
Universal Option Models

Hengshuai Yao, Csaba Szepesvári, Rich Sutton, Joseph Modayil
Department of Computing Science

University of Alberta
Edmonton, AB, Canada, T6H 4M5

hengshua,szepesva,sutton,jmodayil@cs.ualberta.ca

Shalabh Bhatnagar
Department of Computer Science and Automation

Indian Institute of Science
Bangalore-560012, India

shalabh@csa.iisc.ernet.in

Abstract

We consider the problem of learning models of options for real-time abstract plan-
ning, in the setting where reward functions can be specified at any time and their
expected returns must be efficiently computed. We introduce a new model for
an option that is independent of any reward function, called the universal option
model (UOM). We prove that the UOM of an option can construct a traditional
option model given a reward function, and also supports efficient computation of
the option-conditional return. We extend the UOM to linear function approxi-
mation, and we show the UOM gives the TD solution of option returns and the
value function of a policy over options. We provide a stochastic approximation
algorithm for incrementally learning UOMs from data and prove its consistency.
We demonstrate our method in two domains. The first domain is a real-time strat-
egy game, where the controller must select the best game unit to accomplish a
dynamically-specified task. The second domain is article recommendation, where
each user query defines a new reward function and an article’s relevance is the ex-
pected return from following a policy that follows the citations between articles.
Our experiments show that UOMs are substantially more efficient than previously
known methods for evaluating option returns and policies over options.

1 Introduction

Conventional methods for real-time abstract planning over options in reinforcement learning require
a single pre-specified reward function, and these methods are not efficient in settings with multiple
reward functions that can be specified at any time. Multiple reward functions arise in several con-
texts. In inverse reinforcement learning and apprenticeship learning there is a set of reward functions
from which a good reward function is extracted [Abbeel et al., 2010, Ng and Russell, 2000, Syed,
2010]. Some system designers iteratively refine their provided reward functions to obtain desired
behavior, and will re-plan in each iteration. In real-time strategy games, several units on a team can
share the same dynamics but have different time-varying capabilities, so selecting the best unit for
a task requires knowledge of the expected performance for many units. Even article recommenda-
tion can be viewed as a multiple-reward planning problem, where each user query has an associated
reward function and the relevance of an article is given by walking over the links between the ar-
ticles [Page et al., 1998, Richardson and Domingos, 2002]. We propose to unify the study of such
problems within the setting of real-time abstract planning, where a reward function can be speci-

1



fied at any time and the expected option-conditional return for a reward function must be efficiently
computed.

Abstract planning, or planning with temporal abstractions, enables one to make abstract decisions
that involve sequences of low level actions. Options are often used to specify action abstraction
[Precup, 2000, Sorg and Singh, 2010, Sutton et al., 1999]. An option is a course of temporally
extended actions, which starts execution at some states, and follows a policy in selecting actions
until it terminates. When an option terminates, the agent can start executing another option. The
traditional model of an option takes in a state and predicts the sum of the rewards in the course till
termination, and the probability of terminating the option at any state. When the reward function is
changed, abstract planning with the traditional option model has to start from scratch.

We introduce universal option models (UOM) as a solution to this problem. The UOM of an option
has two parts. A state prediction part, as in the traditional option model, predicts the states where
the option terminates. An accumulation part, new to the UOM, predicts the occupancies of all the
states by the option after it starts execution. We also extend UOMs to linear function approximation,
which scales to problems with a large state space. We show that the UOM outperforms existing
methods in two domains.

2 Background

A finite Markov Decision Process (MDP) is defined by a discount factor γ ∈ (0,1), the state set,
S, the action set, A, the immediate rewards ⟨Ra⟩, and transition probabilities ⟨Pa⟩. We assume
that the number of states and actions are both finite. We also assume the states are indexed by
integers, i.e., S = {1,2, . . . ,N}, where N is the number of states. The immediate reward function
Ra ∶ S×S→ R for a given action a ∈ A and a pair of states (s, s′) ∈ S×S gives the mean immediate
reward underlying the transition from s to s′ while using a. The transition probability function is a
function Pa ∶ S×S→ [0,1] and for (s, s′) ∈ S×S, a ∈ A, Pa(s, s′) gives the probability of arriving
at state s′ given that action a is executed at state s.

A (stationary, Markov) policy π is defined as π ∶ S × A → [0,1], where ∑a∈A π(s, a) = 1 for any
s ∈ S. The value of a state s under a policy π is defined as the expected return given that one starts
executing π from s:

V π(s) = Es,π{r1 + γr2 + γ2r3 +⋯} .
Here (r1, r2 . . .) is a process with the following properties: s0 = s and for k ≥ 0, sk+1 is sampled
from Pak(sk, ⋅), where ak is the action selected by policy π and rk+1 is such that its conditional
mean, given sk, ak, sk+1 is Rak(sk, sk+1). The definition works also in the case when at any time
step t the policy is allowed to take into account the history s0, a1, r1, s1, a2, r2, . . . , sk in coming up
with ak. We will also assume that the conditional variance of rk+1 given sk, ak and sk+1 is bounded.

The terminology, ideas and results in this section are based on the work of [Sutton et al., 1999]
unless otherwise stated. An option, o ≡ o⟨π,β⟩, has two components, a policy π, and a continuation
function β ∶ S → [0,1]. The latter maps a state into the probability of continuing the option from
the state. An option o is executed as follows. At time step k, when visiting state sk, the next action
ak is selected according to π(sk, ⋅). The environment then transitions to the next state sk+1, and a
reward rk+1 is observed.1 The option terminates at the new state sk+1 with probability 1 − β(sk+1).
Otherwise it continues, a new action is chosen from the policy of the option, etc. When one option
terminates, another option can start.

The option model for option o helps with planning. Formally, the model of option o is a pair
<Ro, po>, where Ro is the so-called option return and po is the so-called (discounted) terminal
distribution of option o. In particular, Ro ∶ S→ R is a mapping such that for any state s, Ro(s) gives
the total expected discounted return until the option terminates:

Ro(s) = Es,o[r1 + γr2 +⋯ + γT−1rT ],
where T is the random termination time of the option, assuming that the process (s0, r1, s1, r2, . . .)
starts at time 0 at state s0 = s (initiation), and every time step the policy underlying o is followed to
get the reward and the next state until termination. The mapping po ∶ S × S → [0,∞) is a function

1Here, sk+1 is sampled from Pak
(sk, ⋅) and the mean of rk+1 isRak

(sk, sk+1).

2



that, for any given s, s′ ∈ S, gives the discounted probability of terminating at state s′ provided that
the option is followed from the initial state s:

po(s, s′) = Es,o[γT I{sT =s′} ]

=
∞
∑
k=1

γk Ps,o{sT = s′, T = k} .
(1)

Here, I{⋅} is the indicator function, and Ps,o{sT = s′, T = k} is the probability of terminating the
option at s′ after k steps away from s.

A semi-MDP (SMDP) is like an MDP, except that it allows multi-step transitions between states.
A MDP with a fixed set of options gives rise to an SMDP, because the execution of options lasts
multiple time steps. Given a set of options O, an option policy is then a mapping h ∶ S ×O → [0,1]
such that h(s, o) is the probability of selecting option o at state s (provided the previous option has
terminated). We shall also call these policies high-level policies. Note that a high-level policy selects
options which in turn select actions. Thus a high-level policy gives rise to a standard MDP policy
(albeit one that needs to remember which option was selected the last time, i.e., a history dependent
policy). Let flat(h) denote the standard MDP policy of a high-level policy h. The value function
underlying h is defined as that of flat(h): V h(s) = V flat(h)(s), s ∈ S . The process of constructing
flat(h) given h and the optionsO is the flattening operation. The model of options is constructed in
such a way that if we think of the option return as the immediate reward obtained when following
the option and if we think of the terminal distribution as transition probabilities, then Bellman’s
equations will formally hold for the tuple ⟨γ = 1,S,O, ⟨Ro⟩, ⟨po⟩⟩.

3 Universal Option Models (UOMs)

In this section, we define the UOM for an option, and prove a universality theorem stating that the
traditional model of an option can be constructed from the UOM and a reward vector of the option.
The goal of UOMs is to make models of options that are independent of the reward function. We use
the adjective “universal” because the option model becomes universal with respect to the rewards.
In the case of MDPs, it is well known that the value function of a policy π can be obtained from
the so-called discounted occupancy function underlying π, e.g., see [Barto and Duff, 1994]. This
technique has been used in inverse reinforcement learning to compute a value function with basis
reward functions [Ng and Russell, 2000]. The generalization to options is as follows. First we
introduce the discounted state occupancy function, uo, of option o⟨π,β⟩:

uo(s, s′) = Es,o[
T−1

∑
k=0

γk I{sk=s′} ] . (2)

Then,

Ro(s) = ∑
s′∈S

rπ(s′)uo(s, s′) ,

where rπ is the expected immediate reward vector under π and ⟨Ra⟩, i.e., for any s ∈ S, rπ(s) =
Es,π[r1]. For convenience, we shall also treat uo(s, ⋅) as a vector and write uo(s) to denote it
as a vector. To clarify the independence of uo from the reward function, it is helpful to first note
that every MDP can be viewed as the combination of an immediate reward function, ⟨Ra⟩, and a
reward-less MDP,M = ⟨γ,S,A, ⟨Pa⟩⟩.

Definition 1 The UOM of option o in a reward-less MDP is defined by ⟨uo, po⟩, where uo is the op-
tion’s discounted state occupancy function, defined by (2), and po is the option’s discounted terminal
state distribution, defined by (1).

The main result of this section is the following theorem. All the proofs of the theorems in this paper
can be found in an extended paper.

Theorem 1 Fix an option o = o⟨π,β⟩ in a reward-less MDP M, and let uo be the occupancy
function underlying o in M. Let ⟨Ra⟩ be some immediate reward function. Then, for any state
s ∈ S, the return of option o with respect toM and ⟨Ra⟩ is given by by Ro(s) = (uo(s))⊺rπ .

3



4 UOMs with Linear Function Approximation

In this section, we introduce linear universal option models which use linear function approxima-
tion to compactly represent reward independent option-models over a potentially large state space.
In particular, we build upon previous work where the approximate solution has been obtained by
solving the so-called projected Bellman equations. We assume that we are given a function
φ ∶ S → Rn, which maps any state s ∈ S into its n-dimensional feature representation φ(s). Let
Vθ ∶ S → R be defined by Vθ(s) = θ⊺φ(s), where the vector θ is a so-called weight-vector.2 Fix an
initial distribution µ over the states and an option o = o⟨π,β⟩. Given a reward function R = ⟨Ra⟩,
the TD(0) approximation Vθ(TD,R) to Ro is defined as the solution to the following projected Bell-
man equations [Sutton and Barto, 1998]:

Eµ,o[
T−1

∑
k=0

{rk+1 + γVθ(sk+1) − Vθ(sk)} φ(sk) ] = 0 . (3)

Here s0 is sampled from µ, the random variables (r1, s1, r2, s2, . . .) and T (the termination time)
are obtained by following o from this initial state until termination. It is easy to see that if γ = 0 then
Vθ(TD,R) becomes the least-squares approximation Vf(LS,R) to the immediate rewards R under o
given the features φ. The least-squares approximation to R is given by f (LS,R) = arg minf J(f) =
Eµ,o[ ∑T−1

k=0 {rk+1 − f⊺φ(sk)}2 ]. We restrict our attention to this TD(0) solution in this paper, and
refer to f as an (approximate) immediate reward model.

The TD(0)-based linear UOM (in short, linear UOM) underlying o (and µ) is a pair of n × nmatrices
(Uo,Mo), which generalize the tabular model (uo, po). Given the same sequence as used in defining
the approximation to Ro (equation 3), Uo is the solution to the following system of linear equations:

Eµ,o [
T−1

∑
k=0

{φ(sk) + γUoφ(sk+1) −Uoφ(sk)}φ(sk)⊺] = 0.

Let (Uo)⊺ = [u1, . . . , un], ui ∈ Rn. If we introduce an artificial “reward” function, r̆i = φi, which is
the ith feature, then ui is the weight vector such that Vui is the TD(0)-approximation to the return of o
for the artificial reward function. Note that if we use tabular representation, then ui,s = uo(s, i) holds
for all s, i ∈ S. Therefore our extension to linear function approximation is backward consistent with
the UOM definition in the tabular case. However, this alone would not be a satisfactory justification
of this choice of linear UOMs. The following theorem shows that just like the UOMs of the previous
section, the Uo matrix allows the separation of the reward from the option models without losing
information.

Theorem 2 Fix an option o = o⟨π,β⟩ in a reward-less MDP,M = ⟨γ,S,A, ⟨Pa⟩⟩, an initial state
distribution µ over the states S, and a function φ ∶ S → Rn. Let U be the linear UOM of o w.r.t. φ
and µ. Pick some reward functionR and let Vθ(TD,R) be the TD(0) approximation to the return Ro.
Then, for any s ∈ S,

Vθ(TD,R)(s) = (f (LS,R))⊺ (Uφ(s)) .

The significance of this result is that it shows that to compute the TD approximation of an option
return corresponding to a reward function R, it suffices to find f (LS,R) (the least squares approxi-
mation of the expected one-step reward under the option and the reward function R), provided one
is given the U matrix of the option. We expect that finding a least-squares approximation (solving a
regression problem) is easier than solving a TD fixed-point equation. Note that the result also holds
for standard policies, but we do not explore this direction in this paper.

The definition ofMo. The matrixMo serves as a state predictor, and we callMo the transient matrix
associated with option o. Given a feature vector φ, Moφ predicts the (discounted) expected feature
vector where the option stops. When option o is started from state s and stopped at state sT in T
time steps, we update an estimate of Mo by

Mo ←Mo + η(γTφ(sT ) −Moφ(s))φ(s)⊺.
2Note that the subscript in V⋅ always means the TD weight vector throughout this paper.

4



Formally, Mo is the solution to the associated linear system,

Eµ,o[γTφ(sT )φ(s)⊺ ] =MoEµ,o[φ(s)φ(s)⊺ ] . (4)

Notice that Mo is thus just the least-squares solution of the problem when γTφ(sT ) is regressed
on φ(s), given that we know that option o is executed. Again, this way we obtain the terminal
distribution of option o in the tabular case.

A high-level policy h defines a Markov chain over S × O. Assume that this Markov chain has a
unique stationary distribution, µh. Let (s, o) ∼ µh be a draw from this stationary distribution. Our
goal is to find an option model that can be used to compute a TD approximation to the value function
of a high-level policy h (flattened) over a set of options O. The following theorem shows that the
value function of h can be computed from option returns and transient matrices.

Theorem 3 Let Vθ(s) = φ(s)⊺θ. Under the above conditions, if θ solves

Eµh
[ (Ro(s) + (Moφ(s))⊺θ − φ(s)⊺θ)φ(s) ] = 0 (5)

then Vθ is the TD(0) approximation to the value function of h.

Recall that Theorem 2 states that the U matrices can be used to compute the option returns given
an arbitrary reward function. Thus given a reward function, the U and M matrices are all that one
would need to solve the TD solution of the high-level policy. The merit of U and M is that they
are reward independent. Once they are learned, they can be saved and used for different reward
functions for different situations at different times.

5 Learning and Planning with UOMs

In this section we give incremental, TD-style algorithms for learning and planning with linear
UOMs. We start by describing the learning of UOMs while following some high-level policy h,
and then describe a Dyna-like algorithm that estimates the value function of h with learned UOMs
and an immediate reward model.

5.1 Learning Linear UOMs

Assume that we are following a high-level policy h over a set of options O, and that we want to
estimate linear UOMs for the options inO. Let the trajectory generated by following this high-level
policy be . . . , sk, qk, ok, ak, sk+1, qk+1, . . .. Here, qk = 1 is the indicator for the event that option
ok−1 is terminated at state sk and so ok ∼ h(sk, ⋅). Also, when qk = 0, ok = ok−1. Upon the
transition from sk to sk+1, qk+1, the matrix Uok is updated as follows:

Uokk+1 = U
ok
k + ηokk δk+1 φ(sk)⊺, where

δk+1 = φ(sk) + γUokk φ(sk+1)I{qk+1=0} −Uokk φ(sk),

and ηokk ≥ 0 is the learning-rate at time k associated with option ok. Note that when option ok is
terminated the temporal difference δk+1 is modified so that the next predicted value is zero.

The ⟨Mo⟩ matrices are updated using the least-mean square algorithm. In particular, matrix Mok

is updated when option ok is terminated at time k + 1, i.e., when qk+1 = 1. In the update we need
the feature (φ̃⋅) of the state which was visited at the time option ok was selected and also the time
elapsed since this time (τ⋅):

Mok
k+1 =M

ok
k + η̃okk I{qk+1=1} {γτkφ(sk+1) −Mok

k φ̃k} φ̃⊺k,
φ̃k+1 = I{qk+1=0}φ̃k + I{qk+1=1}φ(sk+1) ,
τk+1 = I{qk+1=0}τk + 1 .

These variables are initialized to τ0 = 0 and φ̃0 = φ(s0).

The following theorem states the convergence of the algorithm.

5



Theorem 4 Assume that the stationary distribution of h is unique, all options in O terminate with
probability one and that all options in O are selected at some state with positive probability.3 If
the step-sizes of the options are decreased towards zero so that the Robbins-Monro conditions hold
for them, i.e., ∑i(k) ηoi(k) =∞,∑i(k)(ηoi(k))2 <∞, and ∑j(k) η̃oj(k) =∞,∑j(k)(η̃oj(k))2 <∞,4 then
for any o ∈ O, Mo

k → Mo and Uok → Uo with probability one, where (Uo,Mo) are defined in the
previous section.

5.2 Learning Reward Models

In conventional settings, a single reward signal will be contained in the trajectory when following the
high level policy, . . . , sk, qk, ok, ak, rk+1, sk+1, qk+1, . . .. We can learn for each option an immediate
reward model for this reward signal. For example, fok is updated using least mean squares rule:

fokk+1 = f
ok
k + η̃okk I{qk+1=0} {rk+1 − fok⊺φ(sk)}φ(sk) .

In other settings, immediate reward models can be constructed in different ways. For example, more
than one reward signal can be of interest, so multiple immediate reward models can be learned in
parallel. Moreover, such additional reward signals might be provided at any time. In some settings,
an immediate reward model for a reward function can be provided directly from knowledge of the
environment and features where the immediate reward model is independent of the option.

5.3 Policy Evaluation with UOMs and Reward Models

Consider the process of policy evaluation for a high-level policy over options from a given set of
UOMs when learning a reward model. When starting from a state s with feature vector φ(s) and
following option o, the returnRo(s) is estimated from the reward model fo and the expected feature
occupancy matrix Uo by Ro(s) ≈ (fo)⊺Uoφ(s). The TD(0) approximation to the value function
of a high-level policy h can then be estimated online from Theorem 3. Interleaving updates of the
reward model learning with these planning steps for h gives a Dyna-like algorithm.

6 Empirical Results

In this section, we provide empirical results on choosing game units to execute specific policies
in a simplified real-time strategy game and recommending articles in a large academic database
with more than one million articles. We compare the UOM method with a method of Sorg and
Singh (2010), who introduced the linear-option expectation model (LOEM) that is applicable for
evaluating a high-level policy over options. Their method estimates (Mo, bo) from experience,
where bo is equal to (Uo)⊺fo in our formulation. This term bo is the expected return from fol-
lowing the option, and can be computed incrementally from experience once a reward signal or an
immediate reward model are available.

A simplified Star Craft 2 mission. We examined the use of the UOMs and LOEMs for policy evalu-
ation in a simplified variant of the real-time strategy game Star Craft 2, where the task for the player
was to select the best game unit to move to a particular goal location. We assume that the player has
access to a black-box game simulator. There are four game units with the same constant dynamics.
The internal status of these units dynamically changes during the game and this affects the reward
they receive in enemy controlled territory. We evaluated these units, when their rewards are as listed
in the table below (the rewards are associated with the previous state and are not action-contingent).
A game map is shown in Figure 1 (a). The four actions could move a unit left, right, up, or down.
With probability 2/3, the action moved the unit one grid in the intended direction. With probability
1/3, the action failed, and the agent was moved in a random direction chosen uniformly from the
other three directions. If an action would move a unit into the boundary, it remained in the original
location (with probability one). The discount factor was 0.9. Features were a lookup table over the
11 × 11 grid. For all algorithms, only one step of planning was applied per action selection. The

3Otherwise, we can drop the options in O which are never selected by h.
4 The index i(k) is advanced for ηoi(k) when following option o, and the index j(k) is advanced for η̃oj(k)

when o is terminated. Note that in the algorithm, we simply wrote as ηoi(k) as ηok and η̃oj(k) as η̃ok.

6



1o

G

5o

2o

3o

6o

7o

4o

8o

B

9o

(11, 11)

(a)

G

(b)

0 20 40 60 80 100
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Number of episodes

R
M

S
E

 

 

UOM

LOEM

(c)

Figure 1: (a) A Star Craft local mission map, consisting of four bridged regions, and nine options
for the mission. (b) A high-level policy h =< o1, o2, o3, o6 > initiates the options in the regions, with
deterministic policies in the regions as given by the arrows: o1 (green), o2 (yellow), o3 (purple), and
o6 (white). Outside these regions, the policies select actions uniformly at random. (c) The expected
performance of different units can be learned by simulating trajectories (with the standard deviation
shown by the bars), and the UOM method reduces the error faster than the LOEM method.

planning step-size for each algorithm was chosen from 0.001,0.01,0.1,1.0. Only the best one was
reported for an algorithm. All data reported were averaged over 30 runs.

Game Units
Enemy Locations Battlecruiser Reapers Thor SCV
fortress (yellow) 0.3 -1.0 1.0 -1.0
ground forces (green) 1.0 0.3 1.0 -1.0
viking (red) -1.0 -1.0 1.0 -1.0
cobra (pink) 1.0 0.5 -1.0 -1.0
minerals (blue) 0 0 0 1.0

We defined a set of nine op-
tions and their correspond-
ing policies, shown in Fig-
ure 1 (a), (b). These options
are specified by the locations
where they terminate, and the
policies. The termination lo-
cation is the square pointed
to by each option’s arrows.
Four of these are “bridges” between regions, and one is the position labeled “B” (which is the
player’s base at position (1,1)). Each of the options could be initiated from anywhere in the region
in which the policy was defined. The policies for these options were defined by a shortest path
traversal from the initial location to the terminal location, as shown in the figure. These policies
were not optimized for the reward functions of the game units or the enemy locations.

To choose among units for a mission in real time, a player must be able to efficiently evaluate many
options for many units, compute the value functions of the various high-level policies, and select
the best unit for a particular high-level goal. A high-level policy for dispatching the game units is
defined by initiating different options from different states. For example, a policy for moving units
from the base “B” to position “G” can be, h =< o1, o2, o3 >. Another high-level policy could move
another unit from upper left terrain to “G” by a different route with h′ =< o8, o5, o6 >.

We evaluated policy h for the Reaper unit above using UOMs and LOEMs. We first pre-learned
the Uo and Mo models using the experience from 3000 trajectories. Using a reward function that is
described in the above table, we then learned fo for the UOM and and bo for the LEOM over 100
simulated trajectories, and concurrently learned θ. As shown in Figure 1(c), the UOM model learns
a more accurate estimate of the value function from fewer episodes, when the best performance is
taken across the planning step size. Learning fo is easier than learning bo because the stochastic
dynamics of the environment is factored out through the pre-learned Uo. These constructed value
functions can be used to select the best game unit for the task of moving to the goal location.

This approach is computationally efficient for multiple units. We compared the computation time
of LOEMs and UOMs with linear Dyna on a modern PC with an Intel 1.7GHz processor and 8GB
RAM in a MATLAB implementation. Learning Uo took 81 seconds. We used a recursive least-
squares update to learn Mo, which took 9.1 seconds. Thus, learning an LOEM model is faster than
learning a UOM for a single fixed reward function, but the UOM can produce an accurate option
return quickly for each new reward function. Learning the value function incrementally from the 100

7



trajectories took 0.44 seconds for the UOM and 0.61 seconds for the LOEM. The UOM is slightly
more efficient as fo is more sparse than bo, but it is substantially more accurate, as shown in Figure
1(c). We evaluated all the units and the results are similar.

Article recommendation. Recommending relevant articles for a given user query can be thought of
as predicting an expected return of an option for a dynamically specified reward model. Ranking
an article as a function of the links between articles in the database has proven to be a successful
approach to article recommendation, with PageRank and other link analysis algorithms using a ran-
dom surfer model [Page et al., 1998]. We build on this idea, by mapping a user query to a reward
model and pre-specified option for how a reader might transition between articles. The ranking of
an article is then the expected return from following references in articles according to the option.
Consider the policy of performing a random-walk between articles in a database by following a ref-
erence from an article that is selected uniformly at random. An article receives a positive reward if it
matches a user query (and is otherwise zero), and the value of the article is the expected discounted
return from following the random-walk policy over articles. More focused reader policies can be
specified as following references from an article with a common author or keyword.

We experimented with a collection from DBLP that has about 1.5 million articles, 1 million authors,
and 2 millions citations [Tang et al., 2008]. We assume that a user query q is mapped directly to an
option o and an immediate reward model foq . For simplicity in our experiment, the reward models
are all binary, with three non-zero features drawn uniformly at random. In total we used about 58
features, and the discount factor was 0.9. There were three policies. The first followed a reference
selected uniformly at random, the second selected a reference written by an author of the current
article (selected at random), and the third selected a reference with a keyword in common with the
current article. Three options were defined from these policies, where the termination probability
beta was 1.0 if no suitable outgoing reference was available and 0.25 otherwise. High-level policies
of different option sequences could also be applied, but were not tested here. We used bibliometric
features for the articles extracted from the author, title, venue fields.

We generated queries q at random, where each query specified an associated option o and an option-
independent immediate reward model foq = fq . We then computed their value functions. The im-
mediate reward model is naturally constructed for these problems, as the reward comes from the
starting article based on its features, so it is not dependent on the action taken (and thus not the op-
tion). This approach is appropriate in article recommendation as a query can provide both terms for
relevant features (such as the venue), and how the reader intends to follow references in the paper.
For the UOM based approach we pre-learned Uo, and then computed Uofoq for each query. For the
LOEM approach, we learned a bq for each query by simulating 3000 trajectories in the database (the
simulated trajectories were shared for all the queries). The computation time (in seconds) for the
UOM and LOEM approaches are shown in the table below, which shows that UOMS are much more
computationally efficient than LOEM.

Number of reward functions 10 100 500 1,000 10,000
LOEM 0.03 0.09 0.47 0.86 9.65
UOM 0.01 0.04 0.07 0.12 1.21

7 Conclusion

We proposed a new way of modelling options in both tabular representation and linear function
approximation, called the universal option model. We showed how to learn UOMs and how to use
them to construct the TD solution of option returns and value functions of policies, and prove their
theoretical guarantees. UOMs are advantageous in large online systems. Estimating the return of an
option given a new reward function with the UOM of the option is reduced to a one-step regression.
Computing option returns dependent on many reward functions in large online games and search
systems using UOMs is much faster than using previous methods for learning option models.

Acknowledgment

Thank the reviewers for their comments. This work was supported by grants from Alberta Innovates
Technology Futures, NSERC, and Department of Science and Technology, Government of India.

8



References
Abbeel, P., Coates, A., and Ng, A. Y. (2010). Autonomous helicopter aerobatics through appren-

ticeship learning. Int. J. Rob. Res., 29(13):1608–1639.
Barto, A. and Duff, M. (1994). Monte carlo matrix inversion and reinforcement learning. NIPS,

pages 687–694.
Bertsekas, D. P. and Tsitsiklis, J. N. (1996). Neuro-dynamic Programming. Athena.
Jaakkola, T., Jordan, M., and Singh, S. (1994). On the convergence of stochastic iterative dynamic

programming algorithms. Neural Computation, 6(6):1185–1201.
Ng, A. Y. and Russell, S. J. (2000). Algorithms for inverse reinforcement learning. ICML, pages

663–670.
Page, L., Brin, S., Motwani, R., and Winograd, T. (1998). The PageRank citation ranking: Bringing

order to the web. Technical report, Stanford University.
Precup, D. (2000). Temporal Abstraction in Reinforcement Learning. PhD thesis, University of

Massachusetts, Amherst.
Richardson, M. and Domingos, P. (2002). The intelligent surfer: Probabilistic combination of link

and content information in PageRank. NIPS.
Sorg, J. and Singh, S. (2010). Linear options. AAMAS, pages 31–38.
Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT Press.
Sutton, R. S., Precup, D., and Singh, S. (1999). Between MDPs and semi-MDPs: A framework for

temporal abstraction in reinforcement learning. Artificial Intelligence, 112:181–211.
Syed, U. A. (2010). Reinforcement Learning Without Rewards. PhD thesis, Princeton University.
Tang, J., Zhang, J., Yao, L., Li, J., Zhang, L., and Su, Z. (2008). Arnetminer: extraction and mining

of academic social networks. SIGKDD, pages 990–998.

9


	Introduction
	Background
	Universal Option Models (UOMs)
	UOMs with Linear Function Approximation
	Learning and Planning with UOMs
	Learning Linear UOMs
	Learning Reward Models
	Policy Evaluation with UOMs and Reward Models

	Empirical Results
	Conclusion

