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1 Introduction 
What is an intelligent control system, and how will we 
know one when we see it? This question is hard to 
answer definitively, but intuitively what distinguishes 
intelligent control from more mundane control is the 
complexity of the task and the ability of the control 
system to deal with uncertain and changing conditions. 
A list of the definitive properties of an intelligent con- 
trol system might include some of the following: 

0 Effective: The first requirement of any control 
system, intelligent or not, is that it generate con- 
trol actions that adequately control the plant (en- 
vironment). The adverb adequately is intention- 
ally imprecise since effective control rarely means 
optimal, but more often means sufficient for the 
purposes of the task. 

0 Reactive: Equally important is that a system's 
control be timely. Effective control is useless if 
it is executed too late. In general, an intelligent 
control system cannot require arbitrarily long de- 
lays between control decisions. On the contrary, 
it must be capable of making decisions on a mo- 
ments notice-upon demand. If extra time is 
available that can be exploited to improve the 
quality of a decision, so much the better, but con- 
trol decisions must be available any--lime [DB88]. 

0 Situated: An intelligent control system should 
be tightly coupled to its environment, and its con- 
trol decisions must be based on the immediate sit- 
uation. A system must be capable of responding 
to unexpected contingencies and opportunities as 
they arise [AC87]. 

0 Adaptive An intelligent control system must use 
its experience with the environment to improve 
its performance. Adaptability allows a system to 
refine an initially suboptimal control policy and 
to maintain effective control in the face of non- 
stationary environments. 
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0 Robust under Incomplete and Uncertain 
Domain Knowledge: An intelligent control sys- 
tem must not depend upon a complete and accu- 
rate domain model. Even for relatively simple, 
narrow domains, it is extremely difficult to build 
models that are complete and accurate [ShaSO]. 
If control depends upon a domain model, it must 
suffice that the model be incomplete and inaccu- 
rate. If domain knowledge is available, then the 
system should be capable of exploiting i t ,  but it 
should not be a prerequisite for intelligent con- 
trol. A system that uses a domain model that is 
learned incrementally through experience is to be 
preferred over one that relies upon a complete a 
priori  model. 
Perceptual Feasibility: The information pro- 
vided directly by a system's sensors is necessar- 
ily limited, and an intelligent control architecture 
must take this limitation into account. Instead of 
assuming that any and all information about the 
state of the environment is immediately available, 
intelligent system must be designed with limited 
but flexible sensory-motor systems. Control algo- 
rithms must consider actions for collecting neces- 
sary state information as well as actions for af- 
fecting change in the environment. 

0 Mathematical Foundations: To facilitate per- 
formance analysis, it is important that an intelli- 
gent control system be based on a framework that 
has a solid mathematical foundation. 

While the above list is not particularly surprising 
or new, few if any control systems have been built 
that  satisfy all of the requirements. For example, 
the problem-solving architectures that have been the 
dominate approach in Artificial Intelligence over the 
past twenty years fall well short of these goals. These 
problem-solving architectures are not particularly re- 
active, situated, adaptive, or robust in the face of in- 
complete and inaccurate domain models. They also 
tend to make unrealistic assumptions about the ca- 
pabilities of the sensory system. While extensions 
and modifications to these architectures continue to 
be popular, other approaches are being considered as 
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well. 
This paper focuses on control architectures that are 

based on reinforcement learning. In particular, we sur- 
vey several recent advances in reinforcement learning 
that have substantially increased its viability as a gen- 
eral approach to intelligent control. 

We begin by considering the relationship between re- 
inforcement learning and dynamic programming, both 
viewed as methods for solving multi-stage decision 
problems [Wat89, BSWSO]. It  is shown that many re- 
inforcement learning algorithms can be viewed as a 
kind of incremental dynamic programming; this pro- 
vides a mathematical foundation for the study of rein- 
focrement learning systems. Connecting reinforcement 
learning to dynamic programming has also led to a 
strong optimal convergence theorem for one class of 
reinforcement learning algorithms and opens the door 
for similar analyses of other algorithms [Wat89]. 

Next we show how reinforcement learning methods 
can be used to go beyond simple trial-and-error learn- 
ing. By augmenting them with a predictive domain 
model and using the model to perform a kind of in- 
cremental planning, their learning performance can be 
substantially improved. These control architectures 
learn both by performing experiments in the world 
and by searching a domain model. ,Because the do- 
main model need not be complete or accurate, it  can 
be learned incrementally through experience with the 
world [SutSOa, SutSOb, WB89, Whi89, Lingo]. 

Finally, we discuss active sensory-motor systems 
for feasible perception and how these systems inter- 
act with reinforcement learning. We find that,  with 
some modification, many of the ideas from reinforce- 
ment learning can be successfully combined with ac- 
tive sensory-motor systems. The system then learns 
not only an overt control strategy, but also where to 
focus its at,tention in order to collect necessary sensory 
information [WBSOb]. 

The results surveyed in this paper have been re- 
ported elsewhere (primarily in the machine learning 
literature). The objective here is to summarize them 
and to  consider their implications for the design of in- 
telligent control architectures. 

2 Reinforcement Learning for 
Intelligent Control 

What is reinforcement learning? A reinforcement 
learning system is any system that through interac- 
tion with its environment improves its performance by 
receiving feedback in the form of a scalar reward (or 
penalty) that is commensurate with the appropriate- 
ness of the response. By improves its performance, 
we mean that the system uses the feedback to adapt 
its behavior in an effort to maximize some measure 
of the reward it receives in the future. Intuitively, 
a reinforcement learning system can be viewed as a 
hedonistic automaton whose sole objective is to maxi- 
mize the positive (reward) and minimize the negative 

(punishment). 
Recent examples of controllers based on reinforce- 

ment learning include Barto e t  al.’s pole balancer 
[BSA83, Sut841, Grefenstette’s simulated flight con- 
troller [Greg01 , Lin’s animats [Lingo], and Franklin’s 
adapt,ive robot controllers [Fra88], among others. 

2.1 Evaluating Reinforcement Learning 

Reinforcement learning is emerging as an important 
alternative to classical problem-solving approaches to 
intelligent control because it possesses many of the 
properties for intelligent control that  problem-solving 
approaches lack. In many respects the two approaches 
are complimentary and it is likely that eventual intel- 
ligent control architectures will incorporate aspects of 
both.’ 

Following is a discussion of the degree to which cur- 
rent reinforcement learning systems achieve each of the 
properties that  we associate with intelligent control. 

Effective: Reinforcement learning systems are 
effective in the sense that they eventually learn 
effective control strategies. Although a system’s 
initial performance may be poor, with enough in- 
teraction with the world it will eventually learn 
an effective strategy for obtaining reward. For 
the most part, the asymptotic effectiveness of re- 
inforcement learning systems has been validated 
only empirically, however recent advances in the 
theory of reinforcement learning have yielded 
mathematical results that  guarantee optimality in 
the limit for an important class of reinforcement 
learning systems [Wat89]. 

Reactive: Decision-making in reinforcement 
learning systems is based on a policy func- 
tion which maps situations (inputs) directly into 
actions (outputs) and which can be evaluated 
quickly. Consequently, reinforcement learning 
systems are extremely reactive. 

Situated: Reinforcement learning systems are 
situated because each action is choser? based on 
the current state of the world. 

Adaptive: Reinforcement learning systems are 
adaptive because they use feedback to improve 
their performance. 

Incomplete and Uncertain Domain Knowl- 
edge: Reinforcement learning systems do not de- 
pend upon internal domain models because they 
learn through trial-and-error experience with the 
world. However, when available, they can ex- 
ploit domain knowledge by 1) using prior knowl- 
edge about the control task to determine a good 

‘To some extent this int,egration has already begun to 
occur, with the development of reinforcement learning sys- 
tem that learn and use internal domain models to improve 
overall performance. 
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initial policy [Fra88], 2) using an internal do- 
main model to perform mental experiments in- 
stead of relying solely upon trial-and-error ex- 
periences, and 3 )  using a domain model to gen- 
eralize the results of experiments in the world 
[YSUBSO]. Also, because of the incremental na- 
ture of reinforcement learning, the models used 
need not be complete or accurate. This has lead 
to systems that profit from using models acquired 
through trial-and-error interaction with the world 
[SutSOa, SutSOb, Whi89, Lingo]. 
Pe rcep tua l  Feasibility: Most reinforcement 
learning systems have not addressed the issue of 
perceptual feasibility. However, recent results in- 
dicate that many of the ideas from reinforcement 
learning can be carried over (if indirectly) to sys- 
tems that must actively control their sensory pro- 
cesses [WBSOa, WBSOb]. 
Mathemat ica l  Foundations: Although rein- 
forcement learning has been primarily an empir- 
ical science, there is a growing body of theory 
[BA85, Wi188, Sut88, Wat89] Advances relating 
reinforcement learning to dynamic programming 
are beginning to provide a solid mathematical 
foundation, as discussed below. 

3 Reinforcement Learning as 
Incremental Dynamic Programming 

Like much of artificial intelligence, reinforcement 
learning is primarily an empirical science, and the sys- 
tems developed to solve reinforcement learning prob- 
lems have been validated primarily through extensive 
simulation studies. However, this trend is changing, 
and a mathematical theory of reinforcement learning 
is beginning to emerge. The catalyst for this change 
has been the identification of the relationship between 
reinforcement learning and dynamic programming. In 
particular, Watkins has shown that certain reinforce- 
ment learning algorithms can be viewed as Monte 
Carlo versions of dynamic programming algorithms for 
solving multi-stage decision problems [Wat89] .2  

This connection has had three important implica- 
tions for reinforcement learning: 

It has lead to a strong optimality theorem con- 
cerning the asymptotic performance of an impor- 
tant class of reinforcement learning algorithms. 
It has tied reinforcement learning to a well estab- 
lished mathematical foundation on which further 
analytical studies can be based. 
It has clarified our intuitive understanding of re- 
inforcement learning and has directly contributed 
to the development of extended architectures that 

'To our knowledge, Werbos first made the connection 
between reinforcement learning and the theory of multi- 
stage decision problems. However, Watkins solidified the 
connection and was first to obtain theoretical results. 

are more general and outperform previous archi- 
tectures (cf. Sections 4 and 5). 

3.1 Mul t i - s t age  Decision Problems 
Multi-stage decision problems are modeled as Markov 
decision processes. A Markov decision process is de- 
fined by the tuple (S, A ,  T,  RI, where S is the set of 
possible states the world can occupy; A is the set of 
possible actions a controller may execut,e to change the 
state of the world; T is the state transition function; 
and R is the reward function. Usually, S, and A are 
discrete and finite. In a discrete-time Markov deci- 
sion process, time advances by discrete, unit length 
quanta; t = 0 , 1 , 2 ,  .... At each time step the world oc- 
cupies one state, st E S and a time step occurs when 
the controller applies an action, at E A.  The result 
of executing an action is a new state st+l and the re- 
ceipt of a reward rt+l. The state transition function, 
T ,  models the effects of applying different actions in 
different states and maps state-action pairs into a re- 
sulting new state. In general, transitions are proba- 
bilistic so that applying action a in state s yields a 
new state s' = T ( s ,  U )  that is drawn from a probabil- 
ity distribution over S. The probabilities that govern 
the transition function depend only upon the action 
selected and the state in which it was applied. These 
probabilities are assumed to be known and are denoted 
by Pz,y(a) where 

Pc,y(a) = P a x ,  a )  = Y). (1) 
As with transitions, rewards are generated probabilis- 
tically and R is a probabilistic function of the state- 
action pair executed. The distributions governing R 
depend only upon the state-action pair executed, and 
are assumed to  be known. 

Given a description of a Markov decision process, 
the objective is to find a cont.ro1 policy (i.e. a mapping 
from states to actions) that ,  when executed by the 
controller, maximizes some measure of the cumulative 
reward received over time. 

There are numerous measures of cumulative reward. 
One of the most common is a measure based on a 
discounted sum of the reward received over time. This 
sum is called the return and for time t is defined as 

M 

n=O 

where y is a discount factor between 0 and 1. Be- 
cause the process is stochastic, the objective is to find 
a decision policy that maximizes the expected return. 

For a fixed policy A,  define V, (z) to be the expected 
return given that the process begins in state z and fol- 
lows policy A thereafter. V, is called the utility func- 
tion for policy A and can be used to  define optimality 
criteria. The objective is to find a policy whose utility 
function is uniformly maximal for every state. That 
is, to find an optimal policy A* such that 

(3) 
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The optimality theorem from the theory of multi- 
stage decision problems guarantees that for a st.ation- 
ary, discrete time, discrete state Markov decision pro- 
cess there exists a deterministic decision policy that 
is optimal. Furthermore, a policy a is optimal if and 
only i f  

QT(z, .(.)I 1 max(Q=(z, 6 ) )  vz,s (4) 

where Q x ( z , a ) ,  called the action-value for the state- 
action pair ( z , a ) ,  is defined as the return the system 
expects to receive given that it starts in state z, ap- 
plies action a next, and then follows policy a thereafter 
[Be157, Ber871. 

3.2 Policy Optimization by Dynamic 

Two of the most important dynamic programming 
methods for computing the optimal policy for a given 
Markov decision process are policy iteration and value 
iteration. Policy iteration begins with an arbitrary 
policy and monotonically improves it until it converges 
on an optimal policy. The principle idea is simply to 
choose a policy, a; compute V,, the expected return 
associated with that policy; and then improve the pol- 
icy by replacing actions whose local counterparts out- 
perform them. In value iteration, the optimal utility 
function is directly computed without going through a 
series of suboptimal policies. Once the optimal utility 
function has been obtained it is then straightforward 
to compute the optimal policy via Equation 4. 

3.3 The Relationship Between 

b d  

Programming 

Reinforcement Learning and Multi-Stage 
Decision Problems 

There is a close relationship between reinforcement 
learning and using dynamic programming to solve 
multi-stage decision problems. In both the world is 
characterized by a set of states, a set of possible ac- 
tions, and a reward function. In both the objective is 
to find a decision policy that maximizes the cumula- 
tive reward received over time. There is an important 
difference though. When solving a multi-stage deci- 
sion problem, the analyst (presumably the designer 
of the eventual control system) has a complete (al- 
beit stochastic) model of the environment's behavior. 
Given this information, the analyst can compute the 
optimal control policy with respect to the model, as 
outlined above. In reinforcement learning, the set of 
states, and the set of possible actions is known a pri- 
ori, but the effects of action on the environment and 
on the production of reward is not. Thus, the designer 
cannot compute an optimal policy a priori. Instead 
the control system must learn an optimal policy by 
experimenting in the environment. 

3.4 Q-learning 
In addition to recognizing the intrinsic reldionship be- 
tween reinforcement learning and dynamic program- 
ming, Watkins has made an important contribution 

to reinforcement learning by suggesting a new learn- 
ing algorithm called Q-learning. The significance of 
Q-learning is that one version of it, 1-step Q-learnzng, 
when applied to a Markov decision process, can be 
shown to converge to the optimal policy, under appro- 
priate conditions. 1-step Q-learning is the first rein- 
forcement learning algorithm to be shown convergent 
to the optimal policy for decision problems involving 
delayed reward. 

The connections between Q-learning and dynamic 
programming are strong: 1-step Q-learning is moti- 
vated directly by value-iteration and its convergence 
proof is based on a generalization of the convergence 
proof for value-iteration [Wat89]. 

In value-iteration, the optimal policy is obtained in 
the limit by solving a series of finite horizon tasks. The 
equations for computing each cycle in the iteration, 
(i.e. V" from Vn-') are [Wat89]: 

Q"(z, a )  = E[R(x, a)] + rEIVn-l(T(z,  a))] ( 5 )  
V ( z )  = maxQn(z,  U )  (6) 

&A 
an(z) = a such that Q"(z,a) = V"(2) (7) 

where i?', V" ,  and Q" are the optimal policy, value, 
and action-value functions for the n-stage task, respec- 
tively. 

In reinforcement learning these equations can- 
not be solved iteratively since the statistics re- 
quired to compute the expectations are unavailable. 
That is, E[R(z,a)]  and Pz,y(u) (needed to compute 
E[V"-l(T(z, U ) ) ] )  are unknown. The principle of 1- 
step Q-learning is to solve these equations incremen- 
tally by using experience gained through interactions 
with the actual environment to estimate the expec- 
tations in Equation 5. Replacing the expectations in 
Equation 5 with the values observed during a trial, 
leads to the following updating rules: 

Qt+l(zt ,  at)  = (1-@)Qt(x t ,  at)+@[.t+r%(zt+~>] (8) 

a €  A 
fi+l(z) = maxQt+l(z, a> (9) 

%t+l = a such that Qt+l(c ,a)  = @+l(z) (10) 
where and Qt are the system's estimates for the 
optimal utility and action-value functions at  time t .  
Notice that the bracketed term on the right hand side 
of Equation 8 is an estimate of the system's future 
return that is based on the actual results of execut- 
ing 1-step, at in state zt at time t (i.e., it estimates 
the term on the right-hand side of Equation 5). For 
n-step Q-learning, this 1-step estimate is replaced by 
its n-step counterpart, based on the actual results of 
executing n actions. In this case, the bracketed term 
becomes: 

[.t + y.ti-1 + ...P.*+ "-1 +r"@(zt+n)] (11) 
Watkins has shown that any 1-step Q-learning sys- 

tem that 1) decreases its learning rate at  an appropri- 
ate rate and 2) tests each state-action pair infinitely 
often over the coarse of its lifetime is guaranteed to 
converge to an optimal policy [Wat89]. 
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4 Beyond Trial and Error Learning: 
Incremental Planning 

Reinforcement learning and dynamic programming lie 
at opposite ends of a spectrum. At one end, rein- 
forcement learning systems learn control policies based 
solely on trial-and-error interactions with the environ- 
ment. No dynamical model of the world is needed or 
used. At the other end, dynamic programming is used 
to compute control policies based solely on a complete 
dynamical model of the Markov decision process. Dy- 
namic programming does not rely on actual experience 
with the world. 

The principle advantage of dynamic programming is 
that, if a problem can be specified in terms of a Markov 
decision process, then it can be analyzed and an op- 
timal policy obtained a priori. Other than computa- 
tional complexity, the two principle disadvantages of 
dynamic programming are 1) for many tasks, it is diffi- 
cult to specify the dynamical model and 2) because dy- 
namic programming determines a fixed control policy 
a priori, it does not provide a mechanism for adapting 
the policy to compensate for non-stationary dynamics 
or modeling errors. 

Reinforcement learning has the complementary ada- 
vantages: 1) it does not require a prior dynamical 
model of any kind, but learns based on experience 
gained directly from the world, and 2) to some degree, 
it can track the dynamics of non-stationary systems. 
The principle disadvantage of reinforcement learning 
is that in general many trials (repeated experiences) 
are required to learn an optimal control strategy, es- 
pecially if the system starts with a poor initial policy. 

This suggest that the respective weaknesses of these 
two approaches may be overcome by integrating them. 
That is, if a complete, possibly inaccurate, model of 
the task is available a priori, dynamic programming 
can be used to develop the initial policy for a reinforce- 
ment learning system. A reasonable initial policy can 
substantially improve the system’s initial performance 
and reduce the time required to reach an acceptable 
level of performance [Fra88]. Conversely, adding an 
adaptive, reinforcement learning component to an oth- 
erwise fixed controller whose policy is determined by 
dynamic programming can compensate for an inaccu- 
rate model. 

Although this simple approach helps to mitigate the 
poor initial performance of naive reinforcement learn- 
ing systems, it does not in itself improve their overall 
learning rate. It has been proposed by Sutton and 
Whitehead that learning rate can be improved and 
other advantages obtained if reinforcement learning 
systems are, in addition, augmented with a predic- 
tive model of the environment [SutSOa, SutSOb, WB89, 
Whi89j. These Dyna architectures are based on the 
idea that planning is like trial-and-error learning from 
hypothetical experience. That is, the model is used 
to construct hypothetical experiences, and then these 
are learned from just as if they had actually happened. 

An outline‘ of a Dyna architecture is shown in Figure 1. 
The two main components are a reinforcement learning 
subsystem, which can employ any number of reinforce- 
ment learning algorithms (e.g Q-learning, AHC algo- 
rithms, Bucket Brigade, etc), and a predictive model, 
which mimics the one-step input-output behavior of 
the world. The significance of the internal model in 
Dyna architectures is that i t  provides a fast and inex- 
pensive mechanism for propagating the effects of ac- 
tual experience throughout the system. 

To see how an internal model can help, consider a 
l-step Q-learning system that  at time t ,  applies ac- 
tion at in state zt and as a result obtains the new 
state zt+l and receives the reward rt+l. In l-step 
Q-learning, the only immediate effect of this experi- 
ence is to change the functional values associated with 
state zt. That is, Q ( z t , a t ) ,  V ( z t ) ,  and x(z t )  stand 
to change, but no other values will. Eventually the 
ramifications of the experience will be propagated to, 
states other than zt. For example, changes in V ( q )  
effect the value estimates of other neighboring states 
that  are causally connected to zt (i.e., can immedi- 
ately proceed E t ) .  These states, in turn, will effect the 
utility estimates of their causally connected neighbors, 
and so on. In general, a single experience can have 
ramifications that  effect the policy and utility value of 
every state. What makes l-step &-learning slow is that 
propagation occurs only one step at a time. The tran- 
sitions in a sequence must be traversed O(n) times, in 
order for the effects of an event to be propagated back 
n-st ages .3 

Using an internal model to perform hypothetical ex- 
periments is a fast and inexpensive mechanism for 
propagating utility information throughout the sys- 
tem. Hypothetical reasoning is fast, because the ef- 
fects of actions can be simulated faster than they can 
be performed in the real world, and because hypo- 
thetical experiments need not be tied to  the current 
state, but can be performed in any state that can be 
imagined. Hypothetical reasoning is also inexpensive 
because the reward and punishment received by the 
system is imaginary. As a result, the amount of time 
actually exposed to  dangerous situations and the cu- 
mulative punishment received for performing badly is 
reduced. 

In addition to improving learning rate, Dyna archi- 
tectures exhibit a number of other important prop- 
erties. First hypothetical experiences in Dyna archi- 

Other reinforcement learning algorithms exist that use 
memory (or “eligibility”) traces to propagate back the ef- 
fects of an action to the states that preceed it. Most 
notable are the algorithms based on Temporal Difference 
Methods [Sut88]. These algorithms mitigate the propaga- 
tion problem to some degree. However, they do not do a 
complete job because they only effect the sequence of states 
that immediately proceeded the event. Other trial-and- 
error experiments are necessary to propagate the changes 
to other causally related states not found in the experi- 
enced sequence. 
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tectures are incremental. A hypothetical experience 
can be as short as the simulation of one action and 
yet be completely effective. Thus, Dyna architectures 
provide a means for integrating reactive control with 
search based planning. Also Dyna architectures do not 
depend upon complete and accurate domain models. 
Instead they can use partial models that are learned 
as experience is gained in the world. 

5 Beyond Perfect Perception: Active 
Representations 

For the most part, reinforcement learning research has 
avoided issues of perception. In most reinforcement 
learning systems the sensory system is either trivially 
simple or abstracted out of the model altogether. The 
usual assumption, as in a Markov decision process, is 
that after each action the system observes the state of 
the world. The “state” of the world is defined by the 
values of the system’s sensory inputs, and usually these 
inputs are carefully chosen by the system designer. 

In more realistic learning tasks, complete knowledge 
of the task cannot be exploited in the design of the sen- 
sory system. In this case, the system must learn which 
aspects of the world are relevant t o  the task on its own. 
Before learning to solve the problem, the system must 
learn to represent it. One approach to this problem is 
to build a sensory system that is as complete as possi- 
ble. A more practical approach is t o  consider systems 
that can flexibly sense different aspects of the world, 
but that on a moment-by-moment basis only register a 
limited amount of information. For example, one can 
imagine an autonomous robot that possesses a large 
repertoire of sensory routines that it can use to ana- 
lyze the world (say 100 or so), but because of time, 
space, and processing constraints, it can only afford to 
apply a few at a time (say less than 10) [U1184, TS901. 
Deictic (or functional indexical) representations offer 
another example of this active approach to perception 
[AC87, Agr88, ChaSO]. In a deitic representation, the 
system is capable of attending to only a limited num- 
ber of objects at a time, and the properties of those 
objects form the basis of the system’s sensory inputs. 
By changing its focus of attention, the system can rep- 
resent different parts of the world and obtain a variety 
of representations for the same situation. 

Whitehead and Ballard have investigated control ar- 
chitectures that integrate active perception and rein- 
forcement learning [WBSOb]. In the following subsec- 
tions we present their three main contributions: 1) an 
abstract model that formalizes the functional relation- 
ships that exist between the world, the sensory-motor 
system, and the embedded decision system; 2) analy- 
ses and demonstrations that the integration of active 
perception and reinforcement learning is non-trivial, 
due to aliasing in the representation of world states; 
and 3) a new reinforcement learning algorithm that 
overcomes the difficulties caused by active perception 
for a restricted class of tasks. 

5.1 The Formal Model 

The formal model describing a learning agent and the 
world in which it is embedded is shown in Figure 2. 
The external world is modeled as a Markov decision 
process (whose statistical parameters are unknown to 
the agent). The decision process is characterized by 
the tuple ( S E , A E , T ,  R)  where S E  is the set of ex- 
ternal world states, AE is the set of external (overt) 
actions the agent can perform on the world, T is the 
transition function, R is the reward function. 

The agent has two major subsystems: an active 
sensory-motor subsystem and a decision subsystem. 
The sensory-motor system implements three functions: 
1) a perceptual function P ;  2) an internal configura- 
tion function 1; and 3) a motor function M .  The 
purpose of the sensory-motor subsystem is to ground 
internal perceptions and actions in the external world. 
On the sensory side, the system translates external 
world states into the agent’s internal representation. 
Since perception is active, this mapping is dynamic 
and dependent upon the configuration of the sensory- 
motor apparatus. Formally, the relationship between 
external world states and the agent’s internal represen- 
tation is modeled by the perceptual function P ,  which 
maps the set of possible world states S E  and the set of 
possible sensory-motor configurations C onto the set 
of possible internal representations S I .  On the motor 
side, the agent has a set of internal motor commands, 
A I ,  that affect the model in two ways: they can either 
change the state of the external world (by being trans- 
lated into external actions, AE), or they can change 
the configuration of the sensory-motor subsystem. In- 
ternal commands that change the state of the exter- 
nal world are called overt actions and commands that 
change the configuration of the sensory-motor system 
are called perceptual actions. As with perception, the 
configuration of the sensory-motor system relativizes 
the effects of internal commands. This dependence is 
modeled by the functions M and Z, which map inter- 
nal commands and sensory-motor configurations into 
actions in the external world and into new sensory- 
motor configurations, respectively. 

The remaining component of the agent is the deci- 
sion subsystem. This subsystem is like a homunculus 
that sits inside the agent’s head and controls its ac- 
tions. The decision subsystem corresponds to the re- 
inforcement learning systems discussed previously ex- 
cept now it is embedded inside the agent and buffered 
from the external world by the sensory-motor system. 
On the sensory side, the decision subsystem has access 
only to the agent’s internal representation, not to the 
state of the external world. Similarly, on the motor 
side, the decision subsystem generates internal action 
commands that are interpreted by the sensory-motor 
system. Formally, the decision subsystem implements 
a behavior function f? that maps sequences of internal 
states and rewards ( S I  x 3)’ into internal actions, AI, 
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5.2 Percep tua l  Aliasing 
Interposing an active sensory-motor system between 
the world and the decision system can lead to decision 
problems which cannot be learned using standard re- 
inforcement learning techniques. The problem arises 
from the many-to-many mapping between states in the 
external world and states in the internal representa- 
tion. That is, a state se E SE in the world may map 
to several internal states, depending upon the configu- 
ration of the sensory-motor system. More importantly, 
a single internal state, si E S I ,  may represent multiple 
world states. This overlapping between the world and 
the agent's internal representation is called perceptual 
aliasing [WBSOb]. 

Perceptual aliasing can transform a problem that 
is Markovian into one that is not. Intuitively, per- 
ceptual aliasing interferes with reinforcement learning 
by allowing the decision subsystem to confound (per- 
ceive as the same) external world states that may have 
different utility values. For example, suppose that de- 
pending upon the configuration of the sensory-motor 
system, an internal state s, can represent one of two 
world states, S E 1  or  SE^. In reinforcement learning, 
utility values are estimated by averaging the rewards 
accumulated over time. Assuming the system per- 
forms optimally, the utility- estimate learned for the 
internal state s, (denoted V I ( S ~ > )  will correspond to 
a sampled average of the utilities for S E 1  and  SE^. If 
both states are encountered equally often then the util- 
ity estimate for state s, will be approximately equal 
to their arithmetic mean 

If the utility values for SEI and SEZ are the same, 
then the learned estimate for s, will reflect the actual 
return the system can expect to receive whenever it 
finds itself in state s,. However, when the utility val- 
ues for S E 1  and SEZ differ (say v,;:(S,yl) << vr;:(s~2)) 
then V ( S , )  will fail to accurately estimate the expected 
utility associated with the current world state. If the 
external world is in state S E 1  then C'(Sa) will over- 
estimate the expected return; if the world is in state 
 SE^ then V1(sa) will underestimate the expected re- 
turn. This potential for a mismatch in estimating the 
utility of world states, caused by perceptual aliasing, 
interferes with the decision system's ability to  learn 
the optimal policy. 

5.3 The Lion Algor i thm 
Whitehead and Ballard have recently proposed a new 
learning algorithm, called the lion algorithm that  over- 
comes the difficulties caused by perceptual aliasing for 
deterministic tasks. The lion algorithm is based on 
the notion of consistent internal states. Intuitively, 
an internal state is consistent if all the external world 
states it represents are the same in the following sense: 
1) they all have the same optimal utility values, and 2) 

the optimal actions for each map into the same inter- 
nal command to be executed by the decision subsys- 
tem. In the above example, sa is inconsistent because 

The key property of consistent internal states in de- 
terministic tasks is that whenever one is encountered, 
the optimal return from that point forward is fixed 
and independent of the actual state of the external 
world. For inconsistent internal states the optimal re- 
turn depends upon the actual state of the world and 
cannot be absolutely determined from knowledge of 
the inconsistent internal state. In general, each inter- 
nal state defines an equivalence class of external world 
states. A consistent internal state is useful because (by 
definition) it guarantees that every world state in its 
equivalence class has the same utility and same opti- 
mal action command. Inconsistent internal states are 
not useful for predicting the utility of the current sit- 
uation or the optimal action to be executed next. 

The principle idea of the lion algorithm is to ac- 
tively configure the sensory-motor system so that at  
each time step the system's internal representation is 
consistent and the overt action the system chooses to 
execute next is based upon the estimates of consistent 
representations. Since perceptual aliasing interferes 
with reinforcement learning by injecting inconsistent 
states into the decision process, the lion algorithm ac- 
tively detects and prevents them from participating in 
the decision making process. The basic steps in the 
control cycle are as follows: 

1. Execute a series of perceptual actions in order to 
collect a set of internal representations for the 
current world state. 

2. Choose one internal state that is believed to  be 
consistent from the set collected in  step 1. Call 
this state the lion. 

8. Choose the next oved action to  execute based on 
the policy value for the lion. 

4. Use the lion state, along with the return received 
on the last t ime step i o  update the utility and 
action-value estimates for the previous cycle. 

The key operation in the lion algorithm is to select, 
for each situation, one internal state that is believed 
to  be consistent (i.e., Step 2 above). This operation is 
achieved by differentiating between consistent and in- 
consistent states based on the observation that, for de- 
terministic tasks, the variance in the utility estimates 
for inconsistent states will always be non-zero, whereas 
the variance for consistent states will tend to zero over 
time. For details see [WBSOb]. 

The lion algorithm has been demonstrated in a sys- 
tem that  learns to  solve a simple class of block ma- 
nipulation tasks. The significance of the demonstra- 
tion is not the difficulty of the task per se, but that 
the system employed an active (deictic) sensory-motor 
system, and learned not only how to solve the prob- 
lem but also how to  control its sensory apparatus to 

V r L ( s E 1 )  f: V x L ( s E 2 ) .  
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attend to the objects relevant t o  the task. Although 
the results are preliminary, the idea of learning task- 
dependent representations using reinforcement learn- 
ing, active sensory-motor systems, and the notion of 
consistency is an important step towards the develop- 
ment of ever more autonomous learning agents. 

6 Summary 

In this paper we have surveyed a number of recent 
advances that have contributed to  the viability of re- 
inforcement learning approaches to intelligent control. 
These advances include the formalization of the rela- 
tionship between reinforcement learning and dynamic 
programming, the use of internal predictive models to 
improve learning rate, and the integration of reinforce- 
ment learning with active perception. Based on these 
and other results, we conclude that control architec- 
tures based on reinforcement learning are now in a 
position to satisfy many of the criteria associated with 
intelligent control. 
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Figure 1: Dyna architectures are organized around two 
basic components: an adaptive decision system (used 
for control) and an adaptive internal model (used to 
predict the input-output behavior of the world). The 
model is used to perform hypothetical experiments. 
A switch is used to modulate the decision system’s 
interaction with the world and the model. 
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Figure 2: A formal model for an agent with an embed- 
ded learning subsystem and an active sensory-motor 
subsystem. 
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