
Advances in Reinforcement Learning and Their Implications for
Intelligent Control

Steven D. Whitehead*, Richard S. Suttoni and Dana H. Ballard*

1 Introduction
What is an intelligent control system, and how will we
know one when we see it? This question is hard to
answer definitively, but intuitively what distinguishes
intelligent control from more mundane control is the
complexity of the task and the ability of the control
system to deal with uncertain and changing conditions.
A list of the definitive properties of an intelligent con-
trol system might include some of the following:

0 Effective: The first requirement of any control
system, intelligent or not, is that it generate con-
trol actions that adequately control the plant (en-
vironment). The adverb adequately is intention-
ally imprecise since effective control rarely means
optimal, but more often means sufficient for the
purposes of the task.

0 Reactive: Equally important is that a system's
control be timely. Effective control is useless if
it is executed too late. In general, an intelligent
control system cannot require arbitrarily long de-
lays between control decisions. On the contrary,
it must be capable of making decisions on a mo-
ments notice-upon demand. If extra time is
available that can be exploited to improve the
quality of a decision, so much the better, but con-
trol decisions must be available any--lime [DB88].

0 Situated: An intelligent control system should
be tightly coupled to its environment, and its con-
trol decisions must be based on the immediate sit-
uation. A system must be capable of responding
to unexpected contingencies and opportunities as
they arise [AC87].

0 Adaptive An intelligent control system must use
its experience with the environment to improve
its performance. Adaptability allows a system to
refine an initially suboptimal control policy and
to maintain effective control in the face of non-
stationary environments.

Department of Computer Science, University of

' GTE Laboratories Incorporated, Waltham, MA 02254
Rochester, Rochester NY 14627

0 Robust under Incomplete and Uncertain
Domain Knowledge: An intelligent control sys-
tem must not depend upon a complete and accu-
rate domain model. Even for relatively simple,
narrow domains, it is extremely difficult to build
models that are complete and accurate [ShaSO].
If control depends upon a domain model, it must
suffice that the model be incomplete and inaccu-
rate. If domain knowledge is available, then the
system should be capable of exploiting i t , but it
should not be a prerequisite for intelligent con-
trol. A system that uses a domain model that is
learned incrementally through experience is to be
preferred over one that relies upon a complete a
priori model.
Perceptual Feasibility: The information pro-
vided directly by a system's sensors is necessar-
ily limited, and an intelligent control architecture
must take this limitation into account. Instead of
assuming that any and all information about the
state of the environment is immediately available,
intelligent system must be designed with limited
but flexible sensory-motor systems. Control algo-
rithms must consider actions for collecting neces-
sary state information as well as actions for af-
fecting change in the environment.

0 Mathematical Foundations: To facilitate per-
formance analysis, it is important that an intelli-
gent control system be based on a framework that
has a solid mathematical foundation.

While the above list is not particularly surprising
or new, few if any control systems have been built
that satisfy all of the requirements. For example,
the problem-solving architectures that have been the
dominate approach in Artificial Intelligence over the
past twenty years fall well short of these goals. These
problem-solving architectures are not particularly re-
active, situated, adaptive, or robust in the face of in-
complete and inaccurate domain models. They also
tend to make unrealistic assumptions about the ca-
pabilities of the sensory system. While extensions
and modifications to these architectures continue to
be popular, other approaches are being considered as

TH0333-5/90/0000/1289$01 .OO 0 1990 IEEE
1289

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

well.
This paper focuses on control architectures that are

based on reinforcement learning. In particular, we sur-
vey several recent advances in reinforcement learning
that have substantially increased its viability as a gen-
eral approach to intelligent control.

We begin by considering the relationship between re-
inforcement learning and dynamic programming, both
viewed as methods for solving multi-stage decision
problems [Wat89, BSWSO]. It is shown that many re-
inforcement learning algorithms can be viewed as a
kind of incremental dynamic programming; this pro-
vides a mathematical foundation for the study of rein-
focrement learning systems. Connecting reinforcement
learning to dynamic programming has also led to a
strong optimal convergence theorem for one class of
reinforcement learning algorithms and opens the door
for similar analyses of other algorithms [Wat89].

Next we show how reinforcement learning methods
can be used to go beyond simple trial-and-error learn-
ing. By augmenting them with a predictive domain
model and using the model to perform a kind of in-
cremental planning, their learning performance can be
substantially improved. These control architectures
learn both by performing experiments in the world
and by searching a domain model. ,Because the do-
main model need not be complete or accurate, it can
be learned incrementally through experience with the
world [SutSOa, SutSOb, WB89, Whi89, Lingo].

Finally, we discuss active sensory-motor systems
for feasible perception and how these systems inter-
act with reinforcement learning. We find that, with
some modification, many of the ideas from reinforce-
ment learning can be successfully combined with ac-
tive sensory-motor systems. The system then learns
not only an overt control strategy, but also where to
focus its at,tention in order to collect necessary sensory
information [WBSOb].

The results surveyed in this paper have been re-
ported elsewhere (primarily in the machine learning
literature). The objective here is to summarize them
and to consider their implications for the design of in-
telligent control architectures.

2 Reinforcement Learning for
Intelligent Control

What is reinforcement learning? A reinforcement
learning system is any system that through interac-
tion with its environment improves its performance by
receiving feedback in the form of a scalar reward (or
penalty) that is commensurate with the appropriate-
ness of the response. By improves its performance,
we mean that the system uses the feedback to adapt
its behavior in an effort to maximize some measure
of the reward it receives in the future. Intuitively,
a reinforcement learning system can be viewed as a
hedonistic automaton whose sole objective is to maxi-
mize the positive (reward) and minimize the negative

(punishment).
Recent examples of controllers based on reinforce-

ment learning include Barto e t al.’s pole balancer
[BSA83, Sut841, Grefenstette’s simulated flight con-
troller [Greg01 , Lin’s animats [Lingo], and Franklin’s
adapt,ive robot controllers [Fra88], among others.

2.1 Evaluating Reinforcement Learning

Reinforcement learning is emerging as an important
alternative to classical problem-solving approaches to
intelligent control because it possesses many of the
properties for intelligent control that problem-solving
approaches lack. In many respects the two approaches
are complimentary and it is likely that eventual intel-
ligent control architectures will incorporate aspects of
both.’

Following is a discussion of the degree to which cur-
rent reinforcement learning systems achieve each of the
properties that we associate with intelligent control.

Effective: Reinforcement learning systems are
effective in the sense that they eventually learn
effective control strategies. Although a system’s
initial performance may be poor, with enough in-
teraction with the world it will eventually learn
an effective strategy for obtaining reward. For
the most part, the asymptotic effectiveness of re-
inforcement learning systems has been validated
only empirically, however recent advances in the
theory of reinforcement learning have yielded
mathematical results that guarantee optimality in
the limit for an important class of reinforcement
learning systems [Wat89].

Reactive: Decision-making in reinforcement
learning systems is based on a policy func-
tion which maps situations (inputs) directly into
actions (outputs) and which can be evaluated
quickly. Consequently, reinforcement learning
systems are extremely reactive.

Situated: Reinforcement learning systems are
situated because each action is choser? based on
the current state of the world.

Adaptive: Reinforcement learning systems are
adaptive because they use feedback to improve
their performance.

Incomplete and Uncertain Domain Knowl-
edge: Reinforcement learning systems do not de-
pend upon internal domain models because they
learn through trial-and-error experience with the
world. However, when available, they can ex-
ploit domain knowledge by 1) using prior knowl-
edge about the control task to determine a good

‘To some extent this int,egration has already begun to
occur, with the development of reinforcement learning sys-
tem that learn and use internal domain models to improve
overall performance.

1290

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

initial policy [Fra88], 2) using an internal do-
main model to perform mental experiments in-
stead of relying solely upon trial-and-error ex-
periences, and 3) using a domain model to gen-
eralize the results of experiments in the world
[YSUBSO]. Also, because of the incremental na-
ture of reinforcement learning, the models used
need not be complete or accurate. This has lead
to systems that profit from using models acquired
through trial-and-error interaction with the world
[SutSOa, SutSOb, Whi89, Lingo].
Pe rcep tua l Feasibility: Most reinforcement
learning systems have not addressed the issue of
perceptual feasibility. However, recent results in-
dicate that many of the ideas from reinforcement
learning can be carried over (if indirectly) to sys-
tems that must actively control their sensory pro-
cesses [WBSOa, WBSOb].
Mathemat ica l Foundations: Although rein-
forcement learning has been primarily an empir-
ical science, there is a growing body of theory
[BA85, Wi188, Sut88, Wat89] Advances relating
reinforcement learning to dynamic programming
are beginning to provide a solid mathematical
foundation, as discussed below.

3 Reinforcement Learning as
Incremental Dynamic Programming

Like much of artificial intelligence, reinforcement
learning is primarily an empirical science, and the sys-
tems developed to solve reinforcement learning prob-
lems have been validated primarily through extensive
simulation studies. However, this trend is changing,
and a mathematical theory of reinforcement learning
is beginning to emerge. The catalyst for this change
has been the identification of the relationship between
reinforcement learning and dynamic programming. In
particular, Watkins has shown that certain reinforce-
ment learning algorithms can be viewed as Monte
Carlo versions of dynamic programming algorithms for
solving multi-stage decision problems [Wat89] .2

This connection has had three important implica-
tions for reinforcement learning:

It has lead to a strong optimality theorem con-
cerning the asymptotic performance of an impor-
tant class of reinforcement learning algorithms.
It has tied reinforcement learning to a well estab-
lished mathematical foundation on which further
analytical studies can be based.
It has clarified our intuitive understanding of re-
inforcement learning and has directly contributed
to the development of extended architectures that

'To our knowledge, Werbos first made the connection
between reinforcement learning and the theory of multi-
stage decision problems. However, Watkins solidified the
connection and was first to obtain theoretical results.

are more general and outperform previous archi-
tectures (cf. Sections 4 and 5).

3.1 Mul t i - s t age Decision Problems
Multi-stage decision problems are modeled as Markov
decision processes. A Markov decision process is de-
fined by the tuple (S, A , T, RI, where S is the set of
possible states the world can occupy; A is the set of
possible actions a controller may execut,e to change the
state of the world; T is the state transition function;
and R is the reward function. Usually, S, and A are
discrete and finite. In a discrete-time Markov deci-
sion process, time advances by discrete, unit length
quanta; t = 0 , 1 , 2 , At each time step the world oc-
cupies one state, st E S and a time step occurs when
the controller applies an action, at E A. The result
of executing an action is a new state st+l and the re-
ceipt of a reward rt+l. The state transition function,
T , models the effects of applying different actions in
different states and maps state-action pairs into a re-
sulting new state. In general, transitions are proba-
bilistic so that applying action a in state s yields a
new state s' = T (s , U) that is drawn from a probabil-
ity distribution over S. The probabilities that govern
the transition function depend only upon the action
selected and the state in which it was applied. These
probabilities are assumed to be known and are denoted
by Pz,y(a) where

Pc,y(a) = P a x , a) = Y). (1)
As with transitions, rewards are generated probabilis-
tically and R is a probabilistic function of the state-
action pair executed. The distributions governing R
depend only upon the state-action pair executed, and
are assumed to be known.

Given a description of a Markov decision process,
the objective is to find a cont.ro1 policy (i.e. a mapping
from states to actions) that , when executed by the
controller, maximizes some measure of the cumulative
reward received over time.

There are numerous measures of cumulative reward.
One of the most common is a measure based on a
discounted sum of the reward received over time. This
sum is called the return and for time t is defined as

M

n=O

where y is a discount factor between 0 and 1. Be-
cause the process is stochastic, the objective is to find
a decision policy that maximizes the expected return.

For a fixed policy A, define V, (z) to be the expected
return given that the process begins in state z and fol-
lows policy A thereafter. V, is called the utility func-
tion for policy A and can be used to define optimality
criteria. The objective is to find a policy whose utility
function is uniformly maximal for every state. That
is, to find an optimal policy A* such that

(3)

1291

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

The optimality theorem from the theory of multi-
stage decision problems guarantees that for a st.ation-
ary, discrete time, discrete state Markov decision pro-
cess there exists a deterministic decision policy that
is optimal. Furthermore, a policy a is optimal if and
only i f

QT(z, .(.)I 1 max(Q=(z, 6)) vz,s (4)

where Q x (z , a) , called the action-value for the state-
action pair (z , a) , is defined as the return the system
expects to receive given that it starts in state z, ap-
plies action a next, and then follows policy a thereafter
[Be157, Ber871.

3.2 Policy Optimization by Dynamic

Two of the most important dynamic programming
methods for computing the optimal policy for a given
Markov decision process are policy iteration and value
iteration. Policy iteration begins with an arbitrary
policy and monotonically improves it until it converges
on an optimal policy. The principle idea is simply to
choose a policy, a; compute V,, the expected return
associated with that policy; and then improve the pol-
icy by replacing actions whose local counterparts out-
perform them. In value iteration, the optimal utility
function is directly computed without going through a
series of suboptimal policies. Once the optimal utility
function has been obtained it is then straightforward
to compute the optimal policy via Equation 4.

3.3 The Relationship Between

b d

Programming

Reinforcement Learning and Multi-Stage
Decision Problems

There is a close relationship between reinforcement
learning and using dynamic programming to solve
multi-stage decision problems. In both the world is
characterized by a set of states, a set of possible ac-
tions, and a reward function. In both the objective is
to find a decision policy that maximizes the cumula-
tive reward received over time. There is an important
difference though. When solving a multi-stage deci-
sion problem, the analyst (presumably the designer
of the eventual control system) has a complete (al-
beit stochastic) model of the environment's behavior.
Given this information, the analyst can compute the
optimal control policy with respect to the model, as
outlined above. In reinforcement learning, the set of
states, and the set of possible actions is known a pri-
ori, but the effects of action on the environment and
on the production of reward is not. Thus, the designer
cannot compute an optimal policy a priori. Instead
the control system must learn an optimal policy by
experimenting in the environment.

3.4 Q-learning
In addition to recognizing the intrinsic reldionship be-
tween reinforcement learning and dynamic program-
ming, Watkins has made an important contribution

to reinforcement learning by suggesting a new learn-
ing algorithm called Q-learning. The significance of
Q-learning is that one version of it, 1-step Q-learnzng,
when applied to a Markov decision process, can be
shown to converge to the optimal policy, under appro-
priate conditions. 1-step Q-learning is the first rein-
forcement learning algorithm to be shown convergent
to the optimal policy for decision problems involving
delayed reward.

The connections between Q-learning and dynamic
programming are strong: 1-step Q-learning is moti-
vated directly by value-iteration and its convergence
proof is based on a generalization of the convergence
proof for value-iteration [Wat89].

In value-iteration, the optimal policy is obtained in
the limit by solving a series of finite horizon tasks. The
equations for computing each cycle in the iteration,
(i.e. V" from Vn-') are [Wat89]:

Q"(z, a) = E[R(x, a)] + rEIVn-l(T(z, a))] (5)
V (z) = maxQn(z, U) (6)

&A
an(z) = a such that Q"(z,a) = V"(2) (7)

where i?', V" , and Q" are the optimal policy, value,
and action-value functions for the n-stage task, respec-
tively.

In reinforcement learning these equations can-
not be solved iteratively since the statistics re-
quired to compute the expectations are unavailable.
That is, E[R(z,a)] and Pz,y(u) (needed to compute
E[V"-l(T(z, U))]) are unknown. The principle of 1-
step Q-learning is to solve these equations incremen-
tally by using experience gained through interactions
with the actual environment to estimate the expec-
tations in Equation 5. Replacing the expectations in
Equation 5 with the values observed during a trial,
leads to the following updating rules:

Qt+l(zt , at) = (1-@)Qt(x t , at)+@[.t+r%(zt+~>] (8)

a € A
fi+l(z) = maxQt+l(z, a> (9)

%t+l = a such that Qt+l(c ,a) = @+l(z) (10)
where and Qt are the system's estimates for the
optimal utility and action-value functions at time t .
Notice that the bracketed term on the right hand side
of Equation 8 is an estimate of the system's future
return that is based on the actual results of execut-
ing 1-step, at in state zt at time t (i.e., it estimates
the term on the right-hand side of Equation 5). For
n-step Q-learning, this 1-step estimate is replaced by
its n-step counterpart, based on the actual results of
executing n actions. In this case, the bracketed term
becomes:

[.t + y.ti-1 + ...P.*+ "-1 +r"@(zt+n)] (11)
Watkins has shown that any 1-step Q-learning sys-

tem that 1) decreases its learning rate at an appropri-
ate rate and 2) tests each state-action pair infinitely
often over the coarse of its lifetime is guaranteed to
converge to an optimal policy [Wat89].

1292

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

4 Beyond Trial and Error Learning:
Incremental Planning

Reinforcement learning and dynamic programming lie
at opposite ends of a spectrum. At one end, rein-
forcement learning systems learn control policies based
solely on trial-and-error interactions with the environ-
ment. No dynamical model of the world is needed or
used. At the other end, dynamic programming is used
to compute control policies based solely on a complete
dynamical model of the Markov decision process. Dy-
namic programming does not rely on actual experience
with the world.

The principle advantage of dynamic programming is
that, if a problem can be specified in terms of a Markov
decision process, then it can be analyzed and an op-
timal policy obtained a priori. Other than computa-
tional complexity, the two principle disadvantages of
dynamic programming are 1) for many tasks, it is diffi-
cult to specify the dynamical model and 2) because dy-
namic programming determines a fixed control policy
a priori, it does not provide a mechanism for adapting
the policy to compensate for non-stationary dynamics
or modeling errors.

Reinforcement learning has the complementary ada-
vantages: 1) it does not require a prior dynamical
model of any kind, but learns based on experience
gained directly from the world, and 2) to some degree,
it can track the dynamics of non-stationary systems.
The principle disadvantage of reinforcement learning
is that in general many trials (repeated experiences)
are required to learn an optimal control strategy, es-
pecially if the system starts with a poor initial policy.

This suggest that the respective weaknesses of these
two approaches may be overcome by integrating them.
That is, if a complete, possibly inaccurate, model of
the task is available a priori, dynamic programming
can be used to develop the initial policy for a reinforce-
ment learning system. A reasonable initial policy can
substantially improve the system’s initial performance
and reduce the time required to reach an acceptable
level of performance [Fra88]. Conversely, adding an
adaptive, reinforcement learning component to an oth-
erwise fixed controller whose policy is determined by
dynamic programming can compensate for an inaccu-
rate model.

Although this simple approach helps to mitigate the
poor initial performance of naive reinforcement learn-
ing systems, it does not in itself improve their overall
learning rate. It has been proposed by Sutton and
Whitehead that learning rate can be improved and
other advantages obtained if reinforcement learning
systems are, in addition, augmented with a predic-
tive model of the environment [SutSOa, SutSOb, WB89,
Whi89j. These Dyna architectures are based on the
idea that planning is like trial-and-error learning from
hypothetical experience. That is, the model is used
to construct hypothetical experiences, and then these
are learned from just as if they had actually happened.

An outline‘ of a Dyna architecture is shown in Figure 1.
The two main components are a reinforcement learning
subsystem, which can employ any number of reinforce-
ment learning algorithms (e.g Q-learning, AHC algo-
rithms, Bucket Brigade, etc), and a predictive model,
which mimics the one-step input-output behavior of
the world. The significance of the internal model in
Dyna architectures is that i t provides a fast and inex-
pensive mechanism for propagating the effects of ac-
tual experience throughout the system.

To see how an internal model can help, consider a
l-step Q-learning system that at time t , applies ac-
tion at in state zt and as a result obtains the new
state zt+l and receives the reward rt+l. In l-step
Q-learning, the only immediate effect of this experi-
ence is to change the functional values associated with
state zt. That is, Q (z t , a t) , V (z t) , and x(z t) stand
to change, but no other values will. Eventually the
ramifications of the experience will be propagated to,
states other than zt. For example, changes in V (q)
effect the value estimates of other neighboring states
that are causally connected to zt (i.e., can immedi-
ately proceed E t) . These states, in turn, will effect the
utility estimates of their causally connected neighbors,
and so on. In general, a single experience can have
ramifications that effect the policy and utility value of
every state. What makes l-step &-learning slow is that
propagation occurs only one step at a time. The tran-
sitions in a sequence must be traversed O(n) times, in
order for the effects of an event to be propagated back
n-st ages .3

Using an internal model to perform hypothetical ex-
periments is a fast and inexpensive mechanism for
propagating utility information throughout the sys-
tem. Hypothetical reasoning is fast, because the ef-
fects of actions can be simulated faster than they can
be performed in the real world, and because hypo-
thetical experiments need not be tied to the current
state, but can be performed in any state that can be
imagined. Hypothetical reasoning is also inexpensive
because the reward and punishment received by the
system is imaginary. As a result, the amount of time
actually exposed to dangerous situations and the cu-
mulative punishment received for performing badly is
reduced.

In addition to improving learning rate, Dyna archi-
tectures exhibit a number of other important prop-
erties. First hypothetical experiences in Dyna archi-

Other reinforcement learning algorithms exist that use
memory (or “eligibility”) traces to propagate back the ef-
fects of an action to the states that preceed it. Most
notable are the algorithms based on Temporal Difference
Methods [Sut88]. These algorithms mitigate the propaga-
tion problem to some degree. However, they do not do a
complete job because they only effect the sequence of states
that immediately proceeded the event. Other trial-and-
error experiments are necessary to propagate the changes
to other causally related states not found in the experi-
enced sequence.

1293

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

tectures are incremental. A hypothetical experience
can be as short as the simulation of one action and
yet be completely effective. Thus, Dyna architectures
provide a means for integrating reactive control with
search based planning. Also Dyna architectures do not
depend upon complete and accurate domain models.
Instead they can use partial models that are learned
as experience is gained in the world.

5 Beyond Perfect Perception: Active
Representations

For the most part, reinforcement learning research has
avoided issues of perception. In most reinforcement
learning systems the sensory system is either trivially
simple or abstracted out of the model altogether. The
usual assumption, as in a Markov decision process, is
that after each action the system observes the state of
the world. The “state” of the world is defined by the
values of the system’s sensory inputs, and usually these
inputs are carefully chosen by the system designer.

In more realistic learning tasks, complete knowledge
of the task cannot be exploited in the design of the sen-
sory system. In this case, the system must learn which
aspects of the world are relevant t o the task on its own.
Before learning to solve the problem, the system must
learn to represent it. One approach to this problem is
to build a sensory system that is as complete as possi-
ble. A more practical approach is t o consider systems
that can flexibly sense different aspects of the world,
but that on a moment-by-moment basis only register a
limited amount of information. For example, one can
imagine an autonomous robot that possesses a large
repertoire of sensory routines that it can use to ana-
lyze the world (say 100 or so), but because of time,
space, and processing constraints, it can only afford to
apply a few at a time (say less than 10) [U1184, TS901.
Deictic (or functional indexical) representations offer
another example of this active approach to perception
[AC87, Agr88, ChaSO]. In a deitic representation, the
system is capable of attending to only a limited num-
ber of objects at a time, and the properties of those
objects form the basis of the system’s sensory inputs.
By changing its focus of attention, the system can rep-
resent different parts of the world and obtain a variety
of representations for the same situation.

Whitehead and Ballard have investigated control ar-
chitectures that integrate active perception and rein-
forcement learning [WBSOb]. In the following subsec-
tions we present their three main contributions: 1) an
abstract model that formalizes the functional relation-
ships that exist between the world, the sensory-motor
system, and the embedded decision system; 2) analy-
ses and demonstrations that the integration of active
perception and reinforcement learning is non-trivial,
due to aliasing in the representation of world states;
and 3) a new reinforcement learning algorithm that
overcomes the difficulties caused by active perception
for a restricted class of tasks.

5.1 The Formal Model

The formal model describing a learning agent and the
world in which it is embedded is shown in Figure 2.
The external world is modeled as a Markov decision
process (whose statistical parameters are unknown to
the agent). The decision process is characterized by
the tuple (S E , A E , T , R) where S E is the set of ex-
ternal world states, AE is the set of external (overt)
actions the agent can perform on the world, T is the
transition function, R is the reward function.

The agent has two major subsystems: an active
sensory-motor subsystem and a decision subsystem.
The sensory-motor system implements three functions:
1) a perceptual function P ; 2) an internal configura-
tion function 1; and 3) a motor function M . The
purpose of the sensory-motor subsystem is to ground
internal perceptions and actions in the external world.
On the sensory side, the system translates external
world states into the agent’s internal representation.
Since perception is active, this mapping is dynamic
and dependent upon the configuration of the sensory-
motor apparatus. Formally, the relationship between
external world states and the agent’s internal represen-
tation is modeled by the perceptual function P , which
maps the set of possible world states S E and the set of
possible sensory-motor configurations C onto the set
of possible internal representations S I . On the motor
side, the agent has a set of internal motor commands,
A I , that affect the model in two ways: they can either
change the state of the external world (by being trans-
lated into external actions, AE), or they can change
the configuration of the sensory-motor subsystem. In-
ternal commands that change the state of the exter-
nal world are called overt actions and commands that
change the configuration of the sensory-motor system
are called perceptual actions. As with perception, the
configuration of the sensory-motor system relativizes
the effects of internal commands. This dependence is
modeled by the functions M and Z, which map inter-
nal commands and sensory-motor configurations into
actions in the external world and into new sensory-
motor configurations, respectively.

The remaining component of the agent is the deci-
sion subsystem. This subsystem is like a homunculus
that sits inside the agent’s head and controls its ac-
tions. The decision subsystem corresponds to the re-
inforcement learning systems discussed previously ex-
cept now it is embedded inside the agent and buffered
from the external world by the sensory-motor system.
On the sensory side, the decision subsystem has access
only to the agent’s internal representation, not to the
state of the external world. Similarly, on the motor
side, the decision subsystem generates internal action
commands that are interpreted by the sensory-motor
system. Formally, the decision subsystem implements
a behavior function f? that maps sequences of internal
states and rewards (S I x 3)’ into internal actions, AI,

1294

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

5.2 Percep tua l Aliasing
Interposing an active sensory-motor system between
the world and the decision system can lead to decision
problems which cannot be learned using standard re-
inforcement learning techniques. The problem arises
from the many-to-many mapping between states in the
external world and states in the internal representa-
tion. That is, a state se E SE in the world may map
to several internal states, depending upon the configu-
ration of the sensory-motor system. More importantly,
a single internal state, si E S I , may represent multiple
world states. This overlapping between the world and
the agent's internal representation is called perceptual
aliasing [WBSOb].

Perceptual aliasing can transform a problem that
is Markovian into one that is not. Intuitively, per-
ceptual aliasing interferes with reinforcement learning
by allowing the decision subsystem to confound (per-
ceive as the same) external world states that may have
different utility values. For example, suppose that de-
pending upon the configuration of the sensory-motor
system, an internal state s, can represent one of two
world states, S E 1 or SE^. In reinforcement learning,
utility values are estimated by averaging the rewards
accumulated over time. Assuming the system per-
forms optimally, the utility- estimate learned for the
internal state s, (denoted V I (S ~ >) will correspond to
a sampled average of the utilities for S E 1 and SE^. If
both states are encountered equally often then the util-
ity estimate for state s, will be approximately equal
to their arithmetic mean

If the utility values for SEI and SEZ are the same,
then the learned estimate for s, will reflect the actual
return the system can expect to receive whenever it
finds itself in state s,. However, when the utility val-
ues for S E 1 and SEZ differ (say v,;:(S,yl) << vr;:(s~2))
then V (S ,) will fail to accurately estimate the expected
utility associated with the current world state. If the
external world is in state S E 1 then C'(Sa) will over-
estimate the expected return; if the world is in state
 SE^ then V1(sa) will underestimate the expected re-
turn. This potential for a mismatch in estimating the
utility of world states, caused by perceptual aliasing,
interferes with the decision system's ability to learn
the optimal policy.

5.3 The Lion Algor i thm
Whitehead and Ballard have recently proposed a new
learning algorithm, called the lion algorithm that over-
comes the difficulties caused by perceptual aliasing for
deterministic tasks. The lion algorithm is based on
the notion of consistent internal states. Intuitively,
an internal state is consistent if all the external world
states it represents are the same in the following sense:
1) they all have the same optimal utility values, and 2)

the optimal actions for each map into the same inter-
nal command to be executed by the decision subsys-
tem. In the above example, sa is inconsistent because

The key property of consistent internal states in de-
terministic tasks is that whenever one is encountered,
the optimal return from that point forward is fixed
and independent of the actual state of the external
world. For inconsistent internal states the optimal re-
turn depends upon the actual state of the world and
cannot be absolutely determined from knowledge of
the inconsistent internal state. In general, each inter-
nal state defines an equivalence class of external world
states. A consistent internal state is useful because (by
definition) it guarantees that every world state in its
equivalence class has the same utility and same opti-
mal action command. Inconsistent internal states are
not useful for predicting the utility of the current sit-
uation or the optimal action to be executed next.

The principle idea of the lion algorithm is to ac-
tively configure the sensory-motor system so that at
each time step the system's internal representation is
consistent and the overt action the system chooses to
execute next is based upon the estimates of consistent
representations. Since perceptual aliasing interferes
with reinforcement learning by injecting inconsistent
states into the decision process, the lion algorithm ac-
tively detects and prevents them from participating in
the decision making process. The basic steps in the
control cycle are as follows:

1. Execute a series of perceptual actions in order to
collect a set of internal representations for the
current world state.

2. Choose one internal state that is believed to be
consistent from the set collected in step 1. Call
this state the lion.

8. Choose the next oved action to execute based on
the policy value for the lion.

4. Use the lion state, along with the return received
on the last t ime step i o update the utility and
action-value estimates for the previous cycle.

The key operation in the lion algorithm is to select,
for each situation, one internal state that is believed
to be consistent (i.e., Step 2 above). This operation is
achieved by differentiating between consistent and in-
consistent states based on the observation that, for de-
terministic tasks, the variance in the utility estimates
for inconsistent states will always be non-zero, whereas
the variance for consistent states will tend to zero over
time. For details see [WBSOb].

The lion algorithm has been demonstrated in a sys-
tem that learns to solve a simple class of block ma-
nipulation tasks. The significance of the demonstra-
tion is not the difficulty of the task per se, but that
the system employed an active (deictic) sensory-motor
system, and learned not only how to solve the prob-
lem but also how to control its sensory apparatus to

V r L (s E 1) f: V x L (s E 2) .

1295

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

attend to the objects relevant t o the task. Although
the results are preliminary, the idea of learning task-
dependent representations using reinforcement learn-
ing, active sensory-motor systems, and the notion of
consistency is an important step towards the develop-
ment of ever more autonomous learning agents.

6 Summary

In this paper we have surveyed a number of recent
advances that have contributed to the viability of re-
inforcement learning approaches to intelligent control.
These advances include the formalization of the rela-
tionship between reinforcement learning and dynamic
programming, the use of internal predictive models to
improve learning rate, and the integration of reinforce-
ment learning with active perception. Based on these
and other results, we conclude that control architec-
tures based on reinforcement learning are now in a
position to satisfy many of the criteria associated with
intelligent control.

References

[AC87]

h - 8 8 1

[BA851

[Bel 5 71

[B e N I

[B SA831

[B S W9 01

Philip E. Agre and David Chapman. Pengi:
an implementation of a theory of activity.
In AAAI, pages 268-272, 1987.

Philip E. Agre. The Dynamic Structure of
Everyday Life. PhD thesis, MIT Artificial
Intelligence Lab., 1988. (Tech Report No.
1085).

A. G . Barto and P. Anandan. Pattern
recognizing stochastic learning automata.
IEEE Bansactions on Systems, Man, and
Cybernetics, 15:360-375 , 1985.

R. E. Bellman. Dynamic Programming.
Princeton University Press, Princeton, NJ,
1957.

D. P. Bertsekas. Dyanmic Program-
ming: Deterministic and Stochastic Mod-
els. PrenticeHall, 1987.

Andrew G . Barto, Richard S. Sutton, and
Charles W. Anderson. Neuron-like ele-
ments that can solve difficult learning con-
trol problems. IEEE Trans. on Systems,
Man, and Cybernetics, SMC-13(5):834-
846,1983.

Andrew B. Barto, Richard S. Sutton, and
Chris J. C. Watkins. Learning: and se-
quential decision making. In M. Gabrial
and J . W. Moore, editors, Learning and
Computational Neuroscience. hilIT Press,
Cambridge, MA, 1990. (Also COINS
Tech Report 89-95, Dept. of Computer and
Information Sciences, University of Mas-
sachusetts, Amherst, MA 01003).

[ChaSO]

[DB88]

[Fr a8 81

[Gre89]

[Lingo]

[S ha9 01

[Sut84]

[Sut88]

[Su t 9 0 a]

[Su t 90 b]

[TS90]

[U11841

[Wat89]

David Chapman. Vision, Instruction, and
action. PhD thesis, MIT Artificial Intelli-
gence Laboratory, 1990. (Technical Report
1204).
Thomas Dean and Mark Boddy. An analy-
sis of time-dependent planning. In Proceed-
ings AAAI-88, pages 49-54, 1988.
Judy A. Franklin. Refinement of robot mo-
tor skills through reinforcement learning.
In Proceedings of the 27th IEEE Confer-
ence on Decision and Control, Austin, TX,
December 1988.
John J . Grefenstette. Incremental learn-
ing of control strategies with genetic algo-
rithms. In Proceedings of the Sixth Inter-
national Workshop on Machine Learning.
Morgan Kaufmann, June 1989.
Long-Ji Lin. Self-improving reactive
agents: Case studies of reinforcement learn-
ing frameworks. In Proceedings of the First
International Conference on the Simulation
of Adaptive Behavior, September 1990.
Steve Shafer. Why we can’t model the
physical world. (for the 25th anniversary
of the ChilU CS Dept.), September 1990.
Richard S. Sutton. Temporal Credit As-
signment In Rein forcement Learning. PhD
thesis, University of Massachusetts at
Amherst, 1984. (Also COINS Tech Report

Richard S. Sutton. Learning to predict by
the method of temporal differences. Ma-
chine Learning, 3(1):9-44, 1988.
Richard S. Sutton. First results with
DYNA, an int,egrated architecture for
learning, planning, and reacting. In Pro-
ceedings of the A A A I Spring Symposium
on Planning an Uncertain, Unpredictable,
or Changing Environments, 1990.
Richard S. Sutton. Integrating architec-
tures for learning, planning, and reacting
based on approximating dynamic program-
ming. In Proceedings of the Seventh Inter-
national Conference on Machine Learning,
Austin, TX, 1990. hilorgan Kaufmann.
Riling Tan and Jeffery C. Schlimmer. Two
case studies in cost-sensitive concept ac-
quistition. In Proceedings of AAAI-SO,
1990.
Shimon Ullman. Visual routines. Cogni-
tion, 18:97-159, 1984. (Also in: Visual Cog-
nition, S. Pinker ed., 1985).
Chris Watkins. Learning from d e l a y e d re-
wards. PhD thesis, Cambridge Universit,y,
1989.

84-02).

1296

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

[WB89]

[W B9Oa]

[WBSOb]

[Whi89]

[Wi188]

[YSUBSO]

Steven D. Whitehead and Dana H. Ballard.
A role for anticipation in reactive systems
that learn. In Proceedings of the Sixth In-

The agent
1

I
I
I
I

Aclion I
I

ternational Workshop on Machine Learn-
ing, Ithaca, NY, 1989. Morgan Kaufinann. I I

Steven D. Whitehead and Dana H. Ballard.
Active perception and reinforcement learn-
ing. In Proceedings of the Seventh Inter-
national Conference on Machine Learning.

r--------------------

I
I
I
I
I
I

Morgan Kaufmann, June 1990. (Also to
appear in Neural Computation).
Steven D. Whitehead and Dana H. Ballard.
Learning to perceive and act. Technical Re-
port T R 331 (revised), Computer Science
Dept., University of Rochester, 1990. (Also
submitted to Machine Learning).
Steven D. Whitehead. Scaling in rein-
forcement learning. Technical Report T R
304, Computer Science Dept., University of
Rochester, 1989.
R. J . Williams. Toward a theory of
reinforcement-learning connectionist sys-
tems. Technical Report NU-CCS-$8-3, Col-
lege of Computer Science, Northeastern
University, Boston, MA, 1988.
Richard C. Yee, Sharad Saxena, Paul E.
Utgoff, and Andrew G. Barto. Explaining
temporal-differences to create useful con-
cepts for evaluating states. In Proceedings
of AAAI-90, 1990.

I I C I

The world

Figure 1: Dyna architectures are organized around two
basic components: an adaptive decision system (used
for control) and an adaptive internal model (used to
predict the input-output behavior of the world). The
model is used to perform hypothetical experiments.
A switch is used to modulate the decision system’s
interaction with the world and the model.

The world

Et4cz
R

I
I
I
I
I
I
I

SI
I I

4 AI
B I

I
I

-

I

I
I
I
I
I
I
I
I
I
I
I

Figure 2: A formal model for an agent with an embed-
ded learning subsystem and an active sensory-motor
subsystem.

1297

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 30, 2009 at 17:01 from IEEE Xplore. Restrictions apply.

