𝑏
= 𝛿𝑖𝑎𝜙𝑏𝑒𝜃⊤

𝑖 𝜙

𝜎 − 𝜙𝑏𝑒𝜃⊤
𝑖 𝜙𝑒𝜃⊤

𝑎𝜙

𝜎2

= 1
𝜎2 𝜙𝑏𝑒𝜃⊤

𝑖 𝜙(𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤
𝑎𝜙)

(B.15)

Returning to the original derivative, we get:

𝜕 log 𝑝𝑖
𝜕𝜃𝑎𝑏

= 𝜎
𝑒𝜃⊤

𝑖 𝜙
𝜕𝑝𝑖
𝜕𝜃𝑎𝑏

= ( 𝜎
𝑒𝜃⊤

𝑖 𝜙 )( 1
𝜎2 𝜙𝑏𝑒𝜃⊤

𝑖 𝜙(𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤
𝑎𝜙))

= 1
𝜎𝜙𝑏(𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤

𝑎𝜙)
(B.16)

Now, to compute the gradient for the loss, we have to take the sum:

𝜕ℒ
𝜕𝜃𝑎𝑏

= −
𝑁

∑
𝑖=0

𝑚𝑖
𝜕 log 𝑝𝑖

𝜕𝜃𝑎𝑏
= −

𝑁
∑
𝑖=0

𝑚𝑖𝜙𝑏
𝜎 (𝛿𝑖𝑎𝜎 − 𝑒𝜃⊤

𝑎𝜙)

= 𝜙𝑏(
𝑒𝜃⊤

𝑎𝜙

𝜎
𝑁

∑
𝑖=0

𝑚𝑖 −
𝑁

∑
𝑖=0

𝑚𝑖𝛿𝑖𝑎)

= 𝜙𝑏(𝑝𝑎
�
�
��>

1
∑

𝑖
𝑚𝑖 − 𝑚𝑎)

= 𝜙𝑏(𝑝𝑎 − 𝑚𝑎),

(B.17)

where we use the fact that the 𝑚𝑖 sum to one, since 𝐦 represents a probability

distribution. The matrix version of the above is just:

∇𝜃ℒ = (𝐩 − 𝐦)𝜙⊤. (B.18)

112



APPENDiX C

ALGORiTHM LiSTiNG

Algorithm 1: Linear TD(λ)
Linear TD(λ) learns a value function for a policy 𝜋 using linear function approximation. Its
value function is ̂𝑣 ∶ 𝒮 → R with ̂𝑣 = 𝛉⊤𝜙(𝑠), where 𝜙 ∶ 𝒮 → R𝑛 is the function that maps
states to features. As the agent learns, its value function becomes closer to the true value of
the policy, that is, ̂𝑣(𝑠) ≈ 𝑣𝜋(𝑠) = E𝜋[𝐺𝑡|𝑆𝑡 = 𝑠]

1 initialize(𝜋, 𝜙, 𝛼, 𝛾, 𝜆):
▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝜙 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, the learning rate, either constant or specified as a sequence {𝛼}𝑡
▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝜆 ∶ 𝒮 → [0, 1] is the bootstrapping function

2 Initialize 𝛉 ∈ R𝑛 arbitrarily
3 Allocate eligibility trace vector 𝐳 ∈ R𝑛

4 update(𝑠, 𝑎, 𝑟, 𝑠′):
5 𝐱 ← 𝜙(𝑠)
6 𝐱′ ← 𝜙(𝑠′) ▷ compute features
7 𝛿 ← 𝑟 + 𝛾(𝑠′)𝛉⊤𝐱′ − 𝛉⊤𝐱 ▷ temporal difference error
8 𝐳 ← 𝛾(𝑠′)𝜆(𝑠′)𝐳 + 𝐱 ▷ update eligibility trace
9 𝛉 ← 𝛼𝛿𝐳 ▷ update weight vector

10 reset():
11 Set 𝐳 ∈← 𝟎, for 𝐳 ∈ R𝑛 ▷ clear eligibility traces

12 learn(episodes):
13 for each episode do
14 reset() ▷ Get ready for episode start
15 Get 𝑠, the start state for the episode
16 while 𝑠 is not terminal do
17 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
18 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

19 update(𝑠, 𝑎, 𝑟, 𝑠′)
20 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

21 return ̂𝑣 ∶ 𝑠 ↦ 𝛉⊤𝜙(𝑠)

113



Algorithm 2: Linear DVTD(λ)
Linear DVTD(λ) learns a value function ( ̂𝑣 ∶ 𝒮 → R) and a variance function (𝑢̂ ∶ 𝒮 → R)
for a policy 𝜋 using linear function approximation. As the agent learns, its value function
becomes closer to the true value function; as the value function becomes more accurate
( ̂𝑣 ≈ E𝜋[𝐺𝜆

𝑡 |𝑆𝑡 = 𝑠]), the variance function becomes a better approximation of the variance
of the λ-return, i.e. 𝑢̂(𝑠) ≈ E𝜋[(𝐺𝜆

𝑡 − ̂𝑣(𝑠))2|𝑆𝑡 = 𝑠].

1 initialize(𝜋, 𝜙, 𝛼, ̃𝛼, 𝛾, 𝜆, 𝜆̃):
▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝜙 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, value learning rate, either constant or specified as a sequence {𝛼}𝑡
▷ 𝛼̃, variance learning rate, either constant or specified as a sequence {𝛼̃}𝑡
▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝜆 ∶ 𝒮 → [0, 1] is the bootstrapping function for the value learner
▷ 𝜆̃ ∶ 𝒮 → [0, 1] is the bootstrapping function for the variance learner

2 Initialize 𝛉 ∈ R𝑛 arbitrarily ▷ value estimator weights
3 Initialize 𝐰 ∈ R𝑛 arbitrarily ▷ variance estimator weights

4 update(𝑠, 𝑎, 𝑟, 𝑠′):
5 𝐱 ← 𝜙(𝑠)
6 𝐱′ ← 𝜙(𝑠′) ▷ compute features
7 𝛿 ← 𝑟 + 𝛾(𝑠′)𝛉⊤𝐱′ − 𝛉⊤𝐱 ▷ temporal difference error
8 𝐳 ← 𝛾(𝑠′)𝜆(𝑠′)𝐳 + 𝐱 ▷ update eligibility trace
9 𝛉 ← 𝛼𝛿𝐳 ▷ update weight vector for ̂𝑣

10 ̃𝑟 ← 𝛿2 ▷ ”reward” for DV component
11 ̃𝛾 ← (𝛾(𝑠′)𝜆(𝑠′))2

12 ̃𝛿 ← ̃𝑟 + ̃𝛾𝐰⊤𝐱′ − 𝐰⊤𝐱
13 ̃𝐳 ← ̃𝛾𝜆̃(𝑠′) ̃𝐳 + 𝐱
14 𝐰 ← ̃𝛼 ̃𝛿 ̃𝐳 ▷ update weight vector for variance

15 reset():
16 Set 𝐳 ∈← 𝟎, for 𝐳 ∈ R𝑛

17 Set ̃𝐳 ← 𝟎 for ̃𝐳 ∈ R𝑛. ▷ clear eligibility traces

18 learn(episodes):
19 for each episode do
20 reset() ▷ Get ready for episode start
21 Get 𝑠, the start state for the episode
22 while 𝑠 is not terminal do
23 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
24 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

25 update(𝑠, 𝑎, 𝑟, 𝑠′)
26 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

27 return ̂𝑣 ∶ 𝑠 ↦ 𝛉⊤𝜙(𝑠)

114



Algorithm 3: Linear VTD(λ)
Linear VTD(λ) learns a value function, ̂𝑣 ∶ 𝒮 → R, and an estimate for the second moment,
̂𝑣(2) ∶ 𝒮 → R. As the agent learns, its value function better approximates the λ-return, so

that ̂𝑣(𝑠) → E𝜋[𝐺𝜆
𝑡 |𝑆𝑡 = 𝑠], and ̂𝑣(2) goes to ̂𝑣(2)(𝑠) ≈ E𝜋[(𝐺𝜆

𝑡 )2|𝑆𝑡 = 𝑠].

1 initialize(𝜋, 𝜙, 𝛼, ̃𝛼, 𝛾, 𝜆, 𝜆̃):
▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝜙 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, value learning rate, either constant or specified as a sequence {𝛼}𝑡
▷ 𝛼̃, SM learning rate, either constant or specified as a sequence {𝛼̃}𝑡
▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝜆 ∶ 𝒮 → [0, 1] is the bootstrapping function for the value learner
▷ 𝜆̃ ∶ 𝒮 → [0, 1] is the bootstrapping function for the second moment learner

2 Initialize 𝛉 ∈ R𝑛 arbitrarily ▷ value estimator weights
3 Initialize 𝐰 ∈ R𝑛 arbitrarily ▷ second moment estimator weights

4 update(𝑠, 𝑎, 𝑟, 𝑠′):
5 𝐱 ← 𝜙(𝑠)
6 𝐱′ ← 𝜙(𝑠′) ▷ compute features
7 𝛿 ← 𝑟 + 𝛾(𝑠′)𝛉⊤𝐱′ − 𝛉⊤𝐱 ▷ temporal difference error
8 𝐳 ← 𝛾(𝑠′)𝜆(𝑠′)𝐳 + 𝐱 ▷ update eligibility trace
9 𝛉 ← 𝛼𝛿𝐳 ▷ update weight vector for ̂𝑣

10 ̃𝑟 ← 𝑟2 + 2𝛾(𝑠′)𝑟𝛉⊤𝐱′ ▷ “reward” for SM component
11 ̃𝛾 ← (𝛾(𝑠′)𝜆(𝑠′))2

12 ̃𝛿 ← ̃𝑟 + ̃𝛾𝐰⊤𝐱′ − 𝐰⊤𝐱
13 ̃𝐳 ← ̃𝛾𝜆̃(𝑠′) ̃𝐳 + 𝐱
14 𝐰 ← ̃𝛼 ̃𝛿 ̃𝐳 ▷ update weight vector for variance

15 reset():
16 Set 𝐳 ∈← 𝟎, for 𝐳 ∈ R𝑛 Set ̃𝐳 ← 𝟎 for ̃𝐳 ∈ R𝑛. ▷ clear eligibility traces

17 learn(episodes):
18 for each episode do
19 reset() ▷ Get ready for episode start
20 Get 𝑠, the start state for the episode
21 while 𝑠 is not terminal do
22 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
23 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

24 update(𝑠, 𝑎, 𝑟, 𝑠′)
25 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

26 return ̂𝑣(2) ∶ 𝑠 ↦ 𝐰⊤𝜙(𝑠) − (𝛉⊤𝜙(𝑠))2

115



Algorithm 4: Moment TD(𝜆)
1 input: the policy 𝜋 to be evaluated
2 input: a set of 𝑛 differentiable functions {𝑣𝑖}𝑛

𝑖=1 parameterized by their respective
weights {𝐰}𝑛

𝑖=1 with 𝐰𝑖 ∈ R𝑑, such that 𝑣𝑖 ∶ 𝒮 → R and 𝑣𝑖(terminal) = 0.
3 parameter: a set of stepsizes {𝛼𝑖}𝑛

𝑖=1 with 𝛼𝑖 ∈ (0, 1);
4 parameter: a set of trace decay rates {𝜆}𝑛

𝑖=1 with 𝜆𝑖 ∈ [0, 1].
5 foreach 𝑘 = 1, … , 𝑛 do Initialize 𝐰𝑘 arbitrarily
6 for each episode do
7 Initialize 𝑠 ▷ Initial state
8 foreach 𝑘 = 1, … , 𝑛 do 𝐳𝑘 ← 𝟎 set traces to zero
9 while 𝑠 is not terminal do
10 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
11 Take action 𝑎, observe 𝑟, 𝑠′

12 for 𝑘 = 𝑛, … , 1 do
13 𝑟𝑘 ← ∑𝑘−1

ℓ=0 (𝑘
ℓ)𝛾ℓ𝑟𝑘−ℓ𝑣ℓ(𝑠′) ▷ “reward” from (3.25)

14 𝐳𝑘 ← 𝛾𝑘𝜆𝑘 + ∇𝑣𝑘(𝑠)
15 𝛿 ← 𝑟𝑘 + 𝛾𝑘𝑣𝑘(𝑠′) − 𝑣𝑘(𝑠)
16 𝐰𝑘 ← 𝐰𝑘 + 𝛼𝑘𝛿𝐳𝑘
17 𝑠 ← 𝑠′

116



Algorithm 5: Linear C51 (Categorical Distributional Reinforcement Learning)
The C51 algorithm learns to assign probabilities to returns, rather than just learning the
expected value of the return. It does this by parameterizing the return distribution as taking
on 𝐾 possible values, equally spaced between 𝑍min and 𝑍min. With each transition sample
(𝑠, 𝑎, 𝑟, 𝑠′), the algorithm samples from the (approximate) distribution of future returns using,
projects it onto the categorical support, and then updates the estimate of the distribution
of 𝑠 by comparing the two. The approximate distribution can then be used to estimate the
expected return or its variance, among other things.
We have modified the algorithm described in Bellemare, Dabney and Munos 2017 (Algorithm
1, pg. 6) to be more self-contained and to explicitly use linear function approximation.

1 initialize(𝜋, 𝜙, 𝛼, 𝛾, 𝐾, 𝑍min, 𝑍max):
▷ 𝜋 ∶ 𝒮 × 𝒜 → [0, 1] is the policy, assigns probabilities to state-action pairs
▷ 𝐱 ∶ 𝒮 → R𝑛 is the representation, mapping states to features
▷ 𝛼, learning rate, either constant or specified as a sequence {𝛼}𝑡
▷ 𝛾 ∶ 𝒮 → [0, 1] is the discount function
▷ 𝐾 ∈ N+ is the number of “atoms” in the categorical distribution
▷ 𝑍min is the minimum value the categorical distribution supports
▷ 𝑍max is the maximum value the categorical distribution supports

2 Initialize 𝐖 ∈ R𝐾×𝑛 arbitrarily, e.g. to all ones. ▷ distribution estimator weights
3 Set Δ𝑧 ← (𝑍max−𝑍min

𝐾 ) ▷ spacing between atoms
4 Initialize 𝐳 ∈ R𝐾 such that 𝑧𝑖 = 𝑍min + (𝑖 − 1)Δ𝑧 ▷ distribution support

5 compute_distribution(s):
6 𝐚 ← exp {𝐖𝐱(𝑠)}
7 return 𝐚

‖𝐚‖1
▷ vector sigmoid function

8 update(𝑠, 𝑎, 𝑟, 𝑠′):
9 𝐩 ← compute_distribution(s)
10 𝐩′ ← compute_distribution(s’) ▷ get distribution estimates for 𝑠 and 𝑠′

11 𝒯𝐳 ← [𝑟 + 𝛾(𝑠′)𝐳]𝑍max
𝑍min

▷ sample (clipped) distributional Bellman operator

12 𝐦 ← 𝟎 ▷ 𝐦 ∈ R𝐾 will be 𝐩′ projected onto the supported values
13 for 𝑖 = 1, 2, … , 𝐾 do
14 for 𝑗 = 1, 2, … , 𝐾 do
15 𝑚𝑖 ← 𝑚𝑖 + 𝑝′

𝑗 [1 − |[𝒯𝑧]𝑗|
Δ𝑧 ]

1

0

16 𝐖 ← 𝐖 − 𝛼(𝐩 − 𝐦)𝐱⊤ ▷ update weights

17 learn(episodes):
18 for each episode do
19 Get 𝑠, the start state for the episode
20 while 𝑠 is not terminal do
21 Choose 𝑎 ∼ 𝜋(⋅|𝑠)
22 Execute action 𝑎, get reward 𝑟 and subsequent state 𝑠′

23 update(𝑠, 𝑎, 𝑟, 𝑠′)
24 Set 𝑠 ← 𝑠′ ▷ prepare for next iteration

25 return ̂𝑧 ∶ 𝑠 ↦ Dist(𝐳) ▷ A function mapping states to distributions

117



118



APPENDiX D

GLOSSARY

action A response an agent could execute in response to a given state which affects
the environment.

action space, set of actions The set of all possible actions that could be executed
in an environment, denoted 𝒜.

agent, learning agent An entity (e.g., a computer program) that interacts with
an environment in a learning task.

approximation target The quantity a learning algorithm estimates. For example,
a least squares estimator (𝐰 = argmin𝐰 ‖𝐗𝐰 − 𝐲‖2

2) targets 𝐲 while the ap-
proximation target for TD(𝜆) is the 𝜆-return.

Bellman equation A recursive equation that expresses the value of the current
state in terms of the reward from the next transition and the (discounted)
value of the subsequent state. For example, 𝑣(𝑠) = E[𝑅𝑡+1 + 𝛾𝑣(𝑆𝑡+1)|𝑆𝑡 = 𝑠]
is a Bellman equation; however usually such equations are with reference to a
particular policy (particularly the optimal policy).

Bellman operator An operator that transforms value functions. In this thesis
we concern ourselves mainly with the Bellman policy operator, expressed as
𝒯𝜋𝐯 ≝ 𝐫𝜋 + 𝐏𝜋𝚪𝐯, where 𝜋 is some policy. Applying 𝒯𝜋 to 𝐯 yields a new
value function, comprised of the expected reward and the discounted value of
the next state (according to 𝐯), given that we select actions according to 𝜋.
The Bellman operator is a contraction; which is to say if we update our value
function like 𝐯𝑡+1 = 𝒯𝜋𝐯𝑡, then lim𝑡→∞ 𝐯𝑡 = 𝐯𝜋, which is the fixed-point of
𝒯𝜋 and (not coincidentally) also the value function for policy 𝜋.

bootstrapping factor A tunable parameter, usually denoted 𝜆, that controls the
degree by which an algorithm bootstraps from its current value function in-
stead of the full return. For TD(λ), this is implemented as the decay rate for
the eligibility trace. It can be state-dependent, in which case we write 𝜆(𝑠) for
the value of 𝜆 in state 𝑠 ∈ 𝒮.

central moment A measure of how much of a random variable’s probability mass is
concentrated over values distant from the mean. If 𝜇 is the mean of a random
variable, then the n-th central moment is defined as:

𝑐𝑛 = {∫𝒳 𝑝(𝑥)(𝑥 − 𝜇)𝑛d𝑥 continuous case
∑𝑥∈𝒳 𝑝(𝑥)(𝑥 − 𝜇)𝑛 discrete case

119



For example, the second central moment (also known as the variance) of a
random variable 𝑋 is written 𝑐2(𝑋).

continuing setting A problem where the environment doesn’t have terminal states
and trajectories can continue for arbitrary lengths of time.

contraction, operator contraction For a function, mapping, or operator (say 𝑓 ∶
𝒳 → 𝒳 for some normed vector space 𝒳) to be a contraction (alternatively:
contracting, contractive) means that in some norm, ‖⋅‖, we have ‖𝑓(𝑥)‖ < ‖𝑥‖
for all 𝑥 ∈ 𝒳. Showing that an operator is a contraction is useful because then
it probably also has a fixed-point. More general definitions of contractions
exist1, e.g., for metric spaces instead of just normed vector spaces, but this
definition suffices for our purposes.

convergent A sequence that tends to grow closer to a particular point is said to be
“convergent”. There are many different kinds of convergence, but for stochastic
approximation schemes we usually mean that given enough time, its estimates
will eventually reach a fixed point regardless of the initial conditions.

differential equation An equation where the derivative of a function is defined
with reference to the function itself. There are many kinds of differential
equations, although for our purposes we mainly consider ordinary differential
equations.

discount factor A scalar between zero and one that expresses how much the value
of a state should influence the value of its predecessor states, usually denoted
by 𝛾. In a slight departure from the usual MDP formalism, we may consider
state- or transition-dependent discounting, where 𝛾𝑡+1 = 𝛾(𝑆𝑡+1) or 𝛾𝑡+1 =
𝛾(𝑆𝑡, 𝐴𝑡, 𝑆𝑡+1). Such considerations are an element of the theory for general
value functions.

DVTD, Direct Variance Temporal Difference Learning Direct Variance Tem-
poral Difference learning, which is a method for estimating the variance of the
return using temporal difference errors (and a major component of this very
thesis).

dynamic programming A collection of techniques for efficiently solving problems
by exploiting the structure of the task, e.g. by separating it into smaller sub-
problems and tackling those individually, or amortizing resource use by con-
structing solutions incrementally. Reinforcement learning has a large amount
of overlap with dynamic programming; for example, TD(λ) can be thought of
as a dynamic programming algorithm due to the way it estimates the value
function by bootstrapping off existing estimates.

environment Everything external to the agent in a learning task.
episodic setting A task where trajectories can be split into discrete episodes, sep-

arated when the environment reaches a terminal state. For example, the game
of chess is an episodic problem, and each separate game can be thought of as
an episode.

1Blame the topologists for always poking holes in things

120



fast timescale For a stochastic approximation scheme with components that up-
date with different stepsizes, the fast timescale corresponds to the component
whose stepsize dominates that of the “slow” component. From the perspective
of the fast component, the slow component is quasi-stationary; this perspect-
ive helps considerably when considering questions of convergence and stability.
See also slow timescale.

filtration A representation of the information available with regards to a stochastic
process at a given time. For example, the history of states visited in an MDP
corresponds to a filtration.

fixed-point The fixed-point (sometimes written fixed point) of a sequence is the
value that the sequence ultimately converges to.

function approximation A problem setting where the value function is paramet-
erized and therefore only represented approximately.

general value function, GVF An extension to the theory of value function to
encompass more general predictions, for example those that incorporate state-
dependent discounting or bootstrapping. More general development of GVFs
can be found in Sutton, Modayil et al. 2011; White 2015; Modayil, White and
Sutton 2012; Sherstan 2020, among others.

Hermitian matrix A (square) matrix that is unchanged under the conjugate trans-
pose, that is, 𝐀 = 𝐀†,. Note that a symmetric real matrix is trivially Her-
mitian.

interpolated differential equation A construction used to make discrete time it-
erates comparable with continuous time functions, e.g. to facilitate compar-
isons between a stochastic approximation scheme and its associated limiting
ODE.

learning task A task or problem which we pose to a learning agent. In reinforce-
ment learning, we usually we model the task as an MDP.

Liapunov function, Liapunov method (also romanized as “Lyapunov”) Liapunov’s
method for showing the asymptotic stability of an ODE entails selecting a
function that effectively acts as a “potential” (think of gravity). For example,
suppose 𝑉 (⋅) is a Liapunov function for the system ̇𝑥(𝑡) = 𝑓(𝑥). Then 𝑉
is positive, except at the equilibrium, with continuous first derivatives, and
furthermore, d

d𝑡𝑉 = ⟨∇𝑉 , ̇𝑥⟩ = ⟨∇𝑉 , 𝑓⟩ is negative definite. The existence of
such a function demonstrates that (at least near the equilibrium point), the
system is always getting closer to the equilibrium; therefore it will converge to
the equilibrium and stay there.

limiting differential equation The differential equation associated with a stochastic
approximation scheme in the limit as the stepsize (and noise) approach zero.

linear function approximation A problem setting where the value function is
parameterized in such a way that a state’s value can be expressed as the
inner product of the feature vector and the weight vector. For example, if
𝜙(𝑠𝑡) = 𝜙𝑡 is the feature vector at time 𝑡, and 𝜃 is the weight vector, then
𝑣(𝑠𝑡) = 𝜃⊤𝜙𝑡.

121



Markov decision problem, Markov decision process, MDP AMarkov Decision
Problem is construction which we use to model various tasks. See Chapter 2
for more details.

Markov property The defining characteristic of Markov processes; essentially states
that the current state contains all relevant information for predicting the pro-
cess’ future. A Markov process is “memoryless” in that the past history does
not influence the future evolution.

Markov reward process, MRP A stochastic process with the Markov property,
i.e. it is memoryless in that knowing the current state is just as informative
as knowing the entire history of previous states. A Markov reward process is
induced from an MDP by selecting actions according to a fixed policy.

martingale A stochastic process {𝑋𝑡} that where the expected value of the next
observation, conditioned on all past observations, is equal to the most recent
observation. That is, E[𝑋𝑛+1|𝑋1, … , 𝑋𝑛] = 𝑋𝑛.

martingale difference sequence, MDS A sequence {𝑀𝑡} is a martingale differ-
ence sequence if its expectation with respect to the past is zero. More formally,
let {𝑀𝑡} be a martingale difference sequence with respect to the sequence of
filtrations {ℱ𝑡}. Then for all 𝑡, we have E|𝑀𝑡| < ∞ and E[𝑀𝑡+1|ℱ𝑡] = 0. Note
that if 𝑋𝑡 is a martingale, then 𝑀𝑡 = 𝑋𝑡 − 𝑋𝑡−1 is a martingale difference
sequence (hence the name).

moment of a random variable A measure of the probability mass of a random
variable. More concretely, the n-th moment of a random variable with prob-
ability distribution function 𝑝(⋅) is defined as

𝜇𝑛 = {∫𝒳 𝑝(𝑥)𝑥𝑛d𝑥 continuous case
∑𝑥∈𝒳 𝑝(𝑥)𝑥𝑛 discrete case

For example, the mean of a random variable 𝑋 is 𝜇1(𝑋), the first moment.
multiple timescale algorithm A stochastic approximation scheme with multiple

components that update at different rates, particularly those with multiple
stepsizes.

objective function, error function A function used to formalize how “good” a
particular solution is for a given problem. For example, 𝑓(𝑥) = (𝑥 − 𝑥∗)2 is
an objective function (the squared error) that measures the distance between
𝑥 and 𝑥∗. It is generally helpful if the objective function is differentiable (or
something like it), since that allows us to improve our solution by gradient
descent.

observation A term for the agent’s perception of the environment’s state. In the
tabular case, the observations are equivalent to the state, whereas under func-
tion approximation (or in partially observable MDPs) the agent may not have
access to the “true” state information, so we refer to the sensory information
it receives as observations when a distinction may be required.

122



ordinary differential equation (ODE) An equation where the derivative of a
function is defined with reference to the function itself. For example, ̈𝑥 = 𝜔2𝑥,
the equation for the undamped harmonic oscillator, is an ODE.

policy A method of selecting actions, usually denoted 𝜋. Can be stochastic, in
which case the probability of selecting 𝑎 ∈ 𝒜 given state 𝑠 ∈ 𝒮 is usually
written 𝜋(𝑎|𝑠).

positive definite matrix A matrix 𝐀 such that 𝐱⊤𝐀𝐱 > 0 for 𝐱 ≠ 0. If we relax
the condition to 𝐱⊤𝐀𝐱 ≥ 0, we say that 𝐀 is positive semi-definite instead.

raw moment See Moment of a random variable
real matrix A matrix with real-valued entries, e.g. 𝐀 ∈ R𝑚×𝑛.
return The sum of discounted rewards starting from a point in time. Usually de-

noted 𝐺𝑡, and defined 𝐺𝑡 = ∑∞
𝑛=0 𝑅𝑡+𝑛+1 ∏𝑛−1

𝑘=1 𝛾𝑡+𝑘, or just 𝐺𝑡 = ∑𝑛=0 𝛾𝑛𝑅𝑡+𝑛+1
for constant discounting.

return error, RE, RE The error of some value function with respect to the return
under a given policy and state distribution. Usually the metric used is the
𝐿2-norm, yielding the mean squared return error.

reward A scalar signal emitted by the environment as part of a transition.
reward function A function that returns a reward for a given transition, poten-

tially with an element of randomness or noise. Formally, ℛ ∶ 𝒮 × 𝒜 × 𝒮 × R →
[0, 1].

sigma algebra, σ-algebra A sigma algebra or 𝜎-algebra is a collection of subsets
of some set (say 𝑋) that includes 𝑋 and is closed under both complement and
countable unions. They tend to be invoked when something requires Lebesgue
integration, which is rather often in probability and statistics.

slow timescale For a coupled stochastic approximation scheme with components
that update with different stepsizes, the slow timescale is the one whose step-
size is dominated by the stepsize of the “fast” component. If we identify the
sum of the stepsizes with the time elapsed (e.g. 𝑡𝑛 = ∑𝑘=0 𝛼𝑘) then the fast
component, with larger stepsizes relative to the slow component, effectively
has progressed further in time compared to the slow component (for the same
number of iterations).

stable, stability The tendency of a system to be robust to small perturbations.
For a stochastic approximation scheme, we say that it is stable if there is no
risk that it will diverge (go to infinity) under reasonable conditions.

state A configuration of the environment.
state space, set of states The set of all possible configurations of an environment,

denoted 𝒮.
stepsize A parameter that determines the magnitude of the updates made to the

value function. Large stepsizes may engender quicker learning, at the expense
of greater instability and with the possibility of “forgetting” past experience.

symmetric matrix A (square) matrix such that 𝐀 = 𝐀⊤.

123



tabular case A problem setting where the observations available to the agent ex-
press the full state information. This means that the value function is essen-
tially a table assigning states to values, thus we describe such tasks as being
“tabular” in nature.

temporal difference error, TD error A measure of the error in the value func-
tion for a single transition. Formally, 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑡+1𝑣(𝑆𝑡+1) − 𝑣(𝑆𝑡). It is
the difference between the current state’s value and the discounted value of
the successor state plus the reward for that transition.

terminal state A state in a Markov process which always transitions to itself and
returns a reward of zero for every transition. Reaching the terminal state
implies that the trajectory is over; in the episodic case this corresponds to the
end of an episode.

transition A grouping of state, action, subsequent state (and possibly the reward)
for a given time-step. Formally, a tuple (𝑠, 𝑎, 𝑠′) or (𝑠, 𝑎, 𝑟, 𝑠′), where 𝑠 and 𝑠′

are the current state and successor state, respectively, 𝑎 is the action executed
in state 𝑠, and 𝑟 is the reward produced by the transition.

transition function A function that provides the probability of making a partic-
ular transition. For example, given a state, an action, and a successor state,
the transition function returns the probability of making that particular trans-
ition. Formally, 𝑃 ∶ 𝒮 × 𝒜 × 𝒮 → [0, 1]. To be well-defined, we require that
∑𝑠′ 𝑃(𝑠, 𝑎, 𝑠′) = 1 ∀𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜, that is the transition probabilities given
state 𝑠 and action 𝑎 must sum to one.
Conditioned on a policy, we may instead write 𝐏𝜋 to denote a transition matrix,
whose (i,j)-th entry marks the probability of transitioning to state 𝑗 given the
agent is currently in state 𝑖 and acting according to policy 𝜋.

update equation An equation that describes how to adjust the value function
(or the weight parameters that determine the value function) in light of new
experience.

value The expected return (for a given state), usually defined to be conditional on
following a particular policy. When unqualified, we typically mean the true
expected value, rather than an approximation or estimate of it.

value error, VE, VE The error of some value function with respect to the true
value function for some policy, taken over a given state distribution. Usually
the metric used is the 𝐿2-norm, yielding the mean squared value error.

VTD, Variance Temporal Difference Learning Variance Temporal Difference learn-
ing, a method for estimating the variance of the return by first estimating the
return’s second moment.

σ-algebra See sigma algebra

D.1 Abbreviations
MDP Markov decision process

124



MSE mean squared error
MSVE mean squared value error
MSPBE mean squared projected Bellman error
MSTDE mean squared temporal difference error
MSRE mean squared return error
RBF radial basis function
RL reinforcement learning
RMSE root mean squared error
RMSVE root mean squared value error
TD temporal difference
DV direct variance
DVTD direct variance temporal difference learning
VTD variance temporal difference learning
LASE Locally asymptotically stable equilibrium
MC Monte Carlo
ODE Ordinary differential equation
DE Differential equation
DP Dynamic Programming
OLS Ordinary least squares

125



BiBLiOGRAPHY

Bellemare, M. G., W. Dabney and R. Munos (2017). ‘A Distributional Perspective 43, 44, 47, 110, 111, 117
on Reinforcement Learning’. arXiv preprint. arXiv: 1707.06887.

Bellemare, M. G., N. Le Roux, P. S. Castro and S. Moitra (2019). ‘Distributional 43
Reinforcement Learning with Linear Function Approximation’. In: Proceedings of
the 22nd International Conference on Artificial Intelligence and Statistics. Okinawa.

Bennett, B., W. Chung, M. Zaheer and V. Liu (2019). ‘Incrementally Learning 39
Functions of the Return’. arXiv preprint. arXiv: 1907.04651.

Bertsekas, D. P. (2012). Dynamic Programming and Optimal Control. 4th ed. Vol. 2. 20
Athena Scientific.

Bhandari, J., D. Russo and R. Singal (2018). ‘A Finite Time Analysis of Temporal 66
Difference Learning With Linear Function Approximation’. arXiv preprint. arXiv:
1806.02450.

Borkar, V. S. (2008). Stochastic Approximation: A Dynamical Systems Viewpoint. 22, 24, 101
1st ed. Cambridge University Press.

Brockman, G., V. Cheung, L. Pettersson, J. Schneider, J. Schulman, J. Tang and 83
W. Zaremba (2016). ‘OpenAI Gym’. arXiv preprint. arXiv: 1606.01540.

Dalal, G., B. Szörényi, G. Thoppe and S. Mannor (2017). ‘Finite Sample Analyses 19, 66
for TD(0) with Function Approximation’. arXiv preprint. arXiv: 1704.01161.

David, H. A. (1995). ‘First (?) Occurrence of Common Terms in Mathematical 32
Statistics’. The American Statistician 49.2, pp. 121–133.

Ghiassian, S., H. Yu, B. Rafiee and R. S. Sutton (2018). ‘Two Geometric Input 19
Transformation Methods for Fast Online Reinforcement Learning with Neural
Nets’. arXiv preprint. arXiv: 1805.07476.

Hirsch, M. W., S. Smale and R. L. Devaney (2013). Differential Equations, Dynamical 20
Systems, and an Introduction to Chaos. Elsevier.

Jain, A., K. Khetarpal and D. Precup (2018). ‘Safe Option-Critic: Learning Safety 97
in the Option-Critic Architecture’. arXiv preprint. arXiv: 1807.08060.

Kretchmar, R. M. and C. W. Anderson (1997). ‘Comparison of CMACs and Radial 84
Basis Functions for Local Function Approximators in Reinforcement Learning’.
In: Proceedings of International Conference on Neural Networks (ICNN’97). Vol. 2.
IEEE, pp. 834–837.

Levin, D. and Y. Peres (2017).Markov Chains and Mixing Times. 2nd ed. Providence, 19
Rhode Island: American Mathematical Society, p. 447.

Lyle, C., M. G. Bellemare and P. S. Castro (2019). ‘A Comparative Analysis of 43
Expected and Distributional Reinforcement Learning’. Proceedings of the AAAI
Conference on Artificial Intelligence 33, pp. 4504–4511.

Maei, H. R. (2011). ‘Gradient Temporal-Difference Learning Algorithms’. PhD thesis. 7, 58
University of Alberta.

Mahmood, A. (2017). ‘Incremental Off-policy Reinforcement Learning Algorithms’. 7, 14, 16, 63
PhD thesis. University of Alberta.

126

https://arxiv.org/abs/1707.06887
https://arxiv.org/abs/1907.04651
https://arxiv.org/abs/1806.02450
https://arxiv.org/abs/1606.01540
https://arxiv.org/abs/1704.01161
https://arxiv.org/abs/1805.07476
https://arxiv.org/abs/1807.08060


Metropolis, N. (1987). ‘The Beginning of the Monte Carlo Method’. Los Alamos 10
Science 15, pp. 125–130.

Modayil, J., A. White and R. S. Sutton (2012). ‘Multi-timescale Nexting in a Rein- 121
forcement Learning Robot’. In: From Animals to Animats 12. Ed. by T. Ziemke, C.
Balkenius and J. Hallam. Springer Berlin Heidelberg, pp. 299–309. arXiv: arXiv:
1112.1133v3.

Munos, R. and A. Moore (1999). ‘Influence and Variance of a Markov Chain: Ap- 32, 38
plication to Adaptive Discretization in Optimal Control’. In: IEEE Conference on
Decision and Control, pp. 1464–1469.

Nagurney, A. and D. Zhang (1996). Projected Dynamical Systems and Variational 102
Inequalities with Applications. 1st ed. Springer US.

Pearson, K. (1893). ‘Asymmetrical Frequency Curves’. Nature 49.1253, p. 6. 32
Press, W. H., S. A. Teukolsky, W. T. Vetterling and B. P. Flannery (2007). Numerical 17
Recipes: The Art of Scientific Computing. 3rd ed. Cambridge University Press.

Recorde, R., J. Dee, R. Norton, J. Mellis and R. N. Gent (1618). The Ground of
Arts: Teaching the Perfect Worke and Practise of Arithmeticke. I. B.

Rowland, M., M. G. Bellemare, W. Dabney, R. Munos and Y. W. Teh (2018). ‘An 44
Analysis of Categorical Distributional Reinforcement Learning’. In: Proceedings of
the Twenty-First International Conference on Artificial Intelligence and Statistics.
Vol. 84. Proceedings of Machine Learning Research. Lanzarote: PMLR, pp. 29–37.
arXiv: 1802.08163.

Sato, M., H. Kimura and S. Kobayashi (2002). ‘TD Algorithm for the Variance of 32, 38
Return and Mean-Variance Reinforcement Learning’. Transactions of the Japanese
Society for Artificial Intelligence 16.3, pp. 353–362.

Scherrer, B. (2010). ‘Should One Compute the Temporal Difference Fix Point or 58
Minimize the Bellman Residual? The Unified Oblique Projection View’. In: Pro-
ceedings of the 27th International Conference on International Conference on Ma-
chine Learning. ICML’10. Haifa: Omnipress, pp. 959–966. arXiv: 1011.4362.

Sherstan, C. (2020). ‘Representation and General Value Functions’. PhD thesis. Uni- 121
versity of Alberta.

Sherstan, C., B. Bennett, K. Young, D. R. Ashley, A. White, M. White and R. S. 4, 37
Sutton (2018). ‘Directly Estimating the Variance of the 𝜆-Return Using Temporal-
Difference Methods’. arXiv preprint. arXiv: 1801.08287.

Singh, S. P. and R. S. Sutton (1996). ‘Reinforcement Learning with Replacing Eli- 82
gibility Traces’. Machine Learning 22.1-3, pp. 123–158.

Sobel, M. (1982). ‘The Variance of Discounted Markov Decision Processes’. Journal 32, 34, 35
of Applied Probability 19.4, pp. 794–802.

Sutton, R. S. (1988). ‘Learning to Predict by the Methods of Temporal Differences’. 13
Machine Learning 3.1, pp. 9–44.

Sutton, R. S. (1989). Implementation Details of the TD(𝜆) Procedure for the Case of 15
Vector Predictions and Backpropagation. Tech. rep. May 1987. GTE Laboratories
Incorporated, pp. 1–4.

Sutton, R. S. and A. G. Barto (2018). Reinforcement Learning: An Introduction. 10, 12, 15, 25, 58, 69
2nd ed. MIT Press.

Sutton, R. S., H. R. Maei, D. Precup, S. Bhatnagar, D. Silver, C. Szepesvári and 102
E. Wiewiora (2009). ‘Fast Gradient-Descent Methods for Temporal Difference
Learning with Linear Function Approximation’. In: Proceedings of the 26th Annual

127

https://arxiv.org/abs/arXiv:1112.1133v3
https://arxiv.org/abs/arXiv:1112.1133v3
https://arxiv.org/abs/1802.08163
https://arxiv.org/abs/1011.4362
https://arxiv.org/abs/1801.08287


International Conference on Machine Learning - ICML ’09. New York, New York,
USA: ACM Press, pp. 1–8.

Sutton, R. S., A. R. Mahmood and M. White (2015). ‘An Emphatic Approach to 14, 16, 103
the Problem of Off-policy Temporal-Difference Learning’. arXiv preprint. arXiv:
1503.04269.

Sutton, R. S., J. Modayil, M. Delp, T. Degris, P. M. Pilarski and A. White (2011). 7, 121
‘Horde: A Scalable Real-Time Architecture for Learning Knowledge from Un-
supervised Sensorimotor Interaction’. In: The 10th International Conference on
Autonomous Agents and Multiagent Systems - Volume 2. AAMAS ’11. Taipei: In-
ternational Foundation for Autonomous Agents and Multiagent Systems, pp. 761–
768.

Sutton, R. S., C. Szepesvári and H. R. Maei (2009). ‘A Convergent O(n) Temporal- 58
difference Algorithm for Off-policy Learning with Linear Function Approximation’.
Advances in Neural Information Processing Systems, pp. 1609–1616.

Tamar, A., D. D. Castro and S. Mannor (2016). ‘Learning the Variance of the 32, 35, 36, 38, 39, 68,
69, 71Reward-To-Go’. Journal of Machine Learning Research 17.13, pp. 1–36.

Tsitsiklis, J. and B. Van Roy (1997). ‘An Analysis of Temporal-Difference Learning 14, 16, 19, 66
with Function Approximation’. IEEE Transactions on Automatic Control 42.5,
pp. 674–690.

White, A. (2015). ‘Developing a Predictive Approach to Knowledge’. PhD thesis. 7, 121
University of Alberta.

White, M. and A. White (2016). ‘A Greedy Approach to Adapting the Trace Para- 32, 35–37, 39, 57
meter for Temporal Difference Learning’. In: Proceedings of the 2016 International
Conference on Autonomous Agents & Multiagent Systems. AAMAS ’16. Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, pp. 557–565.
arXiv: 1607.00446.

Williams, R. J. (1992). ‘Simple Statistical Gradient-Following Algorithms for Con- 6
nectionist Reinforcement Learning’. Machine Learning 8.3-4, pp. 229–256.

Yu, H. (2017). ‘On Convergence of some Gradient-based Temporal-Differences Al- 102
gorithms for Off-policy Learning’. arXiv preprint. arXiv: arXiv:1712.09652v2.

128

https://arxiv.org/abs/1503.04269
https://arxiv.org/abs/1607.00446
https://arxiv.org/abs/arXiv:1712.09652v2

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Introduction
	Background
	Reinforcement Learning
	Formalizing RL using MDPs
	Learning the Value Function
	Function Approximation
	Objectives Under Function Approximation

	Temporal Difference Learning
	TD(0) with Linear Function Approximation
	TD(λ)

	Differential Equations and Stochastic Approximation
	The Limiting ODE of TD(0)
	Two Timescale Convergence


	Functions of the Return
	The Reward Hypothesis in Practice
	Why Not Just Directly Estimate?
	Estimating Functions of the Return
	Moment Estimation
	The Return's Second Moment as a Bellman Equation
	Learning the Second Moment of the Return
	Learning Higher Moments of the Return
	Taylor Series of a Random Variable
	Parametric Approximation

	Distributional Reinforcement Learning
	Mathematical Framework
	The C51 Algorithm


	The \delta^{2}-return and Variance
	Variance and the \delta^{2}-return
	Cumulants and Approximation Targets
	Defining Cumulants

	Equivalence of Expressions for the Variance
	What if the Value Function is Biased?
	The Direct Variance TD Algorithm
	Convergence Results
	Setup and Assumptions
	Proof Sketch


	Experiments
	Modified Tamar Chain
	Methodology
	Tabular Experiments
	Function Approximation
	Summary

	Mountain Car
	Experiment Setup
	Evaluation Methods
	Performance
	Summary


	Conclusions & Future Work
	Summary
	Future Work

	DVTD Convergence Details
	C51 Under Linear Function Approximation
	Algorithm Listing
	Glossary
	Abbreviations

	Bibliography

