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Abstract. We consider o↵-policy temporal-di↵erence (TD) learning in
discounted Markov decision processes, where the goal is to evaluate a
policy in a model-free way by using observations of a state process gen-
erated without executing the policy. To curb the high variance issue in
o↵-policy TD learning, we propose a new scheme of setting the � pa-
rameters of TD, based on generalized Bellman equations. Our scheme
is to set � according to the eligibility trace iterates calculated in TD,
thereby easily keeping these traces in a desired bounded range. Com-
pared to prior works, this scheme is more direct and flexible, and allows
much larger � values for o↵-policy TD learning with bounded traces. Us-
ing Markov chain theory, we prove the ergodicity of the joint state-trace
process under nonrestrictive conditions, and we show that associated
with our scheme is a generalized Bellman equation (for the policy to be
evaluated) that depends on both � and the unique invariant probability
measure of the state-trace process. These results not only lead immedi-
ately to a characterization of the convergence behavior of least-squares
based implementation of our scheme, but also prepare the ground for
further analysis of gradient-based implementations.
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1 Introduction

We consider o↵-policy temporal-di↵erence (TD) learning in discounted Markov
decision processes (MDPs), where the goal is to evaluate a policy in a model-
free way by using observations of a state process generated without executing
the policy. O↵-policy learning is an important part of the reinforcement learning
methodology [25] and has been studied in the areas of operations research and
machine learning (see e.g., [3,5,6,8,9,10,11,17,18,20,29]). Available algorithms,
however, tend to have very high variances due to the use of importance sampling,
an issue that limits their applicability in practice. The purpose of this paper is
to introduce a new TD learning scheme that can help address this problem.

? This work was supported by a grant from Alberta Innovates—Technology Futures.
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Our work is motivated by the recently proposed Retrace [15] and ABQ [12]
algorithms, and by the Tree-Backup algorithm [18] that existed earlier. These
algorithms, as explained in [12], all try to use the �-parameters of TD to curb the
high variance issue in o↵-policy learning. In this paper we propose a new scheme
of setting the �-parameters of TD, based on generalized Bellman equations. Our
scheme is to set � according to the eligibility trace iterates calculated in TD,
thereby easily keeping those traces in a desired range. Compared to the previous
works, this is a direct way to bound the traces in TD, and it is also more flexible,
allowing much larger � values for o↵-policy learning.

Regarding generalized Bellman equations, they are a powerful tool. In classic
MDP theory they have been used in some intricate optimality analyses. Their
computational use, however, seems to emerge primarily in the field of reinforce-
ment learning (see [24], [1, Chap. 5.3] and [28] for related early and recent re-
search). Like the earlier works [12,15,18,28,33], our work aims to employ this
tool to make o↵-policy learning more e�cient.

Our analyses of the new TD learning scheme will focus on its theoretical side.
Using Markov chain theory, we prove the ergodicity of the joint state and trace
process under nonrestrictive conditions (see Theorem 2.1), and we show that
associated with our scheme is a generalized Bellman equation (for the policy
to be evaluated) that depends on both � and the unique invariant probability
measure of the state-trace process (see Theorem 3.1). These results not only lead
immediately to a characterization of the convergence behavior of least-squares
based implementation of our scheme (see Cor. 2.1 and Remark 3.1), but also
prepare the ground for further analysis of gradient-based implementations.

We note that due to space limit, in this paper we can only give the ideas or
outlines of our proofs. The full details will be given in the longer version of this
paper, which will also include numerical examples that we will not cover here.

The rest of the paper is organized as follows. In Section 2, after a brief back-
ground introduction, we present our scheme of TD learning with bounded traces,
and we establish the ergodicity of the joint state-trace process. In Section 3 we
derive the generalized Bellman equation associated with our scheme.

2 O↵-Policy TD Learning with Bounded Traces

2.1 Preliminaries

The o↵-policy learning problem we consider in this paper concerns two Markov
chains on a finite state space S = {1, . . . , N}. The first chain has transition
matrix P , and the second P o. Whatever physical mechanisms that induce the
two chains shall be denoted by ⇡ and ⇡o, and referred to as the target policy
and behavior policy, respectively. The second Markov chain we can observe;
however, it is the system performance for the first Markov chain that we want to
evaluate. Specifically, we consider a one-stage reward function r⇡ : S ! < and
an associated discounted total reward criterion with state-dependent discount
factors �(s) 2 [0, 1], s 2 S. Let � denote theN⇥N diagonal matrix with diagonal
entries �(s). We assume that P and P o satisfy the following conditions:
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Condition 2.1 (Conditions on the target and behavior policies)

(i) P is such that the inverse (I � P� )�1 exists, and (ii) P o is such that for all
s, s0 2 S, P o

ss0 = 0 ) Pss0 = 0, and moreover, P o is irreducible.

The performance of ⇡ is defined as the expected discounted total rewards for
each initial state s 2 S:

v⇡(s) := E⇡
s [ r⇡(S0) +

P1
t=1 �(S1) �(S2) · · · �(St) · r⇡(St)] , (2.1)

where the notation E⇡
s means that the expectation is taken with respect to

(w.r.t.) the Markov chain {St} starting from S0 = s and induced by ⇡ (i.e., with
transition matrix P ). The function v⇡ is well-defined under Condition 2.1(i). It
is called the value function of ⇡, and by standard MDP theory (see e.g., [19]),
we can write it in matrix/vector notation as

v⇡ = r⇡ + P� v⇡, i.e., v⇡ = (I � P� )�1r⇡.

The first equation above is known as the Bellman equation (or dynamic pro-
gramming equation) for a stationary policy.

We compute an approximation of v⇡ of the form v(s) = �(s)>✓, s 2 S, where
✓ 2 <n is a parameter vector and �(s) is an n-dimensional feature representation
for each state s (�(s), ✓ are column vectors and > stands for transpose). Data
available for this computation are:

(i) the Markov chain {St} with transition matrix P o generated by ⇡o, and
(ii) rewards Rt = r(St, St+1) associated with state transitions, where the func-

tion r relates to r⇡(s) as r⇡(s) = E⇡
s [r(s, S1)] for all s 2 S.

To find a suitable parameter ✓ for the approximation �(s)>✓, we use the o↵-
policy TD learning scheme. Define ⇢(s, s0) = Pss0/P o

ss0 (the importance sampling
ratio);1 denote ⇢t = ⇢(St, St+1), �t = �(St). Given an initial e0 2 <n, for each
t � 1, the eligibility trace vector et 2 <n and the scalar temporal-di↵erence term
�t(v) for any approximate value function v : S ! < are calculated according to

et = �t �t ⇢t�1 et�1 + �(St), (2.2)

�t(v) = ⇢t
�
Rt + �t+1v(St+1)� v(St)

�
. (2.3)

Here �t 2 [0, 1], t � 1, are important parameters in TD learning, the choice of
which we shall elaborate on shortly.

1 Our problem formulation entails both value function and state-action value function
estimation for a stationary policy in the standard MDP context. In these applica-
tions, it is the state-action space of the MDP that corresponds to the state space S
here; see [29, Examples 2.1, 2.2] for details. The third application is in a simulation
context where P o corresponds to a simulated system and both P o, P are known so
that the ratio ⇢(s, s0) is available. Such simulations are useful, for example, in study-
ing system performance under perturbations, and in speeding up the computation
when assessing the impacts of events that are rare under the dynamics P .
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Using et and �t, a number of algorithms can be formed to generate a se-
quence of parameters ✓t for approximate value functions. One such algorithm is
LSTD [2,29], which obtains ✓t by solving the linear equation for ✓ 2 <n,

1
t

Pt�1
k=0 ek �k(v) = 0, v = �✓ (2.4)

(if it admits a solution), where � is a matrix with row vectors �(s)>, s 2 S.
LSTD updates the equation (2.4) iteratively by incorporating one by one the
observation of (St, St+1, Rt) at each state transition. We will discuss primarily
this algorithm in the paper, as its behavior can be characterized directly using
our subsequent analyses of the joint state-trace process. As mentioned earlier, our
analyses will also provide bases for analyzing other gradient-based TD algorithms
[9,10] using stochastic approximation theory. However, due to its complexity, this
subject is better to be treated separately, not in the present paper.

2.2 Our Choice of �

We now come to the choices of �t in the trace iterates (2.2). For TD with function
approximation, one often lets �t be a constant or a function of St [23,25,27].
If neither the behavior policy nor the �t’s are further constrained, {et} can
have unbounded variances and is also unbounded in many natural situations
(see e.g., [29, Section 3.1]), and this makes o↵-policy TD learning challenging.2

If we let the behavior policy to be close enough to the target policy so that
P o ⇡ P , then variance can be reduced, but it is not a satisfactory solution, for
the applicability of o↵-policy learning would be seriously limited.

Without restricting the behavior policy, the two recent works [12,15] (as well
as the closely related early work [18]) exploit state-dependent �’s to control
variance. Their choices of �t are such that �t⇢t�1 < 1 for all t, so that the trace
iterates et are made bounded, which can help reduce the variance of the iterates.

Our proposal, motivated by these prior works, is to set �t according to et�1

directly, so that we can keep et in a desired range straightforwardly and at the
same time, allow a much larger range of values for the �-parameters. As a simple
example, if we use �t to scale the vector �t⇢t�1et�1 to be within a ball with some
given radius, then we keep et bounded always.

In the rest of this paper, we shall focus on analyzing the iteration (2.2)
with a particular choice of �t of the kind just mentioned. We want to be more
general than the preceding simple example. However, we also want to retain
certain Markovian properties that are very useful for convergence analysis. This
leads us to consider �t being a certain function of the previous trace and past
states. More specifically, we will let �t be a function of the previous trace and a
certain memory state that is a summary of the states observed so far, and the
formulation is as follows.

Denote the memory state at time t by yt. For simplicity, we assume that
yt can only take values from a finite set M, and its evolution is Markovian:

2 Asymptotic convergence is still ensured, however, for several algorithms [29,30,31],
thanks partly to a powerful law of large numbers for stationary processes.
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yt = g(yt�1, St) for some given function g. The joint process {(St, yt)} is then a
simple finite-state Markov chain. Each yt is a function of (S0, . . . , St) and y0. We
further require, besides the irreducibility of {St} (cf. Condition 2.1(ii)), that3

Condition 2.2 (Evolution of memory states) Under the behavior policy ⇡o,
the Markov chain {(St, yt)} on S ⇥M has a single recurrent class.

Thus we let yt and �t evolve as

yt = g(yt�1, St), �t = �(yt, et�1) (2.5)

where � : M⇥<n ! [0, 1]. We require the function � to satisfy two conditions.

Condition 2.3 (Conditions for �) For some norm k · k on <n, the following
hold for each memory state y 2 M:

(i) For any e, e0 2 <n, k�(y, e) e� �(y, e0) e0k  ke� e0k.
(ii) For some constant Cy, k�(s0)⇢(s, s0) · �(y, e) ek  Cy for all possible state

transitions (s, s0) that can lead to the memory state y.

In the above, the second condition is to restrict {et} in a desired range (as it
makes ketk  maxy2M Cy + maxs2S k�(s)k). The first condition is to ensure
that the traces et jointly with (St, yt) form a Markov chain with nice properties
(as will be seen in the next subsection).

Consider the simple scaling example mentioned earlier. In this case we can
let yt = (St�1, St), and for each y = (s, s0), define �(y, ·) to scale back the vector
�(s0)⇢(s, s0) e when it is outside the Euclidean ball with radius Css0 : �

�
y, e

�
= 1

if �(s0)⇢(s, s0)kek2  Css0 ; and �
�
y, e

�
= Css0

�(s0)⇢(s,s0)kek2
otherwise.

2.3 Ergodicity Result

The properties of the joint state-trace process {(St, yt, et)} are important for un-
derstanding and characterizing the behavior of the proposed TD learning scheme.
We study them in this subsection; most importantly, we shall establish the ergod-
icity of the state-trace process. The result will be useful in convergence analysis
of several associated TD algorithms, although in this paper we discuss only the
LSTD algorithm. In the next section we will also use the ergodicity result when
we relate the LSTD equation (2.4) to a generalized Bellman equation for the
target policy, which will then make the meaning of the LSTD solutions clear.

As a side note, one can introduce nonnegative coe�cients i(y) for memory
states y to weight the state features (similarly to the use of “interest” weights
in the ETD algorithm [26]) and update et according to

et = �t �t ⇢t�1 et�1 + i(yt)�(St). (2.6)

The results given below apply to this update rule as well.
Let us start with two basic properties of {(St, yt, et)} that follow directly

from our choice of the � function:
3 These conditions are nonrestrictive. If the Markov chains have multiple recurrent
classes, each recurrent class can be treated separately using the same arguments.
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(i) By Condition 2.3(i), for each y, �(y, e)e is a continuous function of e, and
thus et depends continuously on et�1. This, together with the finiteness of
S ⇥M, ensures that {(St, yt, et)} is a weak Feller Markov chain.4

(ii) Then, by a property of weak Feller Markov chains [14, Theorem 12.1.2(ii)],
the boundedness of {et} ensured by Condition 2.3(ii) implies that {(St, yt, et)}
has at least one invariant probability measure.

The third property, given in the lemma below, concerns the behavior of {et} for
di↵erent initial e0. It is an important implication of Condition 2.3(i) (actually
it is our purpose of introducing the condition 2.3(i) in the first place). Due to
space limit, we omit the proof, which is similar to the proof of [29, Lemma 3.2].

Lemma 2.1 Let {et} and {êt} be generated by the iteration (2.2) and (2.5),
using the same trajectory of states {St} and initial y0, but with di↵erent initial
e0 and ê0, respectively. Then under Conditions 2.1(i) and 2.3(i), et � êt

a.s.! 0.

We use the preceding lemma and ergodicity properties of weak Feller Markov
chains [13] to prove the ergodicity theorem given below (for lack of space, we
again omit the proof). Before stating this result, we note that for {(St, yt, et)}
starting from the initial condition x = (s, y, e), the occupation probability mea-
sures {µx,t} are random probability measures on S ⇥M⇥<n given by

µx,t(D) := 1
t

Pt�1
k=0 1

�
(Sk, yk, ek) 2 D

�

for all Borel sets D ⇢ S⇥M⇥<n, where 1(·) is the indicator function. We write
Px for the probability distribution of {(St, yt, et)} with initial condition x.

Theorem 2.1 Under Conditions 2.1-2.3, {(St, yt, et)} is a weak Feller Markov
chain and has a unique invariant probability measure ⇣. For each initial condition
(S0, y0, e0) = (s, y, e) =: x, the occupation probability measures {µx,t} converge
weakly5 to ⇣, Px-almost surely.

Let E⇣ denote expectation w.r.t. the stationary state-trace process {(St, yt, et)}
with initial distribution ⇣. Since the traces and hence the entire process lie in
a bounded set under Condition 2.3(ii), the weak convergence of {µx,t} to ⇣ im-

plies that the sequence of equations, 1
t

Pt�1
k=0 ek �k(v) = 0, as given in (2.4) for

LSTD, has an asymptotic limit that can be expressed in terms of the stationary
state-trace process as follows.

Corollary 2.1 Let Conditions 2.1-2.3 hold. Then for each initial condition of
(S0, y0, e0), almost surely, the first equation in (2.4), viewed as a linear equation
in v, tends to6 the equation E⇣ [ e0 �0(v)] = 0 in the limit as t ! 1.

4 This means that for any bounded continuous function f on S ⇥M⇥ <n (endowed
with the usual topology), with Xt = (St, yt, et), E

⇥
f(X1) | X0 = x

⇤
is a continuous

function of x [14, Prop. 6.1.1].
5 This means

R
fdµx,t !

R
fd⇣ as t ! 1, for every bounded continuous function f .

6 By this we mean that as linear equations in v, the random coe�cients in this sequence
of equations converge to the corresponding coe�cients in the limiting equation.
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3 Generalized Bellman Equations

In this section we continue the analysis started in Section 2.3. Our goal is to
relate the linear equation E⇣ [ e0 �0(v)] = 0, the asymptotic limit of the linear
equations (2.4) for LSTD as just shown by Cor. 2.1, to a generalized Bellman
equation for the target policy ⇡. Then, we can interpret solutions of (2.4) as
solutions of approximate versions of that generalized Bellman equation.

To simplify notation in subsequent derivations, we shall use the following
shorthand notation: For k  m, denote Sm

k = (Sk, Sk+1, . . . Sm), and denote

⇢mk =
Qm

i=k ⇢i, �m
k =

Qm
i=k �i, �m

k =
Qm

i=k �i, (3.1)

whereas by convention we treat ⇢mk = �m
k = �m

k = 1 if k > m.

3.1 Randomized Stopping Times

Consider the Markov chain {St} induced by the target policy ⇡. Let Condi-
tion 2.1(i) hold. Recall that for the value function v⇡, we have

v⇡(s) = E⇡
s

⇥P1
t=0 �

t
1 r⇡(St)

⇤
(by definition), and v⇡(s) = r⇡(s)+E⇡

s [�1v⇡(S1)]

for each state s. The second equation is the standard one-step Bellman equation.
To write generalized Bellman equations for ⇡, we need the notion of random-

ized stopping times for {St}. They generalize stopping times for {St} in that
whether to stop at time t depends not only on St

0 but also on certain random
outcomes. A simple example is to toss a coin at each time and stop as soon as the
coin lands on heads, regardless of the history St

0. (The corresponding Bellman
equation is the one associated with TD(�) for a constant �.) Of interest here is
the general case where the stopping decision does depend on the entire history.

To define a randomized stopping time formally, first, the probability space of
{St} is enlarged to take into account whatever randomization scheme that is used
to make the stopping decision. (The enlargement will be problem-dependent, as
the next subsection will demonstrate.) Then, on the enlarged space, a random-
ized stopping time ⌧ for {St} is by definition a stopping time relative to some
increasing sequence of sigma-algebras F0 ⇢ F1 ⇢ · · · , where the sequence {Ft}
is such that (i) for all t � 0, Ft � �(St

0) (the sigma-algebra generated by St
0), and

(ii) w.r.t. {Ft}, {St} remains to be a Markov chain with transition probability
P , i.e., Prob(St+1 = s | Ft) = PSts. (See [16, Chap. 3.3].)

The advantage of this abstract definition is that it allows us to write Bellman
equations in general forms without worrying about the details of the enlarged
space which are not important at this point. For notational simplicity, we shall
still use E⇡ to denote expectation for the enlarged probability space and write
P

⇡ for the probability measure on that space, when there is no confusion.
If ⌧ is a randomized stopping time for {St}, the strong Markov property [16,

Theorem 3.3] allows us to express v⇡ in terms of v⇡(S⌧ ) and the total discounted
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rewards R⌧ prior to stopping:

v⇡(s) = E⇡
s

hP⌧�1
t=0 �t

1 r⇡(St) +
P1

t=⌧ �
⌧
1 · �t

⌧+1 r⇡(St)
i

= E⇡
s

⇥
R⌧ + �⌧

1 v⇡(S⌧ )
⇤
, (3.2)

where R⌧ =
P⌧�1

t=0 �t
1 r⇡(St) for ⌧ 2 {0, 1, 2, . . .}[{+1}.7 We can also write the

Bellman equation (3.2) in terms of {St} only, by taking expectation over ⌧ :

v⇡(s) = E⇡
s

hP1
t=0

⇣
q+t (S

t
0) · �t

1 r⇡(St) + qt(St
0) · �t

1 v⇡(St)
⌘i

, (3.3)

where q+t (S
t
0) = P

⇡(⌧ > t | St
0), qt(S

t
0) = P

⇡(⌧ = t | St
0). (3.4)

The r.h.s. of (3.2) or (3.3) defines an associated generalized Bellman operator
T : <N ! <N that has several equivalent expressions; e.g.,

(Tv)(s)=E⇡
s

⇥
R⌧ + �⌧

1 v(S⌧ )
⇤
=E⇡

s

hP1
t=0

⇣
q+t (S

t
0) · �t

1 r⇡(St) + qt(St
0) · �t

1 v(St)
⌘i
,

for all s 2 S. Just as in the case of the one-step Bellman operator, the value
function v⇡ is the unique fixed point of T , i.e., the unique solution of v = Tv.8

3.2 Bellman Equation for the Proposed TD Learning Scheme

With the terminology of randomized stopping times, we are now ready to write
down the generalized Bellman equation associated with the TD-learning scheme
proposed in Section 2.2. It corresponds to a particular randomized stopping time.
We shall first describe this random time, from which a generalized Bellman
equation follows as seen in the preceding subsection. That this is indeed the
Bellman equation for our TD learning scheme will then be proved.

Consider the Markov chain {St} under the target policy ⇡. We define a ran-
domized stopping time ⌧ for {St}:

• Let yt,�t, et, t � 1, evolve according to (2.5) and (2.2).
• Let the initial (S0, y0, e0) be distributed according to ⇣, the unique invariant
probability measure in Theorem 2.1.

• At time t � 1, we stop the system with probability 1 � �t if it has not yet
been stopped. Let ⌧ be the time when the system stops (⌧ = 1 if the system
never stops).

To make the dependence on the initial distribution ⇣ explicit, we write P
⇡
⇣ for

the probability measure of this process.

7 In the case ⌧ = 0, R0 = 0. In the case ⌧ = 1, R1 =
P1

t=0 �
t
1 r⇡(St), and the second

term �⌧
1 v⇡(S⌧ ) in (3.2) is 0 because �1

1 :=
Q1

k=1 �k = 0 a.s. under Condition 2.1(i).
8 To see this, note that the matrix involved in the a�ne operator T is substochastic
and dominated by the substochastic matrix P� (the matrix in the one-step Bellman
operator), whereas in view of Condition 2.1(i), P� is a linear contraction w.r.t. a
weighted sup-norm on <N by nonnegative matrix theory (see also [1, Prop. 2.2]).
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Note that by definition �t and �t
1 are functions of the initial (y0, e0) and

states St
0. From how the random time ⌧ is defined, we have for all t � 1,

P
⇡
⇣ (⌧ > t | St

0, y0, e0) = �t
1 =: h+

t (y0, e0, S
t
0), (3.5)

P
⇡
⇣ (⌧ = t | St

0, y0, e0) = �t�1
1 (1� �t) =: ht(y0, e0, S

t
0), (3.6)

and hence

q+t (S
t
0) := P

⇡
⇣ (⌧ > t | St

0) =

Z
h+
t (y, e, S

t
0) ⇣

�
d(y, e) | S0

�
, (3.7)

qt(S
t
0) := P

⇡
⇣ (⌧ = t | St

0) =

Z
ht(y, e, S

t
0) ⇣

�
d(y, e) | S0

�
, (3.8)

where ⇣(d(y, e) | s) is the conditional distribution of (y0, e0) given S0 = s,
w.r.t. the initial distribution ⇣. As before, we can write the generalized Bellman
operator T associated with ⌧ in several equivalent forms. Let E⇡

⇣ denote expec-

tation under P⇡
⇣ . Based on (3.2) and (3.5)-(3.6), it is easy to derive that9 for all

v : S ! <, s 2 S,

(Tv)(s) = E⇡
⇣

⇥P1
t=0 �

t
1�

t
1 r⇡(St) +

P1
t=1 �

t�1
1 (1� �t)�t

1 v(St) | S0 = s
⇤
. (3.9)

Alternatively, by integrating over (y0, e0) and using (3.7)-(3.8), we can write

(Tv)(s) = E⇡
⇣

hP1
t=0

⇣
q+t (S

t
0) · �t

1 r⇡(St) + qt(St
0) · �t

1 v(St)
⌘ ��S0 = s

i
, (3.10)

for all v : S ! <, s 2 S, where in the case t = 0, q+0 (·) ⌘ 1 = P
⇡
⇣ (⌧ > 0 | S0)

and q0(·) ⌘ 0 = P
⇡
⇣ (⌧ = 0 | S0) (since ⌧ > 0 by construction).

Comparing the two expressions of T , we remark that the expression (3.9)
reflects the role of the �t’s in determining the stopping time, whereas the ex-
pression (3.10), which has eliminated the auxiliary memory states yt, shows more
clearly the dependence of the stopping time on the entire history St

0. It can also
be seen from the initial distribution ⇣ that the behavior policy asserts a signifi-
cant role in determining the Bellman operator T for the target policy. This is in
contrast with o↵-policy TD learning that uses a constant �, where the behavior
policy a↵ects only how one approximates the Bellman equation underlying TD,
not the Bellman equation itself.

We now proceed to show how the Bellman equation v = Tv given above
relates to the o↵-policy TD learning scheme in Section 2.2. Some notation is
needed. Denote by ⇣S the marginal of ⇣ on S. Note that ⇣S coincides with the in-
variant probability measure of the Markov chain {St} induced by the behavior pol-
icy. For two functions v1, v2 on S, we write v1 ?⇣S v2 if

P
s2S ⇣S(s) v1(s) v2(s) =

0. If L is a linear subspace of functions on S and v ?⇣S v0 for all v0 2 L, we write
v ?⇣S L. Recall that � is a function that maps each state s to an n-dimensional
feature vector. Denote by L� the subspace spanned by the n component func-
tions of �, which is the space of approximate value functions for our TD learning

9 Rewrite (3.2) as v⇡(s)=E⇡
s

⇥P1
t=0 1(⌧ > t) �t

1 r⇡(St) +
P1

t=0 1(⌧ = t) �t
1 v⇡(St)

⇤
and

for the tth terms in the r.h.s., take expectation over ⌧ conditioned on (St
0, y0, e0).
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scheme. Recall also that E⇣ denotes expectation w.r.t. the stationary state-trace
process {(St, yt, et)} under the behavior policy (cf. Theorem 2.1).

Theorem 3.1 Let Conditions 2.1-2.3 hold. Then as a linear equation in v,
E⇣

⇥
e0 �0(v)

⇤
= 0 is equivalently Tv � v ?⇣S L�, where T is the generalized

Bellman operator for ⇡ given in (3.9) or (3.10).

Remark 3.1 (On LSTD) Note that Tv � v ?⇣S L�, v 2 L� is a projected
version of the generalized Bellman equation Tv � v = 0 (projecting the l.h.s.
onto the approximation subspace L� w.r.t. the ⇣S -weighted Euclidean norm).
Theorem 3.1 and Cor. 2.1 together show that this is what LSTD solves in the
limit. If this projected Bellman equation admits a unique solution v̄, then the
approximation error v̄ � v⇡ can be characterized as in [22,32].

Proof (outline). We divide the proof into three parts. The first part is more
subtle than the other two, which are mostly calculations. Due to space limit, we
can only outline the proof here, leaving out the details of some arguments.

(i) We extend the stationary state-trace process to t = �1, �2, . . . and work with
a double-ended stationary process {(St, yt, et)}�1<t<1 (such a process exists
by Kolmogorov’s theorem [4, Theorem 12.1.2]). We keep using the notation P⇣

and E⇣ for this double-ended stationary Markov chain. Then, by unfolding the
iteration (2.2) for et backwards in time, we show that10

e0 = �(S0) +
P1

t=1 �
0
1�t�

0
1�t⇢

�1
�t �(S�t) P⇣-a.s., (3.11)

or with �0
1 = ⇢�1

0 = 1 by convention, we can write e0 =
P1

t=0 �
0
1�t�

0
1�t⇢

�1
�t �(S�t)

P⇣-a.s. The proof of (3.11) uses the stationarity of the process, Condition 2.1(i)
and a theorem on integration [21, Theorem 1.38] among others.

(ii) Using the expression (3.11) of e0, we calculate E⇣

⇥
e0 · ⇢0f(S1

0)
⇤
for any

bounded measurable function f on S ⇥ S. In particular, we first obtain

E⇣

⇥
e0 · ⇢0f(S1

0)
⇤
=
P1

t=0 E⇣

h
�(S0) · E⇣

⇥
�t
1�

t
1⇢

t
0 f(S

t+1
t ) | S0

⇤ i
(3.12)

by using (3.11) and the stationarity of the state-trace process. Next we relate
the expectations in the summation in (3.12) to expectations w.r.t. the process
with probability measure P

⇡
⇣ , which we recall is induced by the target policy ⇡

and introduced at the beginning of this subsection. Let Ẽ⇡
⇣ denote expectation

w.r.t. the marginal of P⇡
⇣ on the space of {(St, yt, et)}t�0. From the change of

measure performed through ⇢t0, we have

E⇣

⇥
�t
1�

t
1⇢

t
0 f(S

t+1
t ) | S0, y0, e0

⇤
= Ẽ⇡

⇣

⇥
�t
1�

t
1 f(S

t+1
t ) | S0, y0, e0

⇤
, t � 0. (3.13)

Combining this with (3.12) and using the fact that ⇣ is the marginal distribution
of (S0, y0, e0) in both processes, we obtain

E⇣

⇥
e0 · ⇢0f(S1

0)
⇤
=
P1

t=0 Ẽ⇡
⇣

h
�(S0) · Ẽ⇡

⇣

⇥
�t
1�

t
1 f(S

t+1
t ) | S0

⇤ i
. (3.14)

10 Recall the shorthand notation (3.1) introduced at the beginning of Section 3.
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(iii) We now use (3.14) to calculate E⇣

⇥
e0 �0(v)

⇤
for a given function v. Recall

from (2.3) �0(v) = ⇢0 ·
�
r(S1

0) + �1v(S1)� v(S0)
�
, so we let f(St+1

t ) = r(St+1
t ) +

�t+1v(St+1)� v(St) in (3.14). Then a direct calculation shows that11

E⇣

⇥
e0 �0(v) | S0

⇤
= �(S0) ·

�
� v(S0) + (Tv)(S0)

 
. (3.15)

Therefore E⇣

⇥
e0 �0(v)

⇤
=

P
s2S ⇣S(s)�(s) · (Tv � v)(s), and this shows that

E⇣

⇥
e0 �0(v)

⇤
= 0 is equivalent to Tv � v ?⇣S L�. ut

Concluding Remark: This completes our analysis of the LSTD algorithm for
the proposed TD-learning scheme. To conclude the paper, we note that the pre-
ceding results also prepare the ground for analyzing gradient-based algorithms
similar to [9,10] in a future work. Specifically, like LSTD, these algorithms would
aim to solve the same projected generalized Bellman equation as characterized
by Theorem 3.1 (cf. Remark 3.1). Their average dynamics, which is important
for analyzing their convergence using the mean ODE approach from stochastic
approximation theory [7], can be studied based on the ergodicity result of The-
orem 2.1, in essentially the same way as we did in Section 2.3 for the LSTD
algorithm.
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