
University of Alberta

Library Release Form

Name of Author: Adam Murray White

Title of Thesis: A Standard Benchmarking System for Reinforcement Learning

Degree: Master of Science

Year this Degree Granted: 2006

Permission is hereby granted to the University of Alberta Library to reproduce single copies
of this thesis and to lend or sell such copies for private, scholarly or scientific research
purposes only.

The author reserves all other publication and other rights in association with the copyright
in the thesis, and except as herein before provided, neither the thesis nor any substantial por-
tion thereof may be printed or otherwise reproduced in any material form whatever without
the author’s prior written permission.

Adam Murray White
9999 111 st
Edmonton, Alberta
Canada, T5K 1K3

Date:

Nothing in life is to be feared. It is only to be understood.

– Marie Curie.

University of Alberta

A STANDARD BENCHMARKING SYSTEM FOR REINFORCEMENT LEARNING

by

Adam Murray White

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree of Master of Science.

in

Department of Computing Science

Edmonton, Alberta
Fall 2006

University of Alberta

Faculty of Graduate Studies and Research

The undersigned certify that they have read, and recommend to the Faculty of Graduate
Studies and Research for acceptance, a thesis entitled A Standard Benchmarking System
for Reinforcement Learning submitted by Adam Murray White in partial fulfillment of
the requirements for the degree of Master of Science in .

Richard S. Sutton

Dale Schuurmans

Marek Reformat

Date:

To Patrick,
you have been a father, a big brother and my best friend

Abstract

We introduce a standard framework for benchmarking in reinforcement learning. Bench-

marks facilitate the comparison of alternative algorithms and can greatly accelerate research

progress. The University of California Irvine (UCI) machine learning database, for ex-

ample, was very effective for driving progress in supervised learning. Creating a similar

benchmarking resource for reinforcement learning is more challenging because reinforce-

ment learning agents and environments interact to generate observations, actions and re-

wards. The observations and rewards received by the learning agent depend on the actions;

these training data cannot simply be stored in a file as they are in supervised learning. In-

stead, the reinforcement learning agent and environment must be interacting programs. Our

benchmarking framework is a standard for communication between these programs. Our

protocol 1) guarantees exact reproducibility of the execution sequence of a learning exper-

iment, 2) enables plug and play interchanging of environments and agents, 3) is general

and powerful yet non-intrusive, 4) is easy to convert existing agents and environments to.

The current implementation features a light-weight software design with layered function-

ality, support for multiple programming languages and support for agent and environment

interaction across a network. We illustrate these advantages with examples from the newly

established University of Alberta Reinforcement Learning Library, which is based on our

protocol. We conclude by presenting benchmarks for the Grid-world, General Cat and

Mouse, Schapire Cat and Mouse, Blackjack, Sensor Network, GARNET, Acrobot, Ran-

dom, Delayed, Stochastic, and Non-stationary Mountain Car tasks.

Acknowledgements

There are a number of people that have helped me throughout my Masters and with my

thesis. First and foremost, I would like to thank my supervisor Rich Sutton. Rich has

helped me develop a desire to strive for only the best. I could never have imagined that I

would have the opportunity to work with such a world class researcher and a great human

being. Thank you Rich. Mark Ring has been a great mentor and helped me believe in

myself. He has always been there to talk about new ideas and given me great advice. I

would also like to thank my fellow lab mates for all their support and wisdom, specifically:

Brian Tanner, Cosmin Paduraru, Anna Koop, Andrew Butcher and Mark Lee.

Table of Contents

1 Introduction 1

2 Benchmarking in Other Fields 3
2.1 Hardware Benchmarks . 3
2.2 Numerical Analysis . 4
2.3 Supervised Learning . 5

3 Benchmarking in Reinforcement Learning 6
3.1 Reinforcement Learning . 6
3.2 Challenges to Benchmarking in Reinforcement Learning 10
3.3 Goals . 13

4 Related Work 15
4.1 RL-Interface . 15
4.2 CLS2 . 16
4.3 RLBench . 18

5 A Case Study on Standardization: The Mountain Car Problem 20
5.1 Mountain Car Software . 20
5.2 Mountain Car Formulations . 22

6 The RL-Glue Protocol 25
6.1 RL-Glue Functions . 27
6.2 RL-Glue Environments . 28
6.3 RL-Glue Agents . 29
6.4 RL-Glue Experiments . 29
6.5 RL-Glue Naming Conventions . 30
6.6 Practical Illustration . 31

6.6.1 Environment . 31
6.6.2 Agent . 32
6.6.3 Experiment . 34

6.7 Additional Functionality . 34
6.7.1 Data Management . 35
6.7.2 Super Agents . 35
6.7.3 Controlling Environment Dynamics 36
6.7.4 Standardizing Randomness . 37
6.7.5 Multiphase Learning and Evaluation 38

7 RL-Glue Software 39
7.1 Multi-language Support . 39
7.2 File Pipes, Codecs and Network Communication 42
7.3 Design Decisions . 43

8 RL-Library 45
8.1 Library Structure . 45
8.2 RL-Libary: the living entity . 46

9 Standardizing Mountain Car 48
9.1 Problem Specification . 48
9.2 Solution Methods . 49
9.3 Experimental Design . 51
9.4 Results . 51
9.5 Discussion . 52

10 A Benchmark Suite for Reinforcement Learning 54
10.1 Grid-world Benchmark . 55
10.2 General Cat and Mouse Benchmark . 55
10.3 Schapire’s Cat and Mouse Benchmark . 56
10.4 Blackjack Benchmark . 57
10.5 Sensor Network Benchmark . 58
10.6 GARNET Benchmark . 59
10.7 Acrobot Benchmark . 59
10.8 Delayed Mountain Car Benchmark . 60
10.9 Stochastic Mountain Car Benchmark . 61
10.10Non-stationary Mountain Car Benchmark 61

11 Conclusions and Future Work 63

Bibliography 68

A Task Description Language 72

List of Tables

5.1 Papers using Mountain Car test domain: (1) [Smart and Kaelbling, 2000],
(2) [Boyan and Moore, 1995], (3) [Wiewiora et al., 2003], (4) [Riedmiller, 2005],
(5) [Bagnell, 2004], (6) [Singh and Sutton, 1996]. (7) [Sutton, 1996]. An
“X” under a category label indicates that no description of the catagory was
provided in the paper. 23

9.1 Long-run benchmarks for Tile Sarsa(λ), Tile Q(λ) and Tile AC(λ) on
MC Random. 51

10.1 Grid-world benchmarks. The Grid Mines(20) environment uses a maze of
size 20 × 20. 55

10.2 The General Cat and Mouse Benchmark. The CM Random(10) environ-
ment uses a maze of size 10 × 10. 56

10.3 The Schapire Cat and Mouse Benchmark. 56
10.4 The Blackjack Benchmark. 57
10.5 The Sensor Network Benchmark. The Sensor Net(8,2) environment fea-

tures 8 sensors and 2 targets. 58
10.6 The GARNET Benchmark. 59
10.7 The Acrobot Benchmark. 60
10.8 The Delayed Mountain Car Benchmark. The MC Delay(20) environment

features observations that are delayed by 20 steps. 61
10.9 The Stochastic Mountain Car Benchmark. 61
10.10The Non-stationary Mountain Car Benchmark. The The MC Nonstat(50)

environment changes the force of gravity every 50 episodes. 62

List of Figures

3.1 The agent-environment interaction in reinforcement learning. 6
3.2 The Mountain Car domain. 7

6.1 The RL-Glue protocol. Arrows indicate function call direction. 25
6.2 The execution sequence that occurs during a call to RL episode. 26

7.1 The RL-Glue pipe and network communication architecture. Arrows indicate di-
rect language-to-language function calls. 40

7.2 The executions sequence that occurs during a call to RL step using pipe
communication. 41

9.1 Average number of steps to goal for Tile AC(λ), on MC Random, for various
combinations of α, β and λ. The bold line, in each plot, indicates β value that
achieved the best performance for each value of λ. 50

9.2 Learning-curve benchmarks for Tile Sarsa(λ), Tile Q(λ) and Tile AC(λ) on Moun-
tainCar RS. Results averaged over a 10-episode bin. 52

10.1 Schapire’s Cat and Mouse world: The cat and mouse can occupy any of the 31
blank squares (dark gray squares indicate obstacles), except for square (4,5) which
can only be occupied by the mouse. The cheese never moves. 57

10.2 Vlassis’s Discrete Sensor Network: A sensor network configuration with eight
sensors (X) and two targets. Adapted from [Littman et al., 2005]. 58

10.3 The Acrobot. Adapted from [Sutton and Barto, 1998]. 60

Chapter 1

Introduction

Benchmarks allow researchers to compare alternative approaches and can help focus and

thus accelerate research progress in a field. A benchmark assigns a quantitative score to

the performance of an algorithm or method. This scoring allows researchers to rank meth-

ods against one another and determine each method’s relative strengths and weakness in a

variety of situations. A ranking, produced by a benchmarking system, can establish a base-

line for theoretical advances. The performance distinction provided by benchmarking also

allows researchers to select suitable algorithms for real-world applications, making a field

more attractive to industry.

In reinforcement learning, researchers are often forced to report results on environments

that have been specifically designed for their algorithms, and researchers must provide com-

parisons to implementations of algorithms found in the literature. Until now, comparing

results from different publications and recreating results from the literature has been prob-

lematic because there are few standard software implementations of classic test problems;

there is disagreement on the performance metrics that should be collected or the evaluation

methodologies that should be used during testing. Researchers who wish to compare their

new algorithm(s) to existing results must often re-implement everything. Comparisons of

this kind can be inaccurate and often not empirically verifiable.

In supervised learning, however, research progress is guided by the University of Cal-

ifornia Irvine (UCI) Machine Learning Repository. The UCI repository is the primary

database of standardized benchmark problems for supervised learning. The UCI reposi-

tory contains thousands of data sets in a free online database. The UCI database makes it

1

possible for researchers to evaluate new learning algorithms on the same data sets used to

evaluate algorithms in the literature–UCI guarantees exact reproducibility of results. We

describe the UCI machine learning repository in more detail in Section 2.3.

The success of the UCI repository is difficult to replicate in reinforcement learning be-

cause reinforcement learning agents and environments interact to generate observations,

actions and rewards. The agent selects actions based on its current observation of the en-

vironment and the reward. The environment’s state transitions are governed by the action

selected by the agent. Each unique experience trajectory corresponds to a unique sequence

of these agent-environment transactions. It is not possible to store the environmental data

responses for all possible state action combinations; the dynamics of the environment can-

not be encoded in a static data set as they are in supervised learning.

In reinforcement learning, the learning agent and environment must be interacting pro-

grams. The agent and environment program must exchange actions, observations and re-

wards, in sequence, thousands of times over the course of a learning experiment. The com-

munication between the agent and environment must be standardized so that a benchmark

system can be established; a communication protocol can facilitate such standardization. If

the agent and environment communicate according to a standard protocol, we can exactly

reproduce the execution that occurs during a learning experiment. Result reproducibility is

the main objective of a benchmarking system for reinforcement learning.

Our benchmarking framework is a standard for communication between the agent and

environment programs. We introduce our benchmarking framework RL-Glue: a commu-

nication protocol for agent and environment interaction based on a function interface. We

also introduce the University of Alberta Reinforcement Learning Library (RL-Library): a

library of code based on our protocol. We illustrate how the current implementation of our

protocol directly addresses many of the challenges to standardizing empirical analysis in

reinforcement learning with several benchmarks on examples from RL-Library.

2

Chapter 2

Benchmarking in Other Fields

Benchmarking has accelerated research progress in computer hardware design, numerical

analysis and supervised learning. The hardware community was one of the first to establish

a standard benchmarking system to rank advances in hardware architecture designs. The

supervised learning community later established a database of test domains and a standard

interface for benchmarking regressions and classification algorithms. Hardware and super-

vised learning benchmarks demonstrate how important benchmarking is to advancing the

state-of-the-art in a field and also highlight the variety in benchmarking methodologies.

2.1 Hardware Benchmarks

Hardware benchmarks were established to provide researchers with a quantitative rank-

ing of different computer chip designs and hardware architectures. It is almost impossible

to identify the value of a new data bus or a new Ethernet switch without a benchmark

performance number. To benchmark a circuit design, memory scheme, cluster commu-

nication architecture or a supercomputer, one must run a benchmark program from an

online database maintained by organizations such as Standards Performance Evaluation

Corporation (SPEC) [Powers et al., 1995] or National Aeronautics and Space Administra-

tion (NASA). These programs produce several numerical benchmarks including CPU time,

memory usage, CPU utilization and IO bandwidth, etc. These benchmarks summarize

a hardware system’s performance relative to any other system that has publicly available

statistics on the same benchmark program. The benchmark results are typically distributed

and maintained by the distributors of the benchmarking programs. Using this simple inter-

3

face, researchers can benchmark newly purchased hardware and new developments against

machines from around the world.

Hardware benchmarks developed early out of the need for comparison. Hardware re-

searchers must often present performance results on the standard benchmarks to illustrate

the contribution of new advances to conference and journal reviewers. Hardware bench-

marks provide an excellent example of how effective benchmarking can be, given a simple

user interface and publicly available test domains and benchmark results. This universal

availability of benchmarks has stimulated rapid development and has become a integral

part of the hardware community.

In reinforcement learning, the state-of-the-art has steadily advanced based on empiri-

cal comparisons and theoretical convergence and complexity results. However, as the field

matures, benchmarks will be needed to evaluate new advances against the multiplicity of

competing methods to further research progress and promote more application driven re-

search in reinforcement learning.

2.2 Numerical Analysis

Benchmark based evaluation has also been successfully employed in numerical linear al-

gebra. In numerical analysis, the performance of an algorithm encoded in a program must

be ranked against other programs. An algorithm is benchmarked on a number of data sets

available online. A benchmark consists of several runtime summary statistics such as mean

squared error, number of arithmetic operations and execution time. The performance of the

algorithm on the standard data sets forms a benchmark providing a ranking against other

methods with publicly available benchmarks on the same data sets. For instance, the ef-

ficiency of a linear system solver can be benchmarked against others in the literature by

testing several sample problems from Matrix Market [Boisvert et al., 1997].

The goals of the developers of Matrix Market are similar to that of the reinforce-

ment learning community: define the state-of-the-art, characterize industrial-grade appli-

cations, promote research through challenge problems, provide a baseline performance for

researchers and provide a means to evaluate new algorithmic developments. RL-Glue and

RL-Library were designed to address many of the goals for the reinforcement learning com-

4

munity.

2.3 Supervised Learning

UCI Machine Learning Repository was established in 1995, to address many of the chal-

lenges that reinforcement learning faces now. At that time, supervised learning had devel-

oped into a mature field with a significant base of algorithms, theories and practical suc-

cesses. However, like reinforcement learning, many theoretical and practical problems re-

mained largely unsolved. The success of benchmarking in other fields promoted researchers

at UCI to develop a database of classification problems that would serve as the standard

set of test problems for supervised learning and regression algorithms. Today, the UCI

repository contains thousands of data sets that measure an algorithm’s learning speed, data

efficiency, quality of classifier learned and amount of over fitting [Newman et al., 1998].

The interface to the UCI test sets are simple: learning algorithms are trained on a static set

of observation response pairs, then performance on the test set is measured. This simple

data-file interface is one of the reasons why the UCI repository has been so successful in

standardizing empirical analysis in supervised learning.

The UCI repository has become the main resource for supervised learning test beds

and is continually growing due to significant community support. UCI makes it easier to

determine what problems supervised learning algorithms should be tested on. The super-

vised learning conferences and journals expect new advances to illustrate performance on

the UCI data sets. The UCI repository consolidated a large number of learning approaches

and methodologies into a single collective community and is partially responsible for the

renewed interest in supervised learning methods in the last decade.

The data file interface between learning algorithms and test domains simplifies many of

the difficulties involved in designing a benchmarking system. The communication protocol

between learning agent and problem, selection of standard performance measures and com-

patibility between different classes of learning algorithms is implicitly standardized by the

data-set evaluation methodology. Recreating the success and impact of the UCI repository

in other fields can be difficult.

5

Chapter 3

Benchmarking in Reinforcement
Learning

In reinforcement learning, we want to benchmark agent and environment programs that

interact over a number of time steps. Benchmarking the performance of programs that

alter their behavior at runtime based on the history of interactions introduces a number

of standardization challenges. In this chapter, we describe these challenges in detail and

explicitly list the goals and ambitions for benchmarking in reinforcement learning. We

begin with an introduction to the reinforcement learning problem.

3.1 Reinforcement Learning

The reinforcement learning text contains a thorough explanation of many advanced rein-

forcement learning topics [Sutton and Barto, 1998]. We only provide a brief introduction to

the basic reinforcement learning concepts here to give the reader the necessary background

for the work presented in later chapters. Discussion of more advanced reinforcement learn-

ing algorithms can be found in the references.

Agent

Environment

action
at

observation
ot

reward
rt

rt+1
ot+1

Figure 3.1: The agent-environment interaction in reinforcement learning.

6

In reinforcement learning the agent learns through interaction with an environment,

from the consequences of action, rather than from explicit teaching. The agent interacts

with its environment by selecting actions based on its observation of the environment and

a reward signal. The reward is a scalar value produced by the environment that provides a

numerical score for the agent’s behavior. In the reinforcement learning framework (see Fig-

ure 3.1), the agent and environment interact continually, exchanging observations, rewards

and actions. Each interaction is called a time step. In an episodic task, the sequence of time

steps is called an episode.

Consider the Mountain Car task introduced by Moore [1990]. In the Mountain Car do-

main, an agent must drive an underpowered car up a steep mountain road. The difficulty is

that the force of gravity is stronger than the car’s engine. Even at full throttle the car cannot

accelerate up the slope. The car’s movement is described by two continuous observation

variables: position and velocity of the car. There is one continuous action, the control vari-

able for the angle of the acceleration pedal. A reward of −1 is assigned on every step,

until the car reaches the goal region on the east end of the valley (termination occurs). The

agent’s objective is to drive out of the valley as fast as possible—maximize reward.

GOAL

Figure 3.2: The Mountain Car domain.

The temporal sequence of agent-environment interactions that occurs during an episode

of the mountain car task can be summarized as follows: on the first time step of an episode

the environment positions the car at the bottom of the valley with zero velocity and returns

the initial observation (o0). The agent then selects an action (a0) based on the initial obser-

vation. On the next time step the environment updates the car’s position and velocity based

on the agent’s action and produces a new observation and a reward (o1, r1). The agent

7

then selects a new action (a1) based on it’s new observation (o1). This execution sequence

continues until the car reaches the goal state.

In the Mountain Car Problem, the environment can transition into the goal state produc-

ing a terminal observation (oT). In a continuing task, however, the agent and environment

interact forever, i.e., T = ∞. The full temporal sequence that occurs during the agent and

environment interaction proceeds as follows:

o0, a0, r1, o1, a1, . . . , rT−1, oT−1, aT−1, rT , oT (3.1)

The Markov Decision Process (MDP) formalism, on which most reinforcement learning

theory is based, assumes the agent can observe the complete state of the environment on

every time step. The next state and reward depend only on the current state and reward,

independent of the temporal sequence that leads to the current state. In many interesting

domains, however, the agent observes partial information about the state of the system. In

this case, the agent must estimate the values and select actions based on observations o ∈ O

of the underlying state of the MDP. An observation that is equal to the state of the MDP

is a special case of an observation. In this work we consider the more general framework

of partially observable MDPs (POMDP) and use the term “state” only when describing the

theoretical basis of reinforcement learning and “observation” otherwise.

In the MDP framework, the agent selects actions to maximize its cumulative reward

over time. The agent’s policy provides a mapping from each state of the MDP, s ∈ S, to

an action a from the set of actions available to the agent in state s (denoted A(s)). Most

reinforcement learning algorithms improve the agent’s policy based on an estimate of the

value function, which is a mapping from states to the expected discounted sum of future

rewards given an initial starting state s and policy π:

V π(s) = Eπ

{ ∞∑
k=0

γkrt+k+1|st = s

}
where γ ∈ (0, 1] is a discounting factor and t is the current time step. Similarly, the state-

action-value function Qπ(s, a) is the expected sum of future rewards starting in state s,

taking action a and then following π thereafter.

Many reinforcement learning methods are based on temporal difference (TD) learning

[Sutton and Barto, 1998]. TD methods update the value of each state V (s), as they are

8

visited based on the estimated value of the next state and the reward (rt+1): updating a

guess with a guess. At time t:

V (st) = V (st) + α[rt+1 + γV (st+1)− V (st)]

where α controls the rate of learning. TD learning algorithms can learn the state-action-

value function Q(s, a) and update the policy π to solve control tasks, such as Mountain

Car, by selecting the action a that maximizes the state-action-value for all s ∈ S.

Some tasks have high-dimensional or continuous-valued states. The algorithms de-

scribed above are based on table lookup, they store the value of each state in a table

indexed by the state label. In the Mountain Car task, a tabular value function cannot

be used to store the value of each state because the state of the environment is com-

prised of two real-valued numbers. A function approximation method handles large or

infinite state spaces by generalizing between states that are deemed similar and finely

discriminating between states that are unrelated. Many different function approximation

methods are used in the literature such as neural networks, radial basis functions, Kan-

erva coding, state aggregation and statistical methods like Gaussian Processes, see, e.g;

[Engel et al., 2005, Sutton and Barto, 1998]. Many reinforcement learning methods, how-

ever, use linear tile coding for function approximation. Linear function approximators are

easy to implement, the speed of learning scales linearly with the number of features, and

the resultant representation is easy to analyze. Tile coding discretizes a continuous input

into binary feature vectors by partitioning the state space with multiple overlapping tilings.

Using this representation, the TD learning algorithms can be extended to learn the values

of approximated states.

The reinforcement learning model of intelligence is simple yet expressive, borrow-

ing heavily from well-established fields such as psychology, cognitive science and neu-

roscience. Animal learning experiments have shown that small animals such as mice and

larger animals with more complex brains can learn to complete various tasks with a sim-

ple reward schedule like navigating a maze or pushing a button for food [Hafner, 2005,

Niv et al., 2005]. At the neural level, reinforcement signals have been shown to have strong

links with intelligent behavior [Montague et al., 1995]. Reinforcement learning algorithms,

9

such as TD learning, represent one of the prominent models for reward-associated learning

processes in the brain [Niv et al., 2005]. More practically, reinforcement learning methods

have been successfully applied to many large scale and complex control tasks, such as eleva-

tor control [Crites and Barto, 1996], automated dialog system control [Singh et al., 2002],

stock trading [Nevmyvaka et al., 2006] and robotic soccer [Stone and Sutton, 2001]. Model

based reinforcement learning methods have been successfully used to fly a helicopter through

a variety of maneuvers while upside down [Ng et al., 2004]. This feat is even more im-

pressive when we consider that no human operator has been able to replicate some of the

maneuvers the agent learned. Finally, the world’s strongest backgammon program, TD-

gammon [Tesauro, 1995], used reinforcement learning methods to learn how to play the

game at a grand-master level. TD-gammon is now considered the best backgammon player

in the world. It has not only beaten the best human players, but its moves have produced

new strategies that have been adopted by grand-masters due to their tactical superiority.

The work on TD-gammon and inverted helicopter control illustrates how trial and error

learning can be used to learn complex polices. However, there are still many open research

challenges in reinforcement learning, such as reducing the variance of off-policy methods

[Precup et al., 2005], developing new continuous action selection methods [Williams, 1992],

speeding convergence of online learning [Engel et al., 2005], developing more efficient ex-

ploration methods [Simsek and Barto, 2006] and improving function approximation tech-

niques [Boyan and Moore, 1995, Sutton, 1996]. These problems are all related to one of the

open challenges in reinforcement learning research: scaling reinforcement learning meth-

ods to solving applications from industry. Could the same theory and algorithms used to

solve Mountain Car be extended to controlling water flow in a hydroelectric dam? Estab-

lishing a standardized methodology for ranking the relative strengths of different algorithms

can help researchers begin to answer these kinds of questions.

3.2 Challenges to Benchmarking in Reinforcement Learning

In reinforcement learning, a communication protocol is needed to query the agent and en-

vironment programs and efficiently communicate data between the two. There are a large

variety of communication schemes available. Maximizing execution efficiency and repre-

10

sentational generality in a single architecture involves a number of design decisions and

tradeoffs.

The hierarchy of control must be carefully designed to support a wide variety of learning

agents. The agent might call the environment to acquire the new observation and reward,

alternatively the environment could control the execution of the agent. Perhaps both the

agent and environment programs could be connected to unique communication modules

that perform a “handshake” operation and exchange data. We could implement a decen-

tralized scheme where neither the agent nor environment program has calling control. Our

communication protocol must be designed to facilitate rigid empirical analysis in a general

fashion.

The identification of the modules in our system architecture also demands careful con-

sideration. An agent, environment and central control module seem like a natural base on

which to build a benchmarking system, but is this sufficient? There are many other com-

ponents that could be added to the system to specialize its functionally. A “rules” module

could be added for game applications. A “coordinator” module could also be used for

multi-agent tasks. Perhaps the reward module should be separated from the environment

to allow more complex reward schedules. Again, we must take care to balance redundancy

with expressive power and generality with specialization.

An agent and environment communication protocol must not only determine execution

schedules but also make the data necessary for learning available to the agent program dur-

ing a learning experiment. The agents observation of the environment may be prohibitively

large requiring significant computational resources. For example, it may not be possible

to efficiently pass sonar, laser range finder and vision data between the agent and the envi-

ronment on every step. Alternatively, it may be very costly for the environment to produce

new observations. The amount of data communicated between the agent and environment

must be minimized while avoiding expensive calls to environment functions. Furthermore,

a learning agent might exploit information about the environment’s dynamics to accumulate

more reward if it could access environment data. Should the agent be allowed to observe

the randomness of the environment, the hidden states or the reward function, for example?

The communication protocol should provide the agent with all the information necessary to

11

learn without revealing data that allows the agent to “cheat”.

It seems quite natural to expect a learning agent to perform well on a number of related

tasks in similar domains. We expect a tennis-playing agent to also play ping-pong or bad-

minton adequately. However, this implicit similarity is not realized in the strict syntax of

programming languages. If the dynamics of a task are changed, agent programs should still

be capable of learning. The specifics of the environment, such as the observation dimen-

sions and ranges and the number and types of actions, could be communicated to the agent

so that one algorithm can be executed on multiple environments without changing source

code. The protocol should provide the agent with a problem description without revealing

information about how to actually solve the problem. What and when information is passed

by a protocol determines the generality of agent programs that can be benchmarked.

Earlier attempts to establish benchmarking systems have faced some opposition because

of dependencies on particular programming methodologies and restrictions on agent and

environment format. The communication protocol at the heart of a benchmarking system

should not be dependent on popular programming paradigms; researchers should not have

to learn a new programming language to use a benchmarking system. Furthermore, forc-

ing researchers to implement mandatory interface code makes it difficult to convert existing

agents and environments to a new standard. Previous attempts to standardize benchmarking

illustrate the difficulties associated with standardizing the implementation language for re-

inforcement learning. It is difficult to select a single programming language that is ideal for

all classes of reinforcement learning agents or environments. A benchmarking system that

supports a number of different programming languages is more likely to gain community

support.

Ideally, a benchmarking system for reinforcement learning could also be used to stan-

dardize evaluation in competitions. In past reinforcement learning competitions, partici-

pants enter a number of agent programs which are later evaluated on several test domains.

Competitions introduce a number of additional design challenges. A benchmarking sys-

tem used for competitions must be efficient and also be light-weight so that existing agent

software can be easily converted to work with the system. Competitions also must deal

with the tradeoff between learning efficency and computational complexity. Is an algorithm

12

that converges to the optimal policy in 20 episodes better than one that converges in 2000

episodes, if the later runs in one-thousandth the time of the former? The benchmarking sys-

tem needs to provide performance measurements that allow us to address these questions.

Finally, the experiment and environment code must be separated from the agent program

to ensure fairness in competition: each learning agent should be tested under the same ex-

perimental settings and participants should not be allowed modify the problems to improve

performance. In general, we must standardize as much of the evaluation process as possible

so that winners can be decided fairly.

Numerous technical issues arise when implementing a communication protocol in soft-

ware. When a new version of the software is released, what should be done with existing

agents and environments? A versioning system must be established so compatibility is-

sues do not retard the development and growth of the benchmarking system. Furthermore,

multi-language support introduces a number of software implementation challenges, such

as conversion of data types and data structures between languages. How does one convert

an observation represented in programming language to a different data type in another lan-

guage in a general fashion? It is important that these software implementation issues not

compromise the design goals of the benchmarking system.

3.3 Goals

There are several goals that motivate the development of a benchmarking system for rein-

forcement learning. These goals represent a researcher-oriented view of benchmarking. A

benchmarking system for reinforcement learning should:

• establish a suite of standard versions of benchmark problems

• allow researchers to replicate results from the literature

• remove the need to re-implement others’ code

• set performance baselines for algorithm development

• facilitate accurate comparisons between algorithms on standard benchmarks

13

These goals can be achieved in a variety of ways. Our system attempts to satisfy a num-

ber of more concrete sub goals to achieve the goals listed above. The agent-environment

communication protocol has been designed to:

• exactly reproduce the execution sequence of a learning experiment

• provide plug and play interchanging of agents and environments

• support a large variety of reinforcement learning algorithms

The above goals should not be compromised by the software implementation of the

benchmark system. Practical implementation issues and software engineering principles

must be balanced with the design principles of the communication protocol. Our benchmark

system has been implemented to:

• support any implementation language for agent and environment programs

• allow easy conversion of existing agents and environments to the RL-Glue standard

• provide a light-weight interface with minimal mandatory agent and environment code

• be computationally efficient and easy to use

RL-Glue and RL-Library are designed to achieve all these goals. We have devel-

oped a benchmarking system and web-based software library that balances simplicity, effi-

ciency, flexibility and expressive power. In the next chapter, we provide a case study of the

Mountain Car problem highlighting the standardization and evaluation challenges discussed

above.

14

Chapter 4

Related Work

Establishing a standard communication protocol among agents and environments and stan-

dardizing performance measurements has been well studied in reinforcement learning and

multi-agent systems. In reinforcement learning, several research efforts have focused on

developing a standard agent-environment communication protocol to facilitate the estab-

lishment of benchmarks. In this section, we survey three previous efforts to establish a

standard interface in reinforcement learning. We discuss each system’s approach to the

evaluation and standardization issues in reinforcement learning and describe the differences

between these implementations and RL-Glue. Much of the design of RL-Glue is built upon

the groundwork laid down by these earlier specifications.

4.1 RL-Interface

The specification and implementation of RL-Glue was largely influenced by the long de-

velopment history of the RL-Interface [Sutton and Santamaria, 1996]. RL-Interface was

developed by Richard Sutton in 1995. RL-Interface has gone through several major transi-

tions over the past ten years. The history of RL-Interface provides several useful insights:

the benefits of object-oriented programming, the choice of implementation languages and

required functionality. We describe each iteration of the RL-Interface briefly, providing an

account of how the RL-Interface’s development shaped RL-Glue.

The first major version of RL-Interface used object-oriented programming to implement

a function-based interface between agents and environments. The object-oriented approach

facilitated the establishment of hierarchies of agents and environments. Inheritance was

15

used to specify various attributes and generic methods of agents and environments com-

mon to all reinforcement learning algorithms (for example, the agent-step method).

The object-oriented framework facilitates easy plug and play of agents and environments

without additional compiling and allows the interfaces functionality to be extended with

minimal effort (towards the multi-agent reinforcement learning problem, for example). The

RL-Interface had implementations in C, C++ and LISP. This version of RL-Interface had

much of the functionality of RL-Glue, but did not provide a control module: users needed to

rewrite experimental code (experiment program in RL-Glue) for every agent-environment

pair. The RL-Interface was a mature piece of software, however, the reinforcement learning

community seemed reluctant to embrace a standard benchmark system at the time.

The next major evolution of the RL-Interface, renamed the “Reinforcement Learning

Toolkit” (RL Toolkit), employed the Python scripting language to implement an object-

oriented and purely functional communication interface. RL Toolkit logically separated

the system into agent, environment and control module. Object-oriented programming was

made optional to increase code readability and decrease execution time. The functional-

ity of RL Toolkit is similar to RL-Glue, but, lacks several important features. RL Toolkit

did not provide any means for specifying trajectories of experience, distinguishing between

training and testing phases of evaluation nor implementing general task-independent agents.

RL Toolkit also illustrated how difficult it is select a single programming language for em-

pirical evaluation in reinforcement learning. The establishment of a language independent

system seems critical to the success of establishing a benchmark standard for the reinforce-

ment learning community.

4.2 CLS2

Other than RL-Interface, Closed Loop Simulation System (CLS2) was one of the first

publicly distributed interfaces for reinforcement learning. CLS2 was developed by the

Neuroinformatics Group at Osnabrueck in 2003 [Riedmiller et al., 2003]. CLS2 allows a

single controller (agent) and plant (environment) to communicate through a standard set

of functions. The environment specifies a set of functions for initialization, shutdown and

the beginning and end of an episode. The environment also implements next state and

16

get observed state functions. The next state method specifies the dynamics of

the environment, while the get observed state method returns the observation of the

environmental state. The agent specifies a similar set of functions including a get action

method which specifies the learning rule and action selection policy. A control loop calls

the environment and agent in turn, passing the observations and actions back and forth

throughout the course of an episode until termination. This architecture separates the system

into an agent, an environment and a central controller that calls the agent and environment

objects.

The software implementation of CLS2 allows researchers to test agents on environ-

ments written in C++. The user interacts with the system through a configuration text

file, specifying various parameters for the learning experiment (for example, number of

episodes, statistics to collect and training scheme), agent name, environment name and a

number of graphics options. The user also specifies the range of starting states, legal states

and termination states (as sets) in the configuration file. The system parses the configuration

file, performs a learning experiment and displays a graphical interpretation of the problem.

CLS2 is similar to RL-Glue in its overall design and approach to standardizing commu-

nication between agents and environments: a central module that calls functions specified

by the agent and environment controls interaction. This interface guarantees the format of

agents and environments and standardizes the communication during a learning experiment.

CLS2 is, in fact, based on RL-Interface.

CLS2 differs from RL-Glue in several important ways. The user is not allowed to

directly interact with or control the central-control module. The user must interact with

the system through a configuration file, limiting the system to a finite set of configurations

and execution modes defined by the configuration language. In RL-Glue the user inter-

acts with the system through the experiment program, providing more flexibility. CLS2

employs a configuration file to specify starting (valid starting states of an episode), work,

illegal and termination states. This design requires the experimenter to have some knowl-

edge of the environment dynamics (particularly the environmental state) in order to use the

system. This design also allows a user to specify termination conditions that do not agree

with the environment dynamics, making the system less robust. Finally, the software im-

17

plementation of CLS2 forces researchers to write the agent and environment code in C++.

Ideally, researchers could test new agents written in one language on a number of envi-

ronments written in different languages. The architecture of RL-Glue allows agents and

environments to be written in any programming language.

4.3 RLBench

RLBench was developed by Langford and Bagnell in 2004. RLBench standardizes commu-

nication between agents and environments through an I/O interface. Agents and environ-

ments have no standard form; the system only requires that environment processes be given

a constant stream of data with a particular format [Langford and Bagnell, 2004]. The agent

writes states, random seeds and actions in ASCII to a buffer on each step of an episode.

The environment reads the data in, updates its internal state and writes the next observation,

reward and state to the buffer. This I/O interface removes the need for a central interface

or driver program to specify and conduct a learning experiment. The system standardizes

the mechanics of the environment by defining several generative models that dictate the

format and interval of data delivery from the agent. In this sense, the control module and

experimental setup (configuration file in CLS2 and experiment program in RL-Glue) have

been amalgamated into the agent in RLBench.

RLBench uses several generative models to implement different testing paradigms. The

most expressive and specific model is the Deterministic Generative model. In this model,

the environment expects a state, random seed and action to be sent across the pipe on each

time step. The environment then returns the next observation, reward and state. The De-

terministic Generative model is used to generate specific sequences of experience for batch

training or model building. For example, the agent can experience the same trajectory

through the state space by specifying a starting state and random seed at the beginning of

every episode. In the Generative model, the environment expects a state and action and

returns the next observation, reward and state on each time step. This model is used to

generate specific sequences of experience with no control over the stochasticity of state

transition dynamics. Finally, in the Trace model, the environment expects an action and

returns the next observation and reward on each time step. The Trace model encapsulates

18

the reinforcement learning problem in its simplest form. Environments produce next ob-

servations and rewards based on the action selected by the agent. This model provides no

control over randomness or the visitation of states in the state space.

RLBench introduced several novel functionalities that are now part of RL-Glue. The use

of different generative models to specify trajectories of experience inspired the env set

state and env set random seed functions in RL-Glue. RLBench’s I/O communi-

cation scheme also inspired the pipe interface RL-Glue uses to facilitate multi-language

support.

However, the I/O interface of RLBench differs from the functional interface specifi-

cation of RL-Glue in several important ways. RLBench does not provide any mechanism

for distinguishing between training and testing phases. RL-Glue supports this two-phase

evaluation by signaling the end of training to the agent by a call to the agent’s agent freeze

function. The amalgamation of control and experimental setup into the agent in RLBench

places more implementation burden on the agent write. The learning agent and experi-

mental setup should be independent and separable. The experiment program in RL-Glue

is responsible for experimental setup and presentation of results, removing unnecessary

complexity and code redundancy in the agent writing process.

19

Chapter 5

A Case Study on Standardization:
The Mountain Car Problem

Since it was first introduced by Moore in 1990, the Mountain Car control problem has

been widely used to evaluate advances in learning agents. Mountain Car is interesting

because it highlights the issues caused by real-valued observations. A learning agent must

use a function approximator to discretize the state space. Mountain Car is also interesting

because a successful control policy must drive the car backwards, up the other side of the

valley, to give the car enough momentum to drive forwards up the hill. The learning agent

must learn to move the car away from the goal, incurring negative reward, to reach the goal.

The Mountain Car problem nicely highlights the current standardization challenges in

reinforcement learning empirical evaluation. There is no standard Mountain Car software

and also no consistent problem formulations in the literature. This makes it difficult to

compare results across publications or recreate existing results. In this chapter, we sur-

vey several Mountain Car software packages and several papers that use Mountain Car for

empirical evaluation, highlighting these standardization problems.

5.1 Mountain Car Software

Mountain Car has been referred to as one of the standard test problems for reinforce-

ment learning [Wiewiora et al., 2003, Smart and Kaelbling, 2000]. This is misleading be-

cause there is little agreement in the literature on the car dynamics or the reward function.

A brief search yielded five software packages that implement different variations of the

problem. Let us consider each implementations environmental dynamics, ignoring agent-

20

environment communication and control code provided with the software.

The environment distributed by Sutton implements the dynamics specified by Sutton

and Barto [1998]. This version differs from Moores problem specification in the action

space: Sutton discretizes the actions to full reverse, neutral and full forward, while Moore

defines the actions as continuous quantities. Furthermore, Sutton employs random start

states, −1 reward per time step and a goal state defined as an position greater than the top

of the hill with any velocity [Sutton, 2000]. The Mountain Car environment in the CLS2

software package, by the Neuroinformatics Group at Osnabrueck, implements the same car

physics as Sutton. The Osnabrueck implementation, however, uses an initial car position

at the bottom of the valley with zero velocity and a reward of 0 on every time step except

in the goal region, where the reward in the goal region is a function of the car’s velocity

[Riedmiller et al., 2003]. The Mountain Car environment by Wingate [2004] implements

similar dynamics to Sutton’s, but the reward function is 0 on every time step and +1 if the

car stops at the top of the hill. Furthermore, the car’s initial position is the middle of the

valley with slightly negative initial velocity [Wingate, 2004]. The Mountain Car software

in the Massachusetts Reinforcement Learning Repository is based on the Sutton implemen-

tation and is thus identical [Mahadevan, 1997]. Finally, Szepesvari’s version of Mountain

Car implements the same dynamics as Sutton. However, the car is initially positioned in

the middle of the valley with a low magnitude random velocity and the reward is 1 minus a

function of the cars velocity if the car slows just below the top of the hill, +1 if the car is

past the top of the hill, −1 if the car drives off the west end of the valley and zero otherwise

[Szepesvari and Smart, 2004].

Aside from the Sutton and Mahadevan versions, all implementations of Mountain Car

differ in either the initial state of the environment, the reward function, or the environment

dynamics. Furthermore, we only compared the environment code, not the experimental

setup or the interface between the agent and the environment. Results produced by the Sut-

ton and Massachusetts implementations can not be fairly compared if the control code per-

formed a different trailing schedule, used different starting states, or did not collect similar

performance measures. This variety across implementations raises a number of standard-

ization questions. Which implementation should be considered the standard? How can one

21

decide what version to use when testing new algorithms? Should each researcher imple-

ment their own code based on experimental descriptions in the literature? Unfortunately,

the variety of performance measures and problem descriptions found in the literature make

empirical comparison of results on Mountain Car even more complicated than the software

differences mentioned above.

5.2 Mountain Car Formulations

Previous Mountain Car formulations suffer from the same standardization issues that make

comparing different software implementations difficult. The physical equations governing

the car’s movement are not often presented. Some papers do not fully specify the exper-

imental conditions, such as the number of episodes, averaging scheme or initial and goal

states. Some papers reference problem specifications from previous works and these earlier

papers reference even older papers. This forces the reader to follow a chain of references

for the full problem specification. This kind of chain referencing can cause information loss

and confusion over which version of the problem is considered the standard. However, one

of the biggest obstacle to comparison of results across publications is the variety of per-

formance measures used in papers. Number of steps, cumulative reward, average reward,

episode return, execution time and mesh plots of the approximated value and state-action-

value functions are often presented but rarely consistently across papers. This inconsistency

gives results generated on different versions, with different performance measures, little sci-

entific weight. Worse, some papers directly compare results achieved on one version of the

Mountain Car problem to results presented in previous works. If we have no mechanism

for determining the compatibility of these different versions, how can such comparisons be

made fairly?

I have surveyed several well-known works that use Mountain Car to benchmark ad-

vances in learning techniques: Smart and Kaelbling [2000] on instance based locally weight-

ed regression algorithms, Boyan and Moore [1995] on function approximation, bootstraping

and off-policy learning, Wiewiora et al [2003] on introducing domain knowledge to clas-

sical learning algorithms, Riedmiller’s [2005] work on combining Q-learning and Neural

network function approximation, Bagnell’s [2004] thesis on algorithms for noisy robotic

22

cit
at

io
n

ph
ys

ica
l e

qu
at

io
ns

in
itia

l c
on

di
tio

ns
Re
w
ar
ds
:

F(
ve

lo
cit

y)
 ε

 g
oa

l
+1

 ε
 g

oa
l

-1
 p

er
 s

te
p

0
pe

r s
te

p
Ac
tio
ns
:

di
sc

re
te

co
nt

in
uo

us
Ev
al
ua
tio
n:

st
ep

s
to

 g
oa

l
va

lu
e

fu
nc

tio
n

pl
ot

gr
ad

ie
nt

 p
lo

t
ot

he
r

ba
se

d
on

 b
es

t p
ol

icy
ba

se
d

on
 fi

rs
t e

pi
so

de
va

ry
in

g
α

an
d
λ

6
5
4
3
2
1

✓
✓

✓

✓

✓ ✓

X
X
X

✓

✓
✓

✓

X
X

✓

✓

✓

✓
✓

✓

✓

✓

✓

✓
✓

✓
✓

✓

✓

✓
7 ✓ ✓ X ✓ ✓ ✓

Table 5.1: Papers using Mountain Car test domain: (1) [Smart and Kaelbling, 2000],
(2) [Boyan and Moore, 1995], (3) [Wiewiora et al., 2003], (4) [Riedmiller, 2005], (5)
[Bagnell, 2004], (6) [Singh and Sutton, 1996]. (7) [Sutton, 1996]. An “X” under a cate-
gory label indicates that no description of the catagory was provided in the paper.

23

systems, Singh and Sutton [1996] on the effectiveness of replacing eligibility traces and

Sutton’s [1996] work on reinforcement learning and linear function approximation. Table

5.1 summarizes the information presented in each of the surveyed papers. I examined six

main categories: whether the work references a problem description or experimental setup

in previous work, if the physical equations governing the car’s movement are specified, if

the initial conditions are specified, the reward function, the action type and performance

measures used to evaluate learning.

Of the six papers summarized in Table 5.1, only two use and reference Moore’s problem

formulation. Bagnell’s work does not clearly identify whether he was using Moore’s version

of Mountain Car or a variant used by Sutton [Sutton, 1996]. Four of the papers provide no

citation and no formal description of the problem dynamics. Smart and Kaelbling cite the

Singh and Sutton paper, which in turn cites Moore’s thesis. Two papers do not describe

the experimental setting or how the data was collected, while the others provide only brief

descriptions. Four papers plot the average number of steps to goal per episodes, whereas

Boyan & Moore, Bagnell and Sutton present the learned value function, which is difficult to

use in a comparison of performance. Riedmiller presented several metrics based on specific

policies, making it difficult to assess the speed of learning. The Sutton paper (7) made

direct comparisons to the results presented in Boyan & Moore paper (2). Neither (2 and 7)

provided a problem description, referenced a formulation of the problem from the literature

or provided a reference to the software implementation of the problem.

24

Chapter 6

The RL-Glue Protocol

Our communication protocol connects four components (see Figure 6.1): agent, environ-

ment, experiment programs and the RL-Glue function interface that connects everything

together. The experiment program specifies the experimental settings for a learning experi-

ment and controls the execution of RL-Glue. The RL-Glue interface controls the execution

sequence that occurs during an episode; it is responsible for calling the agent and environ-

ment programs and for communicating data between the two on every time step. The agent

program specifies the learning algorithm and action selection policy, while the environment

contains the problem specification, state transition dynamics and the reward function. The

execution control is realized through parameterized function calls, as illustrated in Figure

6.1. At the top level RL-Glue provides a library of functions to the experiment program and

ultimately the researcher, while at the lower level RL-Glue provides an interface between

the agent and environment programs.

Experiment
Program

RL_init
RL_episode

env_start
env_step

agent_start
agent_step

Environment
ProgramRL-GlueAgent

Program

Figure 6.1: The RL-Glue protocol. Arrows indicate function call direction.

RL-Glue standardizes the execution sequence and data transmission that occurs during

a learning experiment because every episode produces the same trace of function calls.

25

Agent
Program

Environment
Program

RL_GlueRL_episode

RL_init()

RL_start()

RL_step()

env_init()

RL_cleanup()

task_spec
agent_init(task_spec)

obs
env_start()

agent_start(obs)
action

env_step(action)
obs, reward

agent_step(obs, reward)
action

obs, action

obs, reward, action

obsTerm, reward

.

.

.

agent_end(reward)

agent_cleanup()
env_cleanup()

return, num_steps

episode information

steps

repeat until
obsTerm
or steps

Figure 6.2: The execution sequence that occurs during a call to RL episode.

26

Consider the execution of a single episode. The experiment program begins by making a

call to the RL-Glue episode function to perform a single episode. RL-Glue responds by

making calls to the agent and environment to perform the first step of an episode. RL-Glue

then calls the agent’s and environment’s step functions in turn, passing the new reward

and observation to the agent the and the new action to the environment. This sequence of

calls is continued until the environment indicates to RL-Glue that it has reached a terminal

state. RL-Glue responds by calling the agent’s end-episode routine and returning control to

the benchmark. The sequence of calls performed during an episode is identical (as shown

in Figure 6.2) regardless of the agent, environment or type of learning experiment being

conducted. In this section, we describe the functions that make up the RL-Glue interface.

6.1 RL-Glue Functions

The functionality of RL-Glue has been layered to make the system light-weight and easy

to use for most learning tasks; additional functions are required to achieve more flexibility

in experimental design and to implement more complicated agent programs. The RL-Glue

functions allow the user to freeze the agent’s policy and control the experience generated by

the environment. In this section we describe only the core RL-Glue functions that are used

to start an episode, perform one step of an episode, execute an episode, calculate the return

from an episode and calculate the number of steps taken during an episode. We describe

RL-Glue’s extended functionalities later.

The RL start function executes the first step of an episode. At the beginning of an

episode the agent and environment must be set / returned to an initial configuration. The

RL start function performs the first step by calling env start function, which returns

an observation. Then RL start calls the agent start function, passing it the stored

observation as input, and then returns control to the experiment module.

The RL step function executes a single step of an episode (assuming the first step,

RL start, has already been taken). To take a step, RL-Glue passes the action, the agent

(RL start or RL step) selected on the previous time step to the environment; this is

achieved through a call to the env step function with the action passed as a parameter.

The new reward and observation produced by environment is then passed as input parame-

27

ters to agent step. The new action returned by the agent is stored by RL-Glue until the

next call to RL step. In episodic tasks, the environment signals termination to RL-Glue by

setting a Boolean flag in the observation. If termination occurs, RL-Glue calls the agent’s

agent end function passing the final reward as input, ending the episode.

An experiment program can execute an episode by calling RL start and then making

repeated calls to RL step until termination occurs. RL-Glue also defines several other

functions used for more complicated learning experiments. The RL episode function

executes an episode. This function, however, assumes that the problem is episodic, i.e.

the environment enters a special state called the terminal state, followed by a reset to a

standard starting state or to a sample from a standard distribution of starting states. In a

continuing task, experience must be cut off after some number of steps. RL-Glue pro-

vides another function designed for executing continuing tasks: RL episode (steps)

makes repeated calls to RL step until steps time steps have elapsed or a terminal state

is reached. These functions allow researchers to specify complex arrangements of training

and testing phases.

RL-Glue stores the total discounted sum of rewards received during an episode and

the total number of steps taken until termination is reached. The experiment can access

the reward and steps data through calls to RL return and RL num steps. These func-

tions allow the experiment program to calculate average reward, cumulative reward, average

number of steps and the minimum, maximum and variance of these values. Additional per-

formance information and environmental data such as reward noise, graphics data and hid-

den state transition information can be collected in data files during execution or acquired

through side calls to the environment.

6.2 RL-Glue Environments

The environment in the reinforcement learning framework completely describes the prob-

lem domain: the state transition dynamics, the reward function and the observation signal.

In the RL-Glue protocol, an environment is described by the env start and env step

functions. The env start function selects the initial observation at the beginning of an

episode. env step contains the environment’s state-transition dynamics: given an action,

28

env step updates the environment’s state and returns a new reward and observation. An

environment need only implement these two functions to be compatable with the RL-Glue

interface standard.

6.3 RL-Glue Agents

A reinforcement learning agent typically contains a learning algorithm and an action se-

lection policy. In RL-Glue, an agent is defined by the agent start and agent step

functions. agent start selects the initial action at the beginning of an episode, based

on an initial observation. agent step selects a new action given a reward and observa-

tion. The agent end function is called if the environment enters an absorbing terminal

state, in episodic tasks. This function performs final learning updates based on the terminal

reward but returns no action. In continuing tasks, agent step is called until the steps

counter in RL episode(steps) elapses; agent end is never called. An agent need

only implement these three functions to be compatible with the RL-Glue interface standard.

6.4 RL-Glue Experiments

RL-Glue is a communication protocol: it provides a standard connection mechanism for

learning agents and environments. A learning experiment, on the other hand, specifies

the schedule of episode execution and the performance data to be collected. This high-

level control cannot be incorporated into the agent or environment modules because the

interface module has calling control. The agent and the environment cannot request RL-

Glue to execute an episode or return the cumulative reward collected during the previous

episode. Our approach employs a separate experiment module in the system architecture

to control the execution of RL-Glue; this gives the experimenter complete control over the

execution of RL-Glue and the experimental settings used for benchmarking agent programs

on environments.

A typical experiment program might initialize RL-Glue with a call to RL init, execute

an experiment by making n calls to RL episode, and finally call RL return to get

the cumulative reward achieved by the agent on the nth episode. Experiment programs,

however, are capable of specifying more complicated learning experiments. For example, a

29

experiment program could specify a multiphase schedule of training and testing over a finite

set of experience trajectories through the environment’s state space, while collecting the

cumulative reward and the variance in the value function approximation. The experiment

program is also used to process and display data summarizing the agent’s performance on

the task. The experiment program can gain access to performance data through calls to

RL return and RL num steps or data files written by the agent and environment at

runtime. In general, the experiment program provides a simple way to control all aspects of

a learning experiment.

6.5 RL-Glue Naming Conventions

The RL-Glue specification provides a set of standard function definitions: function names,

input parameters and return values. The intended role of these functions is reflected by the

definitions. The functions define the agent’s, environment’s and experiment’s capabilities,

but not how each should be implemented. The suite of RL-Glue functions facilitate a num-

ber of typical benchmarking tasks. This approach achieves the desired standardization with

minimal restrictions on agent and environment programs.

The exact implementation details of each function are completely dependent on the

needs of the experimenter. For example, a typical learning agent will update its value func-

tion in agent step. This is not a requirement of agent step, but merely an implemen-

tation of a specific agent. The agent step function might instead perform a search of a

game tree it had built during the previous episode. The agent step function definition

only requires that the agent take a reward and observation as input and return a new action

on every step of the episode.

We will often describe the ambition of a function and provide examples of how it could

be used, but these are only interpretations of particular instances of these functions. RL-

Glue standardizes the names and definitions of these functions. Each implementation of an

agent or environment function, however, provides the details of one specific instance. This

principle applies to all the functions described in this work.

30

6.6 Practical Illustration

Up to now we have only described the core functionality of RL-Glue; the minimal compo-

nents required to implement simple learning agents and execute experiments that describe

performance in terms of cumulative reward and number of steps to goal. In this section,

we will provide an implementation of the agent, environment and experiment modules to

illustrate the simplicity and expressiveness of the RL-Glue specification. We provide full

pseudo code for a tabular Sarsa(λ) agent [Sutton and Barto, 1998], a variation of the origi-

nal Mountain Car domain [Moore, 1990] and an online cumulative reward benchmark.

The details of the Sarsa(λ) algorithm and the Mountain Car task are not of interest here.

The objective of this example is to illustrate how a nontrivial learning agent using function

approximation and eligibility traces can be applied to a classic control task using only the

basic set of core RL-Glue functions.

6.6.1 Environment

In the Mountain Car domain, at the beginning of every episode, the car is repositioned at

the bottom of the valley with 0 velocity. The following env start function initializes the

environment to the start state and returns the observation (which is equal to the environ-

mental state in this domain).

name: env start
input: {}
output: observation

position← −0.5 #Environment global variables
velocity← 0
return [position, velocity]

During every step of an episode, the environment updates the car’s position and velocity

based on the action selected by the agent. The actions “full throttle”, “neural” and “full

reverse” are mapped to 0, 1 and 2, respectively. The environment must then return the new

observation, a reward, and a termination flag indicating if the agent has reached the goal

position. Tuples are used to store the observation, reward and terminal flag.

31

name: env step
input: action
output: observation

velocity← update velocity(velocity, action)
position← update position(position, velocity)
observation← [position, velocity]
if goal() then

return [−1, observation, true]
else

return [−1, observation, false]
end if

The goal function checks the position to determine if the car has reached the east side of

the valley. These two functions fully specify the dynamics of the Mountain Car domain in

RL-Glue.

6.6.2 Agent

The observation in the Mountain Car domain is real valued. To learn a state-action-value

for the Mountain Car domain we must use function approximation to estimate the value of

the continuous-valued observation. We use a simple function approximator to discretize the

observations by aggregating values into discrete groups. We use Sarsa(λ) policy iteration

to learn a value function over the aggregated observations and update our policy based on

the estimated values. At the beginning of an episode, the agent must select an action based

on the initial observation returned by the environment:

name: agent start
input: observation
output: action

for all s, a do
e← 0
Q← 0

end for
S ← box val(observation) #S and A are global agent variables
A← select action(S)
return a

32

The box val function performs state aggregation and the select action function

selects actions according to an ε-greedy policy over state-action values [Sutton and Barto,

1998].

The following agent step function implements a step of the Sarsa(λ) on-policy TD-

control algorithm and returns a new action:

name: agent step
input: reward, observation
output: action

e[S, A]← 1
s← box val(observation)
a← select action(s)
δ ← reward −Q[S, A] + γQ[s, a]
for all s′, a′ do

Q[s′, a′]← Q[s′, a′] + αδe[s′, a′]
if a′ = a then

e[s′, a′]← e[s′, a′]αλ
else

e[s′, a′]← 0
end if
S ← s
A← a

end for
return a

Mountain Car is an episodic task: when the car reaches the top of the east side of the

valley the environment enters a terminal state. RL-Glue notifies the agent that the episode

has ended by calling the agent end function and passing the terminal reward as input:

name: agent end
input: reward
output: {}

e[S, A]← 1
δ ← reward −Q[S, A]
for all s′, a′ do

Q[s′, a′]← Q[s′, a′] + αδe[s′, a′]
end for

33

6.6.3 Experiment

In order to benchmark an agent on an environment in RL-Glue, we must design the exper-

iment program that specifies a learning experiment. For the Mountain Car domain we are

interested in how quickly the agent learns and in the quality of the policy learned by the end

of training. The reward in this task is −1 per time step; the agent should learn a policy that

allows it to escape the valley in as few steps as possible. Thus, the cumulative reward over

a fixed number of episodes will summarize how quickly the agent found a good region in

the policy space and how good the learned policy is:

performance← 0
RL init()
for episode = 1 : 1000 do

RL episode()
performance← performance +RL return()

end for
return performance/1000.0

This is a simple illustration of what an experiment program might look like and how a ex-

periment program can make use of the functions specified by RL-Glue. Experiments can

be much more complex in terms of episode schedule and data collection.

The above code illustrates how a classic control problem and a learning agent with

function approximation can be implemented using only five of the core RL-Glue functions.

Furthermore, the performance of our agent on the Mountain Car domain is measured using

a seven-line experiment program. In the next chapter we will describe how the agent and

environment programs can employ additional RL-Glue functions to encode more advanced

learning agents and experiments.

6.7 Additional Functionality

The core set of RL-Glue functions may not be expressive enough to implement more com-

plex agents, environments or evaluation schemes. The core set of RL-Glue functions do not

provide a way for an agent program to adjust online to new domains. Another issue involves

controlling the agent’s trajectory through the state space of the environment. Ideally, the ex-

34

perience trajectory of the agent could be replicated independent of the learning algorithm

or policy used. Finally, an experiment program should be able to conduct more traditional

supervised learning experiments. The agent should be allowed some finite amount of train-

ing data to learn a policy with performance measured only during the testing phase on the

test data.

In this chapter we describe the functions used to realize this additional layer of func-

tionality. We provide intuition about how these functions could be used; the implementation

details should be decided by the researcher.

6.7.1 Data Management

In reinforcement learning, we must repeat experiments many times to reduce variation in

the results to provide evidence that the results generated by a learning algorithm are statisti-

cally significant. Ideally, each run is preformed under identical conditions. The env init

and agent init functions are used to restore the environment to its initial state and reset

the learning agents value function, model and/or policy to their initial conditions. The envi-

ronment and agent init functions also have a more practical role of declaring and allocating

any global variables or data structures used during the execution of a learning experiment.

Correspondingly, env cleanup and agent cleanup functions release memory re-

sources allocated by the init functions.

6.7.2 Super Agents

Efficient generalization between tasks is an important topic in reinforcement learning. It

would be very difficult to program a learning agent that can handle a variety of obser-

vation and action types without some assumptions about the dimensions or data types of

these values. I have developed a task description language that provides the agent with

information about the the environment before learning begins. The environment returns a

Task specification string to RL-Glue that describes observation, action and reward types

and ranges. The Task specification is then passed to the agent program before the learning

experiment begins to allow the agent program to make adjustments for the current task or

exit if the agent is not compatible with the environment. The current version of the task

35

description language encodes:

- the version of the task description language used

- if the task is episodic or continuing

- the number of action dimensions

- the types of each action dimension

- the ranges of each observation dimension

- the number of observation dimensions

- the types of each observation dimension

- the ranges of each action dimension

The environment’s env init function encodes information about the problem in a

ASCII string. The Task specification is passed from the environment, through the interface,

to the agent as a parameter to the agent init function. The agent may optionally ignore

the Task specification or use it to initialize its learning algorithm. A detailed discussion of

the current version of the Task description language can be found in Appendix A.

6.7.3 Controlling Environment Dynamics

We often want to control the starting state and how stochastic state transitions are in the en-

vironment when generating results for publication or competition. This functionality would

make replication of results easier. The randomness in the environment can be determined

by thresholds used to make decisions on random events and the seeds passed to the random

number generator(s). Setting the initial configuration of the environment limits the num-

ber of trajectories through the state space the agent can experience. This approach is more

effective than random initialization because particular starting states may be more favor-

able or detrimental to solving a task. Starting near the goal in a navigation task or starting

near an adversary in a game can greatly effect the performance of an agent. An experiment

program can set the starting state and the randomness of the environment to ensure more

uniform behavior during every episode.

Before the environment can be set to a particular state, the experiment program must

36

acquire a legal state from the environment. The full environmental state, however, could be

too large to pass as a single parameter. Furthermore, we want to avoid giving the agent direct

access to the environmental state. Instead, we can get a state key from the environment.

The env get state function returns a state key so that the environment can be re-

turned to the state later upon presentation of state key. The state key could in fact

be the state object, or a hash value for the current state. We can then restore the environment

to the state encoded in the state key by calling env set state(state key).

Similarly, the randomness of the environment can be encoded in a key. By controlling

the randomness of the environment, we are attempting to make all state transitions deter-

ministic. The random seed key is accessed by calls to the environment’s env get

random seed function. The env set random seed restores the random seed used by

the environment. The environment should produce the same sequence of states, given the

same sequence of actions.

6.7.4 Standardizing Randomness

Different programming languages, operating systems and hardware architectures generate

random numbers differently. Some generators produce long streams of uniform uncorre-

lated random numbers. Others generators are well known for having a short period se-

quences and can be disrupted by other programs executing at the same time.

In a competition setting, we want to guarantee that random numbers produced by the

environment are the same regardless of the programming language or hardware used to

run an experiment. Researchers using a particular programming language should not have

an advantage in competition because they hacked the environment’s random number gen-

erator. The env standardize randomness function is meant to ensure that agents

benchmarked on an environment get the same randomness. For example, an environment

program could store a long sequence of random values in a data file, which the env step

function queries each time step. This cross-platform standardization is key to establishing

fair and uniform conditions for bake-off competitions.

37

6.7.5 Multiphase Learning and Evaluation

In supervised learning, the agent learns a classifier from a set of training data. The agent’s

performance is not measured during training, its classification error is only measured on

the test set, while learning is disabled. In reinforcement learning, we may want to employ

this multiphase evaluation methodology: the agent is given some finite amount of time to

interact with the environment to learn a value function and policy. Then the environment

is reset to some initial state and learning in the agent is disabled, temporarily freezing the

agent’s policy. Evaluating the “frozen” agent on several new trajectories through the state

space will not only evaluate the quality of the agent’s learned policy, but also the efficiency

with which it explored the environment during the training phase.

RL-Glue implements multiphase evaluation in a simple way. An RL-Glue agent as-

sumes that all experience from the beginning of time to the current time step is training data

(from the initialization call to agent init). The interface notifies the agent that training

has completed and the testing phase has begun with a call to the agent freeze func-

tion. This allows the agent to freeze its current policy, stop learning and/or end exploration.

The call to freeze the agent comes from the experiment program. An experiment program

can train the agent over several episodes (RL episode), then call agent freeze, reset

the environment to some starting state (RL set state) and then execute a number of

episodes while measuring the cumulative reward (RL return).

38

Chapter 7

RL-Glue Software

The RL-Glue specification is language independent: the functions described in the previous

chapter could be implemented in any programming language. The main goal of the RL-Glue

communication protocol is to provide a mechanism to standardize the execution sequence

that occurs during a learning experiment so that experimental results can be reproduced

easily for comparison and competition. The current implementation of RL-Glue has been

designed to support agents, environments and experiments written in any programming

language. In this chapter we describe the software implementation of the RL-Glue protocol,

illustrate how the architecture supports multi-language communication and discuss how the

current implementation can be extended to support other languages.

Implementing a single-language version of RL-Glue involves developing the function-

based architecture illustrated in Figure 6.1. This involves implementing the RL-Glue mod-

ule containing the RL-Glue functions described in Section 6.1. An experiment program

would contain a main method, call the interface functions and collect statistics based on

calls to the interface (RL return for example). Finally, the agent and environment mod-

ules would implement the mandatory interface functions: agent start and agent step

for agents, and env start and env step for environments.

7.1 Multi-language Support

To extend the single-language implementation of RL-Glue to allow learning agents, envi-

ronments and testing code to be written in any language, we must call functions and convert

data types across languages. To achieve this kind of flexibility we implemented the multi-

39

RL-Glue Codec

RL-Glue

Experiment
Program

Experiment Codec

Environment
Codec

Environment
Program

Agent
Program

Agent
Codec

Figure 7.1: The RL-Glue pipe and network communication architecture. Arrows indicate direct
language-to-language function calls.

language architecture depicted in Figure 7.1. The main difference between Figure 7.1 and

the original interface specification in Figure 6.1 is the addition of codecs. A codec encodes

and decodes data: it encodes data structures from a particular language to an ASCII string

representation of the data and decodes ASCII strings to the appropriate data structures in a

particular language. These codecs can be used to read and write data to pipe files or net-

work sockets. In the discussion below, we describe how RL-Glue interacts with file pipes

to achieve multi-language communication. Later describe how the system can be extended

to communicate over a network.

We use file pipes with codecs to communicate function calls and data between different

languages. A pipe file is a FIFO ASCII buffer. String data can be written to and read from

the buffer, however, data read from the buffer is removed from the buffer. The RL-Glue

codec, shown in Figure 7.1, is responsible for converting actions, observations, rewards,

state keys and random seed keys to ASCII strings from their C++ data types and

vice versa. The RL-Glue codec makes function calls by writing the string names of agent

and environment functions and the action, observation and reward strings to the pipes. The

RL-Glue codec is language independent and need only be changed if additional functional-

ity is added to the interface specification. The agent and environment codecs read the string

function calls from the RL-Glue codec off the pipes. The agent and environment codecs

must read actions, observations, rewards, state keys and random seed keys off the

40

pipe and convert them to types corresponding to the language the agent and environments

are written in, then make function calls to various agent and environment functions. The

agent and environment codecs are not language independent. A codec must be written for

any language that one wishes to write agent and environment code in. The experiment

codec works in the same way as the agent and environment codecs.

Experiment Program

Experiment Codec

RL-Glue Codec

RL-Glue

RL-Glue Codec

Agent Codec

Agent Program

Environment Codec

Environment Program

RL_step()

"step"

RL_step()

RL-Glue Codec

env_step(3)

"step"
"3"

env_step(3) [-1.0, 33, false]

[-1.0, 33, false]

"-1.0"
"33"

"false"

agent_step(-1.0,33)

"step"
"-1.0"
"33"

agent_step(-1.0,33) 2

"2"

2

"-1.0"
"33"

"false"
"2"

[-1.0, 33, false, 2]

[-1.0, 33, false, 2]

pipe/socket

function call

function return

write read

Figure 7.2: The executions sequence that occurs during a call to RL step using pipe com-
munication.

To illustrate our ASCII communication protocol we provide an execution trace of an

41

experiment using RL-Glue and this pipe communication scheme. Imagine the agent, envi-

ronment and experiment programs in Figure 7.1 are all written in different languages and

we wish to execute a single step of an episode. Figure 7.2 depicts the execution sequence

that occurs during a call to RL step from an experiment program. This example illustrates

how a single step of an episode can be conducted by passing the string names of functions

and data values encoded as strings across a pipe. In fact, all of the functions specified by

RL-Glue are executed using the same ASCII interface. Whether the experiment program is

executing a single learning step, collecting the average reward over a number of episodes or

freezing the agent, the function names are converted to strings and data values are encoded

and decoded to and from strings. This framework can support agents, environment and

experiments written in any programming language.

RL-Glue is an open source project, meaning anyone can download and edit its source

code. The current distribution of RL-Glue includes codecs for C++, Java, Python and Lisp.

If a researcher wanted to write learning agents in Objective Caml, for example, they could

simply implement a Caml codec for agents and be fully compatible with the existing code

base. The software architecture was designed to encourage this kind of community driven

growth. As new languages emerge and the reinforcement learning community’s needs

change, the code base of RL-Glue can be extended to new programming languages and

paradigms.

7.2 File Pipes, Codecs and Network Communication

Network communication can be realized in RL-Glue using codecs and the same ASCII

protocol used for pipe communication. If we imagine the links between modules (shaded

bars) in Figure 7.1 as connections across a network, the description for executing a step of

a learning experiment above is the same for calling RL step across a network. The file

pipe codecs are replaced with network codecs that read and write to sockets. The basic

functionality of the RL-Glue software architecture, however, does not change: encoding

program values in a string and decoding strings into values for a particular language.

The software architecture of RL-Glue enables 4 basic modes of execution: direct func-

tion call, pipe communication, network communication and mixed mode communication.

42

RL-Glue behaves exactly as described at the beginning of this Chapter (basic C++ imple-

mentation) when the agent, environment and experiment program are all implemented in

C++: the experiment program makes direct calls to the functions in the RL-Glue module

and RL-Glue directly calls functions implemented by the agent and environment programs.

If the agent, environment and experiment programs are implemented in different languages

then RL-Glue uses the pipe interface to facilitate multi-language communication. If the

agent, environment and experiment programs are only accessible through remote servers,

RL-Glue uses the socket interface to conduct learning experiments. The RL-Glue software

architecture also allows a mixture of all three modes. The experiment and RL-Glue mod-

ules may use direct language calls, RL-Glue and the agent may use pipe communication and

RL-Glue and the environment might communicate over a network connection. Any com-

bination of the direct language call, pipe and network communication can be implemented

with this architecture.

Network support allows agents to communicate with remote environments over the In-

ternet, providing an ideal setting for competitions by separating the environments from

agent writers. This separation helps with empirical validity, because agent programs do not

run in the same memory space (or even the same machine) as the environments, eliminat-

ing many of the concerns regarding agents manipulating random number generators and

performance data.

7.3 Design Decisions

It might seem natural to implement RL-Glue using an object-oriented approach to maximize

the extendibility and flexibility of the software architecture. The object-oriented approach

often results in elegant code that readily facilitates the future extension and growth of a soft-

ware package; the latter is critical for the establishment and continued support of a software

standardization system like RL-Glue. This extendibility does not come for free. Agent and

environment programs would have to use special object-oriented language features, which

are not available in all languages. This language constraint opposes one of the main design

goals of RL-Glue: the system should be light-weight and compatible across as many plat-

forms as possible. Future versions of RL-Glue may move toward a more object-oriented

43

approach, however, our design goals are well served by a simpler function-based system.

44

Chapter 8

RL-Library

The UCI Machine Learning repository not only standardizes the interface between algo-

rithms and domains but also provided a centralized library where researchers from around

the world can download existing data-sets used in publications and upload new domains

based on recent publications. RL-Glue provides a platform on which to benchmark agents

and environments regardless of the implementation language, operating system, hardware

or physical location. The empirical standardization provided by RL-Glue must be coupled

with a publicly accessible library of code to achieve the goal of exact reproducibility of

results for publication and competition. The University of Alberta Reinforcement Learning

Library, like the UCI, SPEC, NASA, and Matrix-Market databases, was created to pro-

vide a library of benchmarking resources, compatible with RL-Glue, for the reinforcement

learning community.

Researchers can download the code used to generate results found in publications, and

also submit their agents, environments and experiment programs used in their work. RL-

Library is meant to be the primary repository of RL-Glue compatible software for the ma-

chine learning community. In the remainder of this chapter, we describe the layout of

RL-Library, its core functionality and how RL-Glue and RL-Library can be used for bench-

marking in reinforcement learning.

8.1 Library Structure

The Library contents are divided into four main sections or shelves: the agent shelf, the

environment shelf, the experiment shelf and the project shelf. Each entry on each shelf

45

consists of a text description, a list of contents, a version number and a download link. The

agent download contains all the code used to implement a particular learning algorithm. For

example, a tabular Sarsa agent might consist of the source code and a library of helper func-

tions used by the agent. Similarly, each environment distribution contains all the necessary

code used to implement the problem. Each experiment includes the experiment program

and any statistic collection and graphing code. The Sarsa agent, Mountain Car task, and ex-

periment programs presented in Section 6.6 are stored in the library as single file downloads

on the agent, environment and experiment shelves respectively.

The project shelf contains multi-file distributions that will typically contain programs

that are also stored on other shelves of the library. Each project in the RL-Library contains

all the necessary files used to generate results for a publication. A project is meant to be

a complete package that allows one to exactly reproduce the graphs and tables used in a

particular publication. A project typically includes the agent, environment, benchmark,

statistics code, graphing code, parameter settings, makefiles, scripts and anything else used

to generate experimental results. Project distributions set the performance standard for a

particular environment and benchmark. The project shelf lets other researchers confirm

benchmark results and benchmark other algorithms against the ones used in the project

under identical experimental conditions.

RL-Library provides individual distributions for all agents, environments, experiments

and projects in the library. Furthermore, the entire contents of each shelf are available so

that users can easily acquire all the agents or environments in the library, for example. This

layout provides efficient public access to learning agents and environments developed by

researchers around the world, for research and teaching.

8.2 RL-Libary: the living entity

The RL-Library shelves are stocked by the reinforcement learning community–any re-

searcher can act as a librarian. Ideally, researchers will add the agents, environments and

experiments, in an ad hoc fashion, when they make new advances and then later upload

project distributions used to generate results for conference and journal papers. The test en-

vironments used and agents developed for annual benchmarking competitions and machine

46

learning classes will help maintain a steady stream of new programs to ensure the continued

growth and stability of RL-Library.

The library can be used to present challenge problems to the reinforcement learning

community. A researcher can upload a new environment that highlights one or more of

the known limitations of current methods and challenge the community to tackle these

issues in a competitive fashion. This approach helps focus the research efforts of a large

heterogeneous community on open problems, accelerating research progress.

The library allows researchers to upload source code using simple online forms. The

code is then subjected to a brief review process to ensure the code is technically sound and

to determine the submission’s contribution. The library provides an efficient, public way

to disseminate standard versions of agents and environments for publications, competitions

and instruction for the reinforcement learning community.

47

Chapter 9

Standardizing Mountain Car

RL-Glue and RL-Library give us the power to begin addressing the standardization is-

sues exhibited by the Mountain Car domain. In this chapter we formulate and implement

a standard version of the Mountain Car problem under the RL-Glue specification. We

then benchmark several algorithms on the Standard Mountain Car domain and present,

for the first time in reinforcement learning, a set of benchmarks which are publicly avail-

able through RL-Library and completely reproducible. This chapter sets a first benchmark

for the Mountain Car domain and provides a comprehensive illustration of how RL-Glue

and RL-Library can be used to standardize empirical analysis. All the code, used to gen-

erate the results presented in this chapter, can be found on the RL-Library web-page:

http://www.rlai.cs.ualberta.ca/RLR/

9.1 Problem Specification

In this section we present a standard formulation of the Mountain Car test domain using

RL-Glue. We use a variation of Moore’s [1990] original problem. The car’s movement is

is governed by the following equations:

position + = velocity; −1.2 < position < 0.6

velocity + = 0.001 · action + (−0.0025 · cos(3 · position)); −0.7 < velocity < 0.7

The system is fully characterized by the continuous observation variables position and ve-

locity. The action input is discretized into 3 values: full reverse (0), neutral (1) and full

throttle (2). A reward of −1 is given every step and termination is reached if and only if

48

the car passes the top of the east side of the valley with a nonzero velocity (position > 0.6

and velocity > 0). The car’s position and velocity is reset to the boundary values if the

car achieves a position or velocity outside their respective ranges. At the beginning of an

episode, the car is initialized to a legal random position and velocity.

In the following, we refer to this random starting position variation of the Standard

Mountain Car domain as the MC Random environment.

9.2 Solution Methods

We use three different learning agents on MC Random: Tile Sarsa(λ), Tile Q(λ) and

Tile AC(λ). We used the Sarsa(λ) and Watkins Q-learning algorithms with tile-coding

function approximation as described in the Reinforcement Learning text [Sutton and Barto,

1998]. The Tile AC(λ) agent is based on the tabular Actor-critic algorithm in the same text.

The extension of the Actor-Critic method to the linear function approximation case involves

implementing TD value iteration with replacing eligibility traces [Singh and Sutton, 1996]

for the Critic and integrating Gibbs action selection over approximate state-action values

for the Actor [Sutton and Barto, 1998]. We used linear tile coding as our function approxi-

mation method.

The learning rate, α, was set to 0.5 and the temporal credit assignment parameter, λ,

was set to 0.95 for both Tile Sarsa(λ) and Tile Q(λ). Singh and Sutton found these pa-

rameter settings performed the best in their study of a similar variant of the Mountain Car

domain [Singh and Sutton, 1996]. We performed a similar study to determine a good set of

parameters for the Tile AC(λ) agent. Figure 9.1 shows the performance, number of steps to

goal, of Tile AC(λ) on MC Random for various combinations of α, β and λ. From these

graphs we can see that λ = 0.9, α = 0.51 and β = 0.2 achieved the lowest average number

of steps to goal. The exploration parameter, ε, was set to zero for all three methods. Instead,

we initialized the state-value, state-action-value and action preference functions optimisti-

cally to zero to encourage exploration. Finally, we used ten 9 x 9 tilings for tile coding for

all three agents. We tiled the position and velocity together for each action, with tile widths

of 0.2125 and 0.0175 respectively.

49

75

80

85

90

95

100

β = 0.2

β = 0.1

β = 0.4

β = 0.6
β = 0.8

number of steps
to goal, averaged
over 30 runs

λ = 0

β = 0.1

β = 0.4

β = 0.2

β = 0.6

β = 0.8

λ = 0.1

75

80

85

90

95

100

β = 0.1

β = 0.6

β = 0.4

β = 0.8

β = 0.2

number of steps
to goal, averaged
over 30 runs

λ = 0.4
β = 0.4

β = 0.8
β = 0.1

β = 0.2

β = 0.6

λ = 0.8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
75

80

85

90

95

100

β = 0.8

β = 0.2

β = 0.1

β = 0.6

β = 0.4

number of steps
to goal, averaged
over 30 runs

α

λ = 0.9
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

β = 0.2

β = 0.1 β = 0.4

α

λ = .95

Figure 9.1: Average number of steps to goal for Tile AC(λ), on MC Random, for various combi-
nations of α, β and λ. The bold line, in each plot, indicates β value that achieved the best perfor-
mance for each value of λ.

50

9.3 Experimental Design

All the results presented in this chapter were generated by two experiment programs: Figure

9.1 and Table 9.1 generated by one experiment program and Figure 8.2 by the other. Each

of the three agents were tested over 200 consecutive episodes. No upper limit was imposed

on the number of steps taken during each episode. The results were then averaged over 100

independent runs.

9.4 Results

To establish a benchmark, one must provide adequate performance measures that best char-

acterize the performance of a learning algorithm on a particular environment. We must

establish that a given algorithm is superior in a variety of situations. In the Mountain Car

task, the speed of learning and the quality of the final solution are the most important metric.

Both of these, can be characterized by the number of steps to goal per episode.

Average number of steps to goal Time per batch (micro seconds)
Tile Sarsa(λ) 91.5441 0.320119

Tile Q(λ) 86.7475 0.33552
Tile AC(λ) 79.2767 0.520472

Table 9.1: Long-run benchmarks for Tile Sarsa(λ), Tile Q(λ) and Tile AC(λ) on
MC Random.

Table 9.1 illustrates the relative performance of all three methods. We can see that the

Tile AC (λ) achieves the lowest average number of steps to goal, but also takes the longest

in terms of CPU time. The time difference between the methods, however, is less than

one second for a batch of 200 episodes and is thus negligible in this case. The Tile AC(λ)

appears to be superior.

The averages in Table 9.1 do not always provide the best indication of performance.

It is difficult to assess learning speed, performance variance and determine if an algorithm

achieves steady-state performance on a task using long-run averages. Figure 9.2 presents

the learning curves (average number of steps to goal) for each of the three methods on

MC Random. We binned the data into 10 episode bins to smooth the learning curves. In

51

these plots we can see that Tile AC(λ) learns faster than Tile Sarsa(λ) and Tile Q(λ) and

achieves much lower variance, although all three methods converge to approximately the

same quality policy (after training all three control policies require the same number of

steps to goal, on average, from random starting positions).

0

50

100

150

200

250

300

350

400

number of steps
to goal, averaged
over 100 runs

Sarsa(λ) Q-learning(λ)

0 50 100 150 200
episodes

0

50

100

150

200

250

300

350

400

number of steps
to goal, averaged
over 100 runs

Actor-critic(λ)

0 50 100 150 200
65
70
75
80
85

100

135

150

Sarsa(λ)

Q-learning(λ)

Actor-critic(λ)

episodes

Figure 9.2: Learning-curve benchmarks for Tile Sarsa(λ), Tile Q(λ) and Tile AC(λ) on Moun-
tainCar RS. Results averaged over a 10-episode bin.

Figure 9.2 and Table 9.1 are the first benchmarks for the Mountain Car control task. The

number of steps to goal achieved by Tile AC(λ) on MC Random (average number of steps

to goal Table 9.1) establishes the state-of-the-art for this variation of the Mountain Car do-

main. This benchmark will stand until another researcher can illustrate better performance,

as in Table 9.1, using the same environment and experiment programs from RL-Library.

9.5 Discussion

RL-Glue provides immediate feedback on an algorithm’s performance on a given task,

through a variety of performance measures based on thousands of simulated agent, envi-

ronment interactions. Figure 9.2 and Table 9.1 illustrate that each learning agent converges

52

to some suitable representation of the value function, yielding a near optimal control pol-

icy. All necessary performance data was accessed through interface calls (RL return)

and system calls (C++ timing routines). Each experiment (200 episodes and 100 indepen-

dent batches) took approximately 1 minute, wall-clock time, to complete. This execution

efficiency and empirical clarity makes RL-Glue a good platform for benchmarking and de-

velopment.

The RL-Glue and RL-Library reduces the confusion regarding problem specification,

experimental conditions and software versions. Any researcher can compare his or her

results with existing results in the literature by downloading the necessary code from RL-

Library. Researchers can easily compare results against existing benchmarks or establish

new benchmarks and upload their code to RL-Library, removing the confusion surround-

ing choice and comparison of different performance metrics. By establishing a publicly

available library of code, we have eliminated many of the standardization and evaluation

problems in the literature (highlighted in Table 5.1).

53

Chapter 10

A Benchmark Suite for
Reinforcement Learning

In the previous chapter we formulated a standard version of the Mountain Car domain

and presented the first publicly available and reproducible results for several reinforcement

learning problems. The Mountain Car benchmark was used to provide a proof of concept

for RL-Glue and RL-library. In this chapter, we present benchmarks for ten test domains,

using the same evaluation methodology established in the previous chapter. In this chapter,

however, we provide only high-level descriptions of each environment and the agents that

performed best on each task. The implementation details of each agent and environment

can be found in RL-Library. The ambition of this chapter is to establish benchmarks and

introduce standardized implementations of several classic reinforcement learning control

tasks.

Our benchmarks are based on ten environment programs: three grid-world problems,

a card game, a discrete sensor network, a random MDP, the Acrobot and three variations

of the Mountain Car domain. These problems were selected to cover a large class of do-

mains on which reinforcement learning methods are typically applied. These ten environ-

ments feature tabular state and actions spaces, continuous observations, multi-component

actions, partially observable states, high dimensional action spaces, stochastic dynamics,

non-stationary dynamics and continuing tasks. These environments highlight many open

research areas in reinforcement and machine learning.

The following sections present benchmarks for each of the ten environments. For

brevity, we do not present graphs for each algorithms learning curve, performance under dif-

54

ferent parameter settings, nor the results of other algorithms. Instead, we present summary

statistics for the agent that performed best on each environment. Each agent-environment

pair was benchmarked over n consecutive episodes using the same experiment program,

where n corresponds to the number of episodes listed in each benchmark table. The results

for each benchmark were then averaged over 100 independent runs.

10.1 Grid-world Benchmark

In the Grid Mines environment, each two-dimensional map is randomly generated with

several solid obstacles, several mines and a start and goal position. A reward of −1 is

assigned on each time step, unless the agent hits a mine, resulting in a large negative re-

ward. The agent’s objective is to navigate from the starting state to the goal as fast as

possible, without hitting mines. We used a tabular off-policy TD control agent with plan-

ning, DynaQ, on the Grid Mines task. This agent, based on the DynaQ algorithm from

the Reinforcement Learning text, builds a model of the environments state transition dy-

namics [Sutton and Barto, 1998]. Table 10.1 summarizes DynaQ’s performance on the

Grid Mines.

Average
Environment Agent Episodes Number Steps

Grid Mines(20) DynaQ 1000 38.108910

Table 10.1: Grid-world benchmarks. The Grid Mines(20) environment uses a maze of size
20 × 20.

10.2 General Cat and Mouse Benchmark

In the CM Random environment, there are several solid obstacles, several stationary pieces

of cheese, one mouse hole and a non-stationary cat. The cat moves (after the mouse moves)

to minimize its distance to the mouse, choosing randomly between equal quality moves.

The cat cannot see or move to the mouse if it is hiding in its hole. Each map is randomly

generated at the beginning of each trial, but does not change between consecutive episodes.

The agent gets a small positive reward for each step that the mouse occupies the same grid

55

space as a piece of cheese and a large negative reward if the cat and mouse occupy the

same grid space. An episode ends when the cat catches the mouse. The agent’s objective

is to navigate the mouse through the maze, collecting as much cheese as possible while

avoiding the cat. We used a tabular on-policy TD control agent, tabular Sarsa(λ) based

on the Sarsa(λ) algorithm described in Reinforcement Learning [Sutton and Barto, 1998].

The tabular Sarsa(λ) agent maintains an estimate of the state-action-value function for

each state-action pair and selects actions according to an ε−greedy policy. The episodes

were cut off after 1000 steps to avoid infinite episodes: an agent that learned to avoid the

cat (with exploration disabled) could move the mouse about the maze forever, never getting

caught. No negative reward was associated with this cut-off point. Table 10.2 summarizes

the performance of tabular Sarsa(λ) on CM Random.

Cumulative Average
Environment Agent Episodes Reward Num Steps

CM Random(10) tabular Sarsa(λ) 5000 4.68 · 108 846.237

Table 10.2: The General Cat and Mouse Benchmark. The CM Random(10) environment
uses a maze of size 10 × 10.

10.3 Schapire’s Cat and Mouse Benchmark

The CM Schapire environment is based on Robert Schapire’s version of the cat and mouse

problem. The dynamics are the same as CM Random environment, except CM Schapire

uses the static grid-world depicted in Figure 10.1; every episode uses the same map config-

uration. We used the DynaQ agent. Episodes were cut-off after 1000 steps to avoid infinite

episodes. The performance of DynaQ on CM Schapire is summarized in Table 10.3.

Cumulative Average
Environment Agent Episodes Reward Number Steps

CM Schapire DynaQ 1000 23787038.16 967.225600

Table 10.3: The Schapire Cat and Mouse Benchmark.

56

CAT

CheeseCheese

Mouse

Figure 10.1: Schapire’s Cat and Mouse world: The cat and mouse can occupy any of the 31 blank
squares (dark gray squares indicate obstacles), except for square (4,5) which can only be occupied
by the mouse. The cheese never moves.

10.4 Blackjack Benchmark

The Blackjack environment encodes the two-player game where the agent plays against the

dealer. The agent must choose to “hit” or “stick” based on its cards and the dealers face-up

card to achieve a sum of cards as close to 21 as possible. The dealer will “hit” until its card

sum is 17 or greater. The agent is allowed to hit on 21 to avoid episode termination in the

starting state. The agent gets a reward of +1 for a win, 0 for a tie and −1 for a loss. The

agent’s objective is to maximize its number of wins. This variation of the game is based

on the Blackjack environment described in the Reinforcement Learning text [Sutton and

Barto, 1998]. Table 10.4 presents the benchmarks for the tabular Sarsa(λ) agent on the

Blackjack environment.

Average Average
Environment Agent Episodes Reward Num Steps

BlackJack tabular Sarsa(0) 100000 -0.193490 1.037769

Table 10.4: The Blackjack Benchmark.

On initial inspection, the Blackjack benchmarks seem low. Since Blackjack gives a

reward of −1 for a loss and +1 for a win, an average reward of -0.193490 indicates the

agent is losing more than 60% of the time. In fact, the tabular Sarsa(0) agent achieved a

winning percentage of only 38%. This is, however, much better than it sounds because the

optimal Blackjack strategy described by Thorp illustrates that, given optimal play, a player

cannot win more than 49% of games.

57

10.5 Sensor Network Benchmark

In the discrete sensor network problem, Sensor Net, there are two parallel chains of sen-

sors (see Figure 10.2). The area between the sensors is divided into cells. Each cell is

surrounded by four sensors that can aim at a target that lies within the cell. Each sensor can

perform three actions: aim at the target in the left cell, aim at the target in the right cell or

the take null action. If three sensors simultaneously aim at one target the target’s energy

level is decreased; targeting is completely deterministic. A target is removed from the net-

work when its power level reaches zero. The agents must control all N sensors and destroy

all m targets as fast as possible. Although this problem has a relatively small state space

|s| =
∑m

i=0

[((N
2
−1)
i

)
3i

]
, it has a high dimensional action space (N) resulting in N3 pos-

sible actions. The Sensor Net environment was implemented by Nikos Vlassis’s research

group at the University of Amsterdam. We used a factored tabular off-policy TD control

agent, Factored Q(0), on the Sensor Net task. The Factored Q(0) agent, also imple-

mented by Vlassis, uses Q-learning to learn a state-action-value function for each of the N

action dimensions. The performance of Factored Q(0) on Sensor Net is summarized in

Table 10.5.

Average Average
Environment Agent Episodes Reward Number Steps

Sensor Net(8,2) Factored Q(0) 2000 3.084766 7.602015

Table 10.5: The Sensor Network Benchmark. The Sensor Net(8,2) environment features
8 sensors and 2 targets.

X X X X

X X X X

Figure 10.2: Vlassis’s Discrete Sensor Network: A sensor network configuration with eight sensors
(X) and two targets. Adapted from [Littman et al., 2005].

58

10.6 GARNET Benchmark

The GARNET environment is a randomly generated MDP (random states, actions and re-

wards) with probabilistic state transitions and a non stationary element: every k iterations

the transitions are changed by randomly deleting n state connections and creating n new

links between previously unconnected states. The agent is provided with a random binary

observation vector that is not large enough to uniquely identify states. The agent’s objective

in this continuing task is to locate and try to stay in regions of the MDP that result in the

highest average reward. We used an on-policy TD control agent with linear function ap-

proximation, linear Sarsa(0) on the GARNET environment. The linear Sarsa(0) agent

is similar to Tile Sarsa(λ), described in Chapter 9, except it does not use eligibility traces

(TD(0)) and uses binary feature vectors generated by GARNET environment itself, instead

of tile indices produced by tile coding. The linear Sarsa(0) agent was allowed 100000

time steps to interact with the GARNET environment. Table 10.6 reports the average re-

ward of the linear Sarsa(0) agent on the GARNET environment.

Number of Average
Environment Agent Episodes Reward

GARNET linear Sarsa(0) 1 × 1011 1.473955325

Table 10.6: The GARNET Benchmark.

10.7 Acrobot Benchmark

The Acrobot environment describes a two-link, under-actuated robot, roughly analogous

to a gymnast swinging on a high bar (see Figure 10.3). The first joint cannot exert torque,

but the second joint can. The agent must select actions of “backward”, “null” or “forward”

based on a four-dimensional continuous observation. The objective of the acrobot domain

is for the agent to swing the tip (the “feet”) above the first joint in the shortest amount

of time. The Acrobot environment is based on the description provided in the Reinforce-

ment Learning text [Sutton and Barto, 1998]. Table 10.7 presents the benchmark for the

Tile AC(λ) agent, used in the Mountain Car Benchmark (Chapter 9), on the Acrobot envi-

59

θ2

θ1

Figure 10.3: The Acrobot. Adapted from [Sutton and Barto, 1998].

ronment.

Average
Environment Agent Episodes Number Steps

Acrobot Tile AC(λ)) 2000 61.168580

Table 10.7: The Acrobot Benchmark.

10.8 Delayed Mountain Car Benchmark

The MC Delay variant of the Mountain Car problem is based on MC Random, described

in the Chapter 9. The MC Delay environment is a non-Markov problem: the observations

produced by the environment on time step t are actually the observation of the system

that occurred k steps ago. The first k observations at the beginning of the episode are

randomly generated and the agent does not receive the last k observations at the end of

the episode. The agent must adjust its value estimates based on the delay, while making

blind decisions on each time step. The actions, rewards and state-transition dynamics of

the MC Delay environment are identical to the MC Random environment. We used an

off-policy TD control agent with function approximation and static options, O Tile Q(λ),

on the MC Delay environment. The O Tile Q(λ) agent is based to the Tile Q(λ) agent

described in Chapter 9. O Tile Q(λ), however, employs static options corresponding to

full forward for 5, 10, 20 and 50 time steps and full reverse for 5, 10, 20 and 50 time steps.

These macro actions correspond to options whose initiation set contains every legal state.

Termination of any particular option occurs, with probability 1, when the step timer elapses

[Sutton et al., 1999]. The results for the O Tile Q(λ) agent on the MC Delay environment

are summarized in Table 10.8.

60

Average
Environment Agent Episodes Num Steps

MC Delay(20) O Tile Q(λ) 10000 119.389704

Table 10.8: The Delayed Mountain Car Benchmark. The MC Delay(20) environment fea-
tures observations that are delayed by 20 steps.

10.9 Stochastic Mountain Car Benchmark

In the MC Stochastic variant of the Mountain Car problem (based on MC Random), the

agent’s actions are not deterministic: the velocity generated by a positive force will be pos-

itive, but is perturbed randomly by positive noise and similarly for a negative force. In this

formulation, the agent must account for these stochastic effects and learn a policy that is

robust to small variations in action outcomes. We used the O Tile Q(λ) agent on the MC

Stochastic environment. Table 10.9 summarizes the results.

Average
Environment Agent Episodes Num Steps

MC Stochastic O Tile Q(λ) 5000 228.931504

Table 10.9: The Stochastic Mountain Car Benchmark.

10.10 Non-stationary Mountain Car Benchmark

The MC Nonstat variant of the Mountain Car problem is a non-stationary domain where

the force of gravity is adjusted every k steps by some random amount (positive or negative).

Furthermore, to reach the goal, the agent must stop the car at the top of the hill with near zero

velocity. If the agent drives through the goal region, a large negative reward is assigned and

the episode terminates. The agent must learn to track the gravity change so that it does not

drive off the end top of the mountain. We used the O Tile Q(λ) agent on the MC Nonstat

environment. Table 10.10 summarizes the results.

61

Average
Environment Agent Episodes Num Steps

MC Nonstat(50) O Tile Q(λ) 5000 142.003272

Table 10.10: The Non-stationary Mountain Car Benchmark. The The MC Nonstat(50)
environment changes the force of gravity every 50 episodes.

62

Chapter 11

Conclusions and Future Work

In this thesis we presented a communication protocol for reinforcement learning agents

and environments. This protocol is designed to be the standard protocol for benchmark-

ing agent and environment programs for publications and competitions in reinforcement

learning. Our protocol 1) guarantees exact reproducibility of the execution sequence of a

learning experiment, 2) enables plug and play interchanging of environments and agents, 3)

is general and powerful yet non-intrusive, 4) is easy to convert existing agents and environ-

ments to.

RL-Glue’s function-based interface guarantees the same sequence of function calls

occurs during every call to RL episode; results can always be replicated. RL-Glue’s

function-based architecture allows researchers to write generalized learning agents that are

applicable to a wide variety of tasks. Every agent and environment implements the same

set of basic interface functions. Furthermore, the task description language, introduced

in this work, provides agent programs with information regarding the state and observa-

tion space, before a learning experiment begins to facilitate the creation of more general

learning agents. The core set of agent and environment functions can encode a variety

of common learning experiments, such as an on-policy TD control method, the Mountain

Car domain and an online average reward benchmark. RL-Glue also features several addi-

tional agent and environment functions that control the environment’s trajectories through

the state space, standardize randomness for competition and allow the agent to be evaluated

using complex sequences of training and testing phases. Agent and environment programs

need only implement the core set of basic interface functions. The remainder of the agent

63

and environment code is completely free form. Researchers can quickly make their agent

and environment programs compatible with the RL-Glue standard without changing their

original code structure or style.

We also presented a software architecture for RL-Glue that facilitates network commu-

nication and is extendable with agents, environments and experiments written in any pro-

gramming language. We designed the software implementation to 1) be light-weight with

layered functionality, 2) support multiple programming languages and 3) support agent and

environment interaction across a network.

Like the protocol on which its based, the software implementation of RL-Glue requires

very little “mandatory” code. Agent and environment programs must employ the standard

function names and data types, but are completely unrestricted otherwise. The interface

code itself is efficient and does not require significant computational resources to pro-

duce benchmark results. RL-Glue facilitates multi-language communication using a simple

ASCII string protocol and several language specific codec modules. This system allows the

interface to mature and develop with the needs of the reinforcement learning community.

Finally, the current implementation of RL-Glue supports communication across a network

connection using the same ASCII protocol used for multi-language support. This allows

agents to be benchmarked on environment programs that are only available through remote

servers. Network communication makes RL-Glue a good platform for competitions because

it isolates the learning agent from the environment and benchmarking code.

This thesis also introduced the University of Alberta Reinforcement Learning Library, a

library of agent, environment and experiment code compatible with RL-Glue. RL-Library

provides a public means to distribute standardized implementations of problem domains

and state-of-the-art learning algorithms to the reinforcement learning community. Further-

more, RL-Library allows agent, environment, experiment and project code to be added to

the library for review and shelving. Researchers will now be able to recreate results from

the literature and test new learning algorithms using the same experimental settings used

in publications. Instructors can provide their students with sample agents and environ-

ments for teaching and evaluation purposes without having to implement these methods

themselves. The RL-Library was designed to be the primary repository for reinforcement

64

learning agents and environments, like the UCI database for supervised learning.

We illustrated the advantages of RL-Glue and RL-Library with a detailed case study on

the classic reinforcement learning control task, Mountain Car. We surveyed five implemen-

tations of the “Standard” Mountain Car problem. Each differed substantially in either initial

state of the environment, reward function or dynamics. We found similar standardization

problems in the literature. We presented the first benchmark for the Mountain Car con-

trol task. This benchmark provides a performance baseline for all other learning agents to

be measured against and a standardized implementation of the Mountain Car problem. RL-

Glue and RL-Library directly address the standardization and evaluation questions raised in

the Mountain Car survey: Which implementation should be considered the standard? How

can one decide what version to use when testing new algorithms? Should each researcher

implement his or her own code based on experimental descriptions in the literature? Which

performance metrics should be used to evaluate advances in new publications?

We also presented the first suite of benchmarks for a number of classic reinforcement

learning control tasks. For the first time, the reinforcement learning community has access

to a set of standardized implementations of several control tasks and a corresponding set

of performance baselines. All the environment, agent and experiment programs are pub-

licly available in RL-Library for other researchers to use to verify, compare against and

improve these benchmark results. Tables 10.1 to 10.10 are the realization of the goals and

objects for RL-Glue laid out in Chapter 3: 1) facilitate the creation of benchmarks for re-

inforcement learning, 2) establish a suite of standard versions of benchmark problems, 3)

set performance baselines for algorithm development, 4) facilitate accurate comparisons

between algorithms on standard benchmarks, 5) allow researchers to replicate results from

the literature, and 6) remove the need to re-implement others’ code.

RL-Glue and RL-Library have been instrumental in establishing annual competitions

where researchers from across the world develop agents for a variety of challenge problems.

RL-Glue was used in the first bake-off (noncompetitive event) at the International Neural

Information Processing Systems Conference in 2005 and the first reinforcement learning

competition at the International Conference on Machine Learning in 2006. These com-

petitions help focus research on one of the long standing goals of reinforcement learning

65

research: improving the reliability and power of learning techniques to the level required for

real world problems. The work described in this thesis establishes a standard communica-

tion system for competitions and a library of compatible code, future competition organiz-

ers and participants can improve the practice of applying reinforcement learning methods.

Ultimately, this approach may result in more applications to industrial problems such as,

autonomous-vehicle control, hydraulic-dam control and hybrid-car fuel optimization pro-

viding concrete evidence that reinforcement learning algorithms are viable alternatives for

real world tasks.

Much of the future work on RL-Glue and RL-Library will be a community effort. The

current software implementation of RL-Glue must be extended to support the full spectrum

of programming languages used by the reinforcement learning community. The code base

of RL-Glue will grow over time and adapt to the community’s needs. It is, in fact, neces-

sary for the continued growth and development of RL-Glue that we allow the community

to extend or re-implement the software architecture. The RL-Glue interface is a standard

communication protocol that facilitates the establishment of benchmarks for reinforcement

learning. The current software implementation, however, is just that. It is important that

RL-Glue continues to provide reproducible benchmark results and multi-language support:

the implementation details can and will change. A key factor in the growth of RL-Library

will be the rate at which conference and journal reviewers begin to accept RL-Glue as

the standard for reinforcement learning and begin requiring new publications to illustrate

performance on the standard benchmarks. RL-Library has already been embraced by sev-

eral members of that community: a number of agents and environments featured in the

reinforcement learning competitions have been submitted to the library over the past few

months. Papers appearing in international conferences have also used agent and environ-

ment programs from RL-Library. RL-Library will grow as more competitions are held,

more classes make use of it and more researchers begin to publish results on the reinforce-

ment learning benchmarks.

There are a number of other things to be done to further establish RL-Glue and RL-

Library as the standard benchmarking tools in reinforcement learning. One involves es-

tablishing a large suite of benchmark challenge problems compatible with the interface

66

standard. These problems must be formulated so that they highlight the current algorith-

mic challenges in reinforcement learning and also reflect many of the open problems in

AI. For instance, consider a hybrid gas-electric car. A control mechanism must choose be-

tween using the gas engine or the electric motor to supply the power requested as a driver

pushes the accelerator. An agent must choose how much of the requested power will come

from the motor and how much to drain the battery, based on various sensations such as car

velocity, acceleration, engine temperature, outside temperature and battery level. This prob-

lem is interesting because of it’s continuous state and action space, and the delay between

decision-making and the measurable effects of actions. The public availability of these

challenge domains, in RL-Library, will foster interest in reinforcement learning within the

large AI community and lead to advances in some of the fundamental scalability issues in

machine learning.

The next step will focus on algorithm development to address a number of the open

problems in reinforcement learning, such as dealing with high dimensional state and ac-

tion spaces, making continuous valued decisions, speeding up learning and dealing with

delayed feedback and irrelevant information. Significant advances can be made in these

areas through careful analysis of problem input. If we can account for the correlations

among each of the agent’s sensations and between sensations and the received reward sig-

nals, we may be able to eliminate irrelevant information, while placing more weight on

unlikely events with significant consequences on system behavior, thus increasing learning

efficiency. Novel combinations of intra-option learning (macro actions) and policy gradient

methods may reduce the effects of slow reacting systems and provide an effective model

for continuous valued decisions. The solution to some of the challenge problems will pro-

duce several theoretical advances in scaling reinforcement learning methods and establish

a standard of excellence, promoting further research on the remaining challenge problems.

Furthermore, this research will provide concrete evidence of the long-term contribution

of RL-Glue and RL-Library and ensure their usage as the standard benchmarking tool for

empirical analysis in the reinforcement learning community for years to come.

67

Bibliography

[Bagnell, 2004] Bagnell, J. (2004). Learning Decisions: Robustness, Uncertainty, and

Approximation. PhD thesis, Robotics Institute, Carnegie Mellon University, Pittsburgh,

PA.

[Boisvert et al., 1997] Boisvert, R. F., Pozo, R., Remington, K., Barrett, R., and Dongarra,

J. J. (1997). The Matrix Market: A Web Resource for Test Matrix Collections. In

Boisvert, R. F., editor, Quality of Numerical Software, Assessment and Enhancement,

pages 125–137, London. Chapman & Hall.

[Boyan and Moore, 1995] Boyan, J. A. and Moore, A. W. (1995). Generalization in Rein-

forcement Learning: Safely Approximating the Value Function. In Tesauro, G., Touret-

zky, D. S., and Leen, T. K., editors, Advances in Neural Information Processing Systems

7, pages 369–376, Cambridge, MA. The MIT Press.

[Crites and Barto, 1996] Crites, R. H. and Barto, A. G. (1996). Improving Elevator Per-

formance Using Reinforcement Learning. In Touretzky, D. S., Mozer, M. C., and Has-

selmo, M. E., editors, Advances in Neural Information Processing Systems, volume 8,

pages 1017–1023. The MIT Press.

[Engel et al., 2005] Engel, Y., Mannor, S., and Meir, R. (2005). Reinforcement Learning

with Gaussian Processes. In ICML ’05: Proceedings of the 22nd international confer-

ence on Machine learning, pages 201–208, New York, NY, USA. ACM Press.

[Hafner, 2005] Hafner, V. V. (2005). Cognitive Maps in Rats and Robots. Adaptive Behav-

ior - Animals, Animats, Software Agents, Robots, Adaptive Systems, 13(2):87–96.

[Langford and Bagnell, 2004] Langford, J. and Bagnell, D. (2004). RLBench, A Rein-

forcement Learning Benchmark Suite.

68

[Littman et al., 2005] Littman, M., Riedmillerg, M., and Vlassis, N. (2005). Reinforcement

Learning Benchmarks and Bake-offs II: Workshop Proceedings. In Neural Information

Processing Systems.

[Mahadevan, 1997] Mahadevan, S. (1997). Mountain-Car Problem.

[Montague et al., 1995] Montague, P., Dayan, P., Person, C., and Sejnowski, T. (1995).

Bee Foraging in Uncertain Environments Using Predictive Hebbian Learning. Nature,

377:725 – 728.

[Moore, 1990] Moore, A. W. (1990). Efficient Memory-based Learning for Robot Control.

PhD thesis, University of Cambridge, Cambridge, UK.

[Nevmyvaka et al., 2006] Nevmyvaka, Y., Feng, Y., and Kearns, M. (2006). Reinforce-

ment Learning for Optimized Trade Execution. In International Conference on Machine

Learning, pages 673 – 680.

[Newman et al., 1998] Newman, D., Hettich, S., Blake, C., and Merz, C. (1998). UCI

Repository of Machine Learning Databases.

[Ng et al., 2004] Ng, A. Y., Coates, A., Diel, M., Ganapathi, V., Schulte, J., Tse, B., Berger,

E., and Liang, E. (2004). Inverted Autonomous Helicopter Flight via Reinforcement

Learning. In International Symposium on Experimental Robotics.

[Niv et al., 2005] Niv, Y., Duff, M. O., and Dayan, P. (2005). Dopamine, Uncertainty and

TD Learning. In Behavioral and Brain Functions, volume 6, pages 1744–9081.

[Powers et al., 1995] Powers, K., Sandifer, C., Rice, D., Glick, J., and Cramblitt, B. (1995).

Standard Performance Evaluation Corporation.

[Precup et al., 2005] Precup, D., Sutton, R. S., Paduraru, C., Koop, A., and Singh, S. P.

(2005). Off-policy Learning with Options and Recognizers. In Advances in Neural

Information Processing Systems 18, pages 1097–1104.

[Riedmiller, 2005] Riedmiller, M. (2005). Neural Fitted Q Iteration - First Experiences

with a Data Efficient Neural Reinforcement Learning Method. In European Conference

on Machine Learning, pages 317–328.

[Riedmiller et al., 2003] Riedmiller, M., Lange, S., Timmer, S., and Hafner, R. (2003).

CLSquare: Closed Loop Simulation System.

69

[Simsek and Barto, 2006] Simsek, O. and Barto, A. G. (2006). An Intrinsic Reward Mech-

anism for Efficient Exploration. In ICML ’06: Proceedings of the 23rd international

conference on Machine learning, pages 833–840, New York, NY, USA. ACM Press.

[Singh et al., 2002] Singh, S., Litman, D., and Kearns, M. (2002). Optimizing Dialogue

Management with Reinforcement Learning: Experiments with the NJFUN System.

Journal of Artificial Intelligence Research, 16:105–133.

[Singh and Sutton, 1996] Singh, S. P. and Sutton, R. S. (1996). Reinforcement Learning

with Replacing Eligibility Traces. Machine Learning, 22(1 - 3):123 – 158.

[Smart and Kaelbling, 2000] Smart, W. D. and Kaelbling, L. P. (2000). Practical Rein-

forcement Learning in Continuous Spaces. In Proc. 17th International Conf. on Machine

Learning, pages 903–910. Morgan Kaufmann, San Francisco, CA.

[Stone and Sutton, 2001] Stone, P. and Sutton, R. S. (2001). Scaling Reinforcement Learn-

ing Toward RoboCup Soccer. In Proc. 18th International Conf. on Machine Learning,

pages 537–544. Morgan Kaufmann, San Francisco, CA.

[Sutton, 1996] Sutton, R. S. (1996). Generalization in Reinforcement Learning: Success-

ful Examples Using Sparse Coarse Coding. In Touretzky, D. S., Mozer, M. C., and Has-

selmo, M. E., editors, Advances in Neural Information Processing Systems, volume 8,

pages 1038–1044. The MIT Press.

[Sutton, 2000] Sutton, R. S. (2000). Mountain Car Software.

[Sutton and Barto, 1998] Sutton, R. S. and Barto, A. G. (1998). Reinforcement Learning:

An Introduction. The MIT Press, Cambridge, Massachusetts.

[Sutton et al., 1999] Sutton, R. S., Precup, D., and Singh, S. P. (1999). Between MDPs

and Semi-MDPs: A Framework for Temporal Abstraction in Reinforcement Learning.

Artificial Intelligence, 112(1-2):181–211.

[Sutton and Santamaria, 1996] Sutton, R. S. and Santamaria, J. C. (1996). A Standard

Interface for Reinforcement Learning Software.

[Szepesvari and Smart, 2004] Szepesvari, C. and Smart, B. (2004). Software.

[Tesauro, 1995] Tesauro, G. (1995). Temporal Difference Learning and TD-Gammon.

Commun. ACM, 38(3):58–68.

70

[Wiewiora et al., 2003] Wiewiora, E., Cottrell, G. W., and Elkan, C. (2003). Principled

Methods for Advising Reinforcement Learning Agents. In International Conference on

Machine Learning, pages 792–799.

[Williams, 1992] Williams, R. J. (1992). Simple Statistical Gradient-Following Algorithms

for Connectionist Reinforcement Learning. Machine Learning, 8:229–256.

[Wingate, 2004] Wingate, D. (2004). Mountain Car.

71

Appendix A

Task Description Language

The Task specification is stored as a string with the following format:

V : E : O : A

V corresponds to the version number of the task description language. If an environment

implements new data structures/types that cannot be encoded in the current Task specifi-

cation language, then the user may publishe a new description language and increment the

version number. E corresponds to the type of task being solved. A character value of ‘e’

is used for episodic tasks ‘c’ for continuing tasks. The O and A correspond to observation

and action information respectively. The format of O and A are identical. We will describe

O only, for brevity.

O contains three components, separated by underscore characters (‘ ’) :

#dimensions dimensionTypes dimensionRanges

The #dimensions encodes an integer value specifying the number of dimensions in the

observation space. The dimensionTypes is a list specifying the type of each dimension

variable. The dimensionTypes list is composed of #dimensions components separated

by comma characters (‘,’) and delimited by angle brackets (‘[‘,’]’). Each comma-separated

value in the list describes the type of values assigned to each observation variable in the

environment. In general, observation variables can have one of the following 2 types: ‘i’

for integer values and ‘f’ for float values.

The dimensionRanges is a list specifying the range of each dimension variable in the

observation space. The dimensionRanges is composed of #dimensions components

72

separated by underscore characters and delimited by brackets. Each dimensionRanges

component specifies the upper and lower bound of values for each observation variable. An

observation space with 2 dimensions would have a dimensionRanges with the following

form:

[o1min, o1max] [o2min, o2max]

The dimensionRanges of an observation space with 1 or more unbounded values cannot

be representable in this way. We simply do not specify the range in the dimensionRanges

for any observation variables with unbounded values. For example, consider a problem

with 3 observation dimensions where the first and third observation variables have interval

values and the second has unbounded ratio value. The corresponding dimensionRanges

for this problem is encoded as:

[o1min, o1max] [,] [o3min, o3max]

The format of A (action space information) is identical to that of O. The definitions

above hold for action spaces.

To provide an illustration of the task specification language, consider the Mountain Car

problem. The actions available to the agent are full throttle reverse, zero throttle and full

throttle forward. The observation consists of the cars position and velocity. If we encode

Actions as 0, 1 and 2 and position and velocity as real values with finite ranges, we get the

following Task specification:

”1.2 : e : 2 [f, f] [−1.2, 0.5] [−.07, .07] : 1 [i] [0, 2]”

This Task specification provides the following information:

- Task specification language version 1.2 supported

- task is epsiodic

- observation space has two dimensions

- first observation variable has float values

- second observation variable has float values (2D continuous state)

- range of observation variable one is -1.2 to 0.5

73

- range of observation variable two is -0.07 to 0.07

- action space has one dimension

- action variable has integer values (discrete actions)

- range of action variable is 0 to 2

Consider a simple gridworld with Actions North, South, East and West and a single

dimension observation of grid position. If we encode actions as {0, 1, 2, 3} and position as

an integer between 0 and N − 1, we get the following Task specification:

“1 : e : 1 [i] [0, N − 1] : 1 [i] [0, 3]”

This Task specification provides the following information:

- Task specification language version 1.2 supported

- the task is episodic

- observation space has one dimension

- the observation variable has integer values (discrete state)

- range of the observation variable is 0 to N-1

- the action space has one dimension

- the action variable has integer values (discrete actions)

- range of action variable is 0 to 3

74

