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Abstract

Facial expressions and other body language are important flouman commu-
nication. They complement speech and make the process of coamication
simple and sustainable. However, the process of communicatiusing existing
approaches to human-machine interaction is not intuitive @ that of human
communication. Speci cally, the existing approaches to hman machine inter-
action do not learn from whatever subtle non-verbal cues pdoced by a user.
Many of the existing approaches map body language cues tothastions or re-
wards and use them to train a machine. These mappings are nealned from
ongoing interactions and are assumed to be de ned by some exxial source.
As a consequence, the communicative process through theserapphes can
cause signi cant cognitive load on the user. This is an imptant problem that
needs to be addressed if we are to amplify our existing cogn& and physical
capabilities through intelligent machines. Towards addssing this, we intro-
duce our idea that allows machines to learn from whatever st cues people
produce during the process of interaction. Particularly,iie agent learns a value
function that maps the user's non-verbal cues to later rewds. By using this
value function, the user can teach their agent to complete ask according to
their preferences, and consequently maximize their sasstion. We demon-
strate this by training an agent using facial expressions. uRhermore, we
show that these learned value functions can be successfutgnsferred across
tasks. In conclusion, our approach is the rst that allows peple to teach their
machines using whatever subtle cues they produce and couliké us far in

achieving sustainable forms of human-machine interaction
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Chapter 1

Beyond Clever Hans

The overarching goal of this thesis is to introduce an approh to human-
machine interaction, where the machine learns from whataveubtle non-
verbal cues that are produced by the user during the process interaction.
We begin by introducing the story of Clever Hans, which is a pajar example
that illustrates the role of body language in communication Subsequently,
we broadly discuss how existing approaches use body langeidgr human-
machine interaction. Finally, we introduce our approach andighlight our

contributions in this thesis.

1.1 Horse that Answered Questions

Wilhelm von Osten was a math teacher and an amateur horse tra&n He
owned a horse called Hans. In the year 1891, von Osten displhygs horse in
public and claimed that he had taught his horse to perform sipte arithmetic
calculations, tell time, and keep track of the calendar. Hananswered many
of the questions posed by the questioner, and over time, beoa a public
sensation in the late twentieth century. As a result of this ppularity, the
horse was called \Clever Hans" and was reported by the New Yorkiffies in
1904.

The signi cant public interest in Clever Hans motivated theGerman board
of education to appoint a commission to investigate whethdhe horse pos-
sessed intelligence. The commission recruited a German @sylogist named

Oskar Pfungst, who conducted a substantial number of trial&ith Hans and



discovered that Hans got the right answer only when the questier knew what
the answer was. More importantly, Hans needed to see the queser while
answering their questions.

Pfungst then studied the behavior of the questioner while # horse was
answering their question and reported his ndings (c.f. Pfagst, 1911). He
discovered that the horse's behavior was in uenced by sukthnd unintentional
cues. Specically, as Hans approached the correct answer theestioner's
posture and facial expressions changed in ways that were sistent with an
increase in tension, which was released when Hans made thel te with its
hoof. This change in body language served as a useful cue foe horse to
stop tapping its hoof.

Hans learned when to stop tapping its hoof by observing the sild non-
verbal cues of the questioner. This ability of the horse wasrangly attributed
to be a consequence of possessing intelligence. While tnagnhis horse, von
Osten rewarded the horse whenever it answered a questionrectly which

reinforced this process of answering from the questionessbtle cues.

1.2 Human-Machine Interaction using Body
Language

The ideal approaches to human-machine interaction shoulti@v users to com-
municate naturally as they would do with their peers. This wold make the
process of interaction between people and machines to be taimable and
scalable. As an important step towards achieving this ambitus goal of ideal
human-machine interaction, we need to design approacheattallow machines
to learn from whatever non-verbal cues produced during theteraction, sim-
ilar to how the horse picked on unintentional non-verbal cigeof its questioner
for answering their questions.

In human communication, the subtle non-verbal cues that werpduce un-
intentionally in uences the observer's behavior towards §t This is a natural
process and is well-studied in psychology (De Gelder, 20@&zzulo et al., 2013;
Jack & Schyns, 2015) and in a ective neuroscience (Adolphs, @ Whalen et



al., 2013). Speci cally, these body language cues have coomitative value to
their observers and allowing the machines to learn from ouulstle non-verbal
cues seems to be a natural direction to pursue in human-maghiinteraction.

The existing approaches to human-machine interaction do hase body
language as training information. Speci cally, these apmaches assume that
the body language cues and their meaning are given to the maud from
some external source, instead of learning them from ongoimgeractions. The
existing approaches use non-verbal cues for either insttimg or rewarding
the machines. Particularly, the system designer maps bodgriguage cues to
instructions which the machine performs on observing the mesponding cue
from the user. Some approaches also map body language to nelsavhich are
provided to the machine.

Using body language as instructions or rewards requires thear to trans-
late their non-verbal cues to e ectively teach the machine aording to their
preferences. The approaches that use body language as instions or re-
wards assume that people produce similar body language dgiinteraction.
This is not a reasonable assumption to make because body laage diers
signi cantly with people, usually depending on their situéions and cultural
norms (Roselli & Ardila, 2003; Yammiyavar et al., 2008). Redung the user
to actively translate their cues in order to meet the machirie design can cause
signi cant cognitive load on the user, especially in real-erld human-machine
interaction tasks (Hollender et al., 2010; Fridman et al., 2I7; Mathewson &
Pilarski, 2017). As a consequence of these reasons, the @xisapproaches are

unsustainable and leads to unsuccessful human-machine tparships.

1.3 Moving Beyond Clever Hans

In this thesis, we introduce a human-machine interaction ggoach that is
inspired from Clever Hans and investigate whether this brirggus closer towards
natural human-machine collaboration.

In human-machine interaction domains, people naturally mduce subtle

non-verbal cues to indicate their satisfaction towards the machines. In the



approach that we introduce here, the machine learns to assate their users'
subtle cues with their satisfaction and subsequently usekis$ to learn an ap-
propriate behavior in a given task. More speci cally, the mehine learns an
evaluation function that predicts its user's satisfactionfrom their non-verbal
cues. By using these predictions, the machine learns to adais behavior in
a given task according to its user's preferences and, as aulesnaximize user
satisfaction. Here, we view the machine's performance in astaas a measure
of user satisfaction.

We formalize and implement our approach using reinforcentelearning.
Particularly, from reinforcement learning, we use techniges to learn value
functions. In our approach, the machine learnsaalue functionthat associates
user's non-verbal cues with their satisfaction, which is nagsured in terms of
their occasional explicit feedback. The machine predictssiuser's satisfaction
using this value function, and as a result the machine perses a feedback
signal in the form of body language cues. This evaluative sig drives the
machine's behavior within a given task according to their &s's preferences,
thereby maximizing their satisfaction.

As opposed to existing approaches that use body language innman-
machine interaction, our approach does not require the sysh designer to
de ne their meaning to the machine. Speci cally, the machia learns the
meaning of the various non-verbal cues directly form the onmng interactions
with its user. Another important distinction of our approachis that the ma-
chine learns from ongoing interactions to predict user's ssfaction directly
from their body language and does not require a superviseaining dataset.

This is more general than mimicking Clever Hans to a human-miine
interaction setting, because Hans only learned when to stopgping its hoof
from subtle cues as opposed to learning how much the user wasssed. More
importantly, by learning to predict user satisfaction, ourapproach allows the
machine to perform tasks that are truly important to the user

As our approach relies on whatever subtle cues produced duriihg process
of interaction, it does not require the user to translate or xaggerate their

non-verbal cues. The approach learns from whatever subtlemverbal cues
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produced by the user while interacting with their machine. W believe this to
be the rst work in directly addressing the overall goal of tliis thesis, where
an implemented system learns from people's body languagetheut involving

much e ort.

1.4 Outline

Here, we give a brief outline for the rest of this thesis:

Chapter 2 introduces a few concepts of reinforcement leangithat are used
in Chapters 4 and 5.

Chapter 3 presents a background on existing methods used tauman-
machine interaction.

Chapter 4 introduces ourprospective body languaggpproach which allows
the users to teach their machines using whatever subtle bodgnguage cues
that are produced during the process of interaction. This @pter also grounds
our contribution with the existing approaches that allow usrs to teach their
machines using body language. This chapter is the fundameahtontribution
of this thesis.

Finally, in Chapter 5 and 6, we present experimental results our approach
of learning from prospective body language that is implemted using two
popular reinforcement learning techniques. The results el that our approach
can improve over a conventional user-interaction agent in dult and changing
tasks.

Lastly, in Chapter 7, we discuss few common concerns relatedour ap-

proach and present future directions of research.

1.5 Contributions

The key contributions of this thesis are summarized as folls:

We introduce our interactive machine learning approach thaallows peo-

ple to teach machines using subtle body language cues, witth@volving



much e ort. We view this as the initial steps towards naturaland intu-

itive human-machine collaboration.

We further develop our approach and implement it using two dérent
reinforcement learning techniques and empirically evaltethem on a

simulated grip-selection domain.

We discuss extensions to our approach as potential futurerections

towards achieving simple human-machine interactions.



Chapter 2

Background

In this chapter, we introduce and define the different concepts from reinforce-
ment learning, along with the necessary algorithms, that are required for un-

derstanding this thesis.

2.1 The Reinforcement Learning Problem

The reinforcement learning problem involves an agent that continually inter-
acts with its environment in order to achieve a certain goal, where this goal is

defined in terms of a reward signal.

:l Agent ||

state reward action
S R, A,

R (

S.. | Environment ]4—

\.

<

Figure 2.1: The Reinforcement Learning problem: Interaction between an
agent and its environment

A simple representation of the RL problem is shown in Figure 2.1. At each
time step, the agent observes its current state, then chooses an action that
influences the environment. In response, the environment provides a reward
and a next state to the agent. This process repeats continually where the
agent interacts with its environment. The objective for the agent is to learn

and select actions so as to maximize this numerical reward signal.
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A reinforcement learning problem is represented as a Mark®ecision Pro-
cess (MDP) with a nite set S of N states and a nite setA of actions, with
a discount factor of 2 [0;1]. At each time stept, the agent observes its
current state S; 2 S whereS is a set of all possible states angbj = N is the
total number of states available in the environment. After oberving its cur-
rent state S;, the agent chooses an actioA; 2 A. This action in uences the
environment in producing a scalar rewardRi+; 2 R. This reward signalRy.+,
is generally a function of the agent's current stat&, and actionA;. Following
this reward, the agent transitions into the next stateS;;; 2 S and this entire
interactive process repeats continually.

The expected value of this reward signail(s; a) is de ned as the the average
value of rewards observed at a particular stateafter taking a particular action
a

h [
r(s;a)= E Ri+1jSi = s;Ai = a

The environment, after receiving an actiora from the agent, transitions to
the next state s° from the current state s where this transition is de ned by a
probability function p(sys; a). Speci cally, this transition probability function
gives the likelihood of the agent transitioning into a states from the current

state s, after picking an actiona.

n 0
p(sys;a) =Pr Sy = s§S = s;A = a

It is important to note here that the transition probability p(sys;a) and
the reward functionr(s; a) are speci c to an environment and are unknown to
the learning agent.

The goal for a reinforcement learning agent is to maximize ¢éhscalar re-
wards it receives over time, through ongoing interactionsithe form of state
observations and actions with the environment. In order to éhieve this, the
agent needs to learn to pick actions that eventually produckigher rewards
and map these actions with their current situations (i.e. tk states). This

association of actions to states is formally called g®licy and is denoted as



(ajs). The policy gives the likelihood of picking an actiora on observing a
state s.

Finally, 2 [0;1] is a discount parameter representing the relative impor-
tance of future rewards compared to the importance of the imediate reward.
The goal for the agent is to maximize this discounted sum ofwards that it
receives over time by learning an action-selection policy. This discounted

sum of rewards is called aseturn, which is formally de ned as:

x
G = 'Risis
i=0

When s closer to 0, the return is computed by assigning a higher igat
to immediate rewards rather than those that are received lat in the future. In
other words, when the discount factor is close to 0, the agel#arns amyopic
policy that maximizes immediate rewards. Setting a discotifiactor closer to

1 allows the agent to learn a policy that maximizes future reavds.

2.2 Value Functions

A value function is the fundamental idea in reinforcement brning (Sutton &
Barto, 2017). The central idea behind a value function is toache the utility
or knowledge of a states in a single functionv (s), which can be used by the
agent in achieving its overall goal.

The general approach for solving a reinforcement learninggblem involves
learning this value function. This is achieved through a c#ain class of algo-
rithms called Temporal-Di erence (TD) learning. At its core, TD incremen-
tally learns a value estimate of a state bybootstrappingfrom its succeeding
states' estimates.

A value function is de ned as an estimate of the discounted suof rewards
that would be achieved by the agent by following the current&ion-selection
policy . Informally, a value function tells the agent how \good" itsaction-
selection policy is. For a given policy , we can now de ne the state-value

function v (s) as a function that maps a states to its expected return, that



would be obtained starting from the states and following the policy . Math-

ematically, a value function is de ned as:

hx i
v(s)=E 'Ri+i+1]St = s (2.1)
i=0
The state-value function can be written in a recursive form dsed on the

value of the subsequent states:

hx i
Vv (S) = E IRt+i+1jS[ = S
i=0
h X i
=E R+ 'Ri+i+1]St = s
i=1
X X X h X o i
= (ajs) p(s’ris;a) r+ E 'Ri+is1jSte = 8°
%A 3?8 %R h i=il
v (s)= (ajs) p(s%ris;a) r+ v (s) (2.2)
a2A s®2S r2rR

This is called a state-value function because it does not taknto account
of the actiona that is picked from by an agent using the policy at every time
step. Although, the return that can be obtained by an agent degnds on the
action a that it chooses for a given states, this value function marginalizes the
e ect of picking this action for the given state. Speci caly, for this reason, it
is called the state-value function.

An obvious extension of this would be the state-action valueumction or
the action-value function. Informally, the action-value @inction q (s; a) maps
a state-action pair (s, a) to the expected return starting from states, taking

the action a and following the policy thereon:

hx i
g(s;a)=E 'Ri+i+1]St = ;A = a
i=0
This can be also be written as a recursive equation based orethction-

value function of subsequent states from the current state

X X h i
q(s;a)= p(s’rjs;a) r+ q (s%a) (2.3)
s02S r2R

10



2.3 Temporal-Di erence (TD) Learning

As previously described, one of the central ideas in reinfement learning is
the estimation of value function. The learning agent needtestimate the
value of a particular state or state-action pair in order to mprove its policy

. The value function estimates the sum of discounted sum oftéue rewards,
as shown in Equation 2.1. More importantly, TD forms the fundmental basis
for many prediction and control algorithms applied in reinfrcement learning.

Sutton (1988) introduced a class of algorithms for learninthese value
functions, calledtemporal-di erence (TD) learning algorithms. These TD al-
gorithms are a signi cant contribution to the eld of reinforcement learning
as they allow inincrementally learning a value function, making it suitable for
online learning. Also, these TD learning algorithms supporthe usefunction
approximation and bootstrapping

Function approximation is a technique for representing a state when
there are uncountably many states using a tuneable parameiteed function.
Generally, the number of parameters of this function appramator is negligible
compared to the number of states present in an environment.

The simplest approach for estimating a value function for nmgy states is to
create a look-up table with one entry per state and update time based on the
Equation 2.2. For learning a action-value function, the upates are based on
Equation 2.3. However, it is di cult to represent all possibke states (or state-
action pairs) as a look-up table in many realistic settings.In order handle
such large domains, this technique of function approximatn was introduced.

Compressing the space of all states into a set of tractable cacomputa-
tionally e cient representation of the state provides an adlitional advantage
of generalizing across similar states, which can accelerdtarning. Some well
known examples of function approximation in reinforcemenearning are linear
function approximators, kernels and neural networks.

Bootstrapping refers to a term used in TD learning and has the same
meaning as in dynamic programming. Bootstrapping is an e ciet way of

updating estimates from other predictions. Usually, this mens that we can

11



make updates to estimates of states before its actual outcenis observed.
However, this can skew the learned estimates, thereby introding bias.

Without bootstrapping, the estimates are updated based on thactual
outcomes that are observed. Such algorithms are called Men€arlo meth-
ods and occupy a spectrum on the opposite side of TD algoritlsm Monte
Carlo methods make learning updates only at the end of an epde, when
the nal state is reached. These methods su er from high vaance in their
estimates, especially in stochastic domains as the returaary a lot. On the
other hand, TD algorithms can make incremental learning updes at each
time step through bootstrapping. As a direct consequence obbtstrapping,
TD algorithms have less variance in their estimates.

Algorithm 1 TD( ) Learning Algorithm

INPUT: T Winit
W Wit . w is the weight vector for the state-value function
ew O . ey Is the eligibility trace for the state-value function

for num. of episodesio
obtain initial state S
feature corresponding tdS
while S is not terminal do
obtain next state S° and rewardR
0 feature corresponding toS°
R+ w> % w>

ew ew +
W W+ e,
S g0
0
end while
end for

TD algorithms are formulated asforward viewand backward viewmethods.
The forward view of TD looks many time steps into the future, hen computes
and makes incremental learning updates to its weight vectar This forward
view of TD cannot be nawely implemented as an online leamg algorithm
because it relies on information extending many time stepsto the future.
It was introduced as a theoretical framework for studying ah designing TD
algorithms (Sutton, Mahmood & White, 2016; van Seijen et al.2016; van

12



Seijen, 2016). The backward view of TD uses information at éhcurrent time
step and makes incremental updates to the weight vector. M@importantly,

these backward view of TD can be implemented for online settjs. In expec-
tation, the predictions made by the backward and forward vies of TD are

equal.

€= € 1+ 1 (2.4)

e =max( e 1, t 1) (2.5)

For computational feasibility, the backward view of TD incudes an eligi-
bility trace vector e 2 R ", such as the accumulating traces (Equation 2.4) or

replacing traces (Equation 2.5).

2.3.1 Prediction Algorithm: TD( ) Learning

TD( ) algorithm is the most e ective prediction algorithm in reinforcement
learning. The algorithm predicts the returnG; achieved by an agent by follow-
ing a particular action-selection policy and was introduakin Sutton (1988).
It is summarized in Algorithm 1.

This algorithm uses a parameter 2 [0; 1] for trading-o between bias and
variance. Speci cally, by selecting a value for, the resulting TD algorithm lies
somewhere between a full bootstrapping method (= 0) and a Monte Carlo
method ( = 1). The learning performance of an agent making predictian
using TD depends on this tuneable parameter and is domainep c.

The goal of the algorithm is to learn a set of weightes 2 R " such that the
value can be estimated accurately for a given stae2 S, where this state is
represented by its feature vector (s) 2 R". The estimated value of this state
is given via a simple dot product between the weights and thedtures of a

state:

HS;w)=w” (S)

13



The representation of the states 2 S is represented by a simple feature
vector (s) 2 R". One could also represent the state as a nonlinear func-
tion. However, linear function approximation is computatioally e cient and
is su cient for understanding the rest of this thesis.

The term in Algorithm 1 is called the Temporal-Di erence (TD) error.
It is de ned as the di erence between the bootstrapped targeestimate (i.e.,
Ri+1 + ¥(St+1;wW)) and the current estimate of the state. When TD makes a
perfect prediction for a given state then this TD error will ke zero.

The weight update rule for the TD algorithm in Algorithm 1 is deived from
the standard stochastic gradient descent algorithm. The ten  is a step-size
parameter that controls the amount to move in the direction bgradient at
a given time step. This step-size parameter is subject to ¢ain constraints,
so that the algorithm can converge to a local solution. In prdice, this
parameter is set to a small constant value, allowing the ageto learn and

adapt to non-stationary (i.e., changing) environments.

2.3.2 Control Algorithm: Sarsa( ) algorithm

TD learning methods are useful for making predictions abouhe future re-
wards received by the agent interacting with an environmerfor a given action-
selection policy. An interesting extension of TD algorithmsg for learning the
state-action values, which implicitly represents an actioselection policy
that maximizes the rewards achieved by the learning agentdim its interac-
tions. The algorithms that learn how to select actions are ferred to as control
algorithms and one such algorithm is summarized in Algorithr2.

An action-value method learns a policy that maps states with actions.
This policy is represented implicitly through action-vales corresponding to
state-action pairs. Sarsa is a popular TD control algorithnthat starts out
by evaluating the utility of following its current action-selection policy. While
choosing an action, the agent picks the action that has a laggstate-action
estimate and this action is called a greedy action. The agenbuld also ran-
domly pick a non-greedy action with a certain probability , and such a policy

is called -greedy policy. Speci cally, the agent selects a greedy amt with a

14



Algorithm 2 Sarsa( ) Learning Algorithm with Accumulating Traces

INPUT:  ;;;  Winit
W Wit . w is the weight vector for the action-value function
ew O . ey Iis the eligibility trace for the action-value function

for num. of episodesio
obtain initial state S
select actionA based on stateS (for example, -greedy)
features corresponding td&; A
while S is not terminal do
take action A, observe next stateS° and rewardR
select actionA° based on stateS°
0 features corresponding t&% A°
R+ w> ° w”

ew ew +
W W+ ey
S g0
A A°
0
end while
end for

probability of 1 and a non-greedy action with a probability of .

This parameter can take a value between 0 and 1, and ensures thaeth
learning agent occasionally explores by taking a non-gregedction. In non-
stationary environments, the action that results in higher ewards slowly drifts
over time and using an -greedy can lead the agent to achieve better rewards
in these cases.

2.4 Actor-Critic Methods

In reinforcement learning, sometimes, it is better to decqle the policy from
value function and learn them separately from ongoing intactions, rather
than learning it indirectly via state-action values. ActorCritic methods are
those methods that meet these requirements, learning an awt-selection pol-
icy from online experiences. An example actor-critic arclatture is shown in
Figure 2.2.

The simplest approach for learning a control policy is by dactly extend-

ing the value function based method, like TD learning, to lea state-action

15






Algorithm 3  Actor-Critic with Accumulating Traces

INPUT: vio o5 Winit s init
W Winit . W is the weight vector for the critic
init . Is the weight vector for the actor
ew O . ey Is the eligibility trace for the critic
e 0 . e is the eligibility trace for the actor

for num. of episodesio
obtain initial state S and
while S is not terminal do
select actionA for state S (using )
take action A, observeS° (along with 9 and R
R+ w> 2 w”

ew ey t+

W w4+ ey

e e +r log (AjS; )]
+ e

S s
0

end while
end for

2.5 Linear Function Approximation Using Tile
Coding

Tile coding is a popular and simple nonlinear approach for gerating feature
vector (s) 2 R". The approach generates a sparse, binary feature vector
from real-valued signals obtained as the state from the emenment. Because
tile coding produces a sparse feature vector from real-valdi signals, it is well-
suited for online learning in reinforcement learning. It ha produced many
successful robotic applications.

Tile coding uses atiling over the real-valued state space, partitioning it
into non-overlapping regions callediles as shown in Figure 2.3. The Figure
2.3 shows a two-dimensional tiling for hypothetical realalued state space.
The tiles in this tiling do not have to be in the shape of a squarand need not
have the same resolution for di erent regions of the state spe. Furthermore,
they can be used with any number of dimensions in the state spa

For a given tiling, the real-valued signal of the state wouldbe active (i.e.,

present) in exactly one of the tile whereas all the other tieare inactive. By
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Chapter 3

Existing Approaches to
Human-Machine Interaction

Designing intelligent, user-interactive agents, that cae ectively amplify our

existing cognitive and physical capabilities, are one of ¢himportant promises
of Arti cial Intelligence. Through this, we hope to merge ouselves with Al. A
principle example of this can be found in assistive rehaltdtion robots, where
machine learning techniques enable electromechanicaltsyss in restoring or
augmenting biological limbs that are lost through injury orillness.

Interactive machine learning and human-computer interacn are elds
that are as old as computers and it is not possible to summagall of the key
ideas in this thesis. However, we summarize some of the recapproaches in
these elds, particularly those that are related to this theis, followed by their
strengths and weaknesses.

The existing works in interactive machine learning approdcthe problem
from multiple perspectives. However, most of them share a camon goal of
allowing people to e ectively communicate their intents orpreferences to a

machine, which then uses this information to solve a given s&.

3.1 Interactions in the Form of Rewards

The simplest approach for empowering people to communicatieeir prefer-
ences to an interacting machine is by providing user-genéed rewards. This

user-generated reward augments or shapes the existing redveignal produced
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vastly di ers from a reinforcement learning perspective, hich views rewards
as evaluations for taking a particular action or a sequencé actions.

Pilarski et al. (2011) pushed this line of research forwardybshowing
that virtual prosthetic limb agent can learn complex behawrs through online
training from rewards generated by a user. Another related stly, conducted
by Suay and Chernova (2011), extended the work of Thomaz anddazeal
(2008) for teaching a robot to sort di erent objects. Both ofthese works were
probably the rst to look at teaching an interactive learning system using
human-generated rewards alone.

Many of the recent works have leveraged this fundamental idef training
an interactive agent with human-generated rewards leading many valuable
contributions in the eld of interactive machine learning. Knox and Stone
(2013) successfully trained a robot with human-generatecwards. Iturrate
et al. (2010) trained a supervised learning algorithm to c&sify di erent EEG
patterns, obtained from an interacting user, as positive ahnegative reward
signals. More recently, this approach of classifying EEG tiarns as rewards,
introduced by Iturrate et al. (2010), was used for teaching aeuroprosthesis
arm to perform simple control tasks (lturrate et al., 2015) ad for controlling
the steering angle of a car (Zhang et al., 2015).

All of these research works assumes that the distribution ofiman-generated
rewards to be consistent throughout an experiment setting.However, this
turned out to be false as per the ndings of Thomaz and Breaze@008). Par-
ticularly because the interacting user develops a mental el of the learning
agent, and as the agent improves its behavior, the frequenofuser-generated
reward begins to reduce. This leads the agent to unlearn, ttedby degenerating
its behavior towards something that is undesirable by its &s.

In order to address this important issue, where an interactg user modi es
his/her reward generation patterns, Knox and Stone (2009hiroduced the idea
of training a supervised learning algorithm with multiple gate-action pairs
and its corresponding user-generated reward. Once this supised learning
method reasonably learns a reward-generation model, thearacting user is

replaced this reward-generator. This approach allows thateracting agent to
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receive consistent rewards throughout the task.

Though this simple approach of Knox and Stone (2009) addressan impor-
tant problem in interactive machine learning, it opens up a mre signi cantly
di cult issue of adaptability in the learning agent. Speci cally, when the task
changes, ever so minutely, the user needs to interrupt the agg@and reprogram
this supervised learning method with new training data thais tailored to this
modi ed task. Another noted disadvantage of their approachsi that if the
task is complex and realistic, like a prosthetic limb or a skdriving car, it is
impossible scale up their approach as it requires the user label all possible

state-action pairs with a human-generated reward, which isumbersome.

3.2 Interactions in the Form of Demonstra-
tions and Instructions

A closely related line of research that is often used for td@ing learning agents
is by providing interactions in the form of demonstrations o instructions,
generally provided by non-expert users. Learning from demstnation is a key
idea, rstintroduced by Abbeel and Ng (2004), through which adarning agent
can be trained to follow a behavior demonstrated by a user. Thdemonstra-
tion is the only interaction that happens between the user ahlearning agent.
Speci cally, an error function is formulated based on this @émonstration by
provided by the user, which is then used for training the agén

Many of the subsequent research works in learning from denstrations
(e.g., Koenig and Mataric, 2012; Schulman et al., 2013; Alidah et al., 2014)
relies on the fundamental idea described above. In order teatn a learning
agent to perform a particular behavior it needs to know its epected sequence
of actions which is provided broadly as interactions in theofm of demonstra-
tions. Based on these demonstrations, the agent learns tokeaa sequence
of actions that closely match these demonstrations. Thisnhits the approach
because the learning agent will not know the right action toake when faced
with an unseen part of the environment. To overcome this lirtation, many

probabilistic approaches were developed to query the usem taking a right
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sequence of actions (Cakmak & Thomaz, 2012).

Recently, Vasan and Pilarski (2017) introduced an approadior training a
myoelectric prosthetic arm from online demonstrations praded by the inter-
acting user. In their approach, they generate reward sigrgalto the learning
agent that punishes behaviors that are far from the user's denstrations.
Over time, their approach allows the agent to learn a behavidhat closely
matches with the interacting user.

Some research works have also looked at using explicit insttions (Breazeal,
1998; Liu & Picard, 2003), which can either be verbal or nonevbal cues, for
allowing people to teach their learning agents to perform ask. Though this
works in simple domains, it is unscalable for many realistgettings because it

often imposes on the users' cognitive load.

3.3 Relevance of these Related Works to this
Thesis

By perusing many of the research works in the eld of human-ntaine inter-
action, it becomes obvious that most of the approaches arectsed on shap-
ing the agent through rewards and punishments or through desnstrations.
Though, these are simple approaches towards interactive ofene learning, it
leads to issues in changing environments (or tasks). Spezlly, whenever the
task changes or modi ed, the user needs to provide more rewaror demon-
strations in order to modify the agent's behavior.

Here, we hypothesize that if a learning agent can learn and uagtand the
meaning of various cues from the user's body language, themetagent can
quickly learn to perceive evaluative feedback from the userbody language
and need not rely on explicit interactions from the user. M@ importantly, this
allows the agent to adapt its behavior according to the usar'expectations by
picking on their body language cues. It is important to poinbut here that our
approach is the rst that learns the meaning of various sub# body language

cues produced by the user during the process of interaction.
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Chapter 4

Learning From Prospective
Body Language

The fundamental contribution of this thesis is to introducea human-machine
interaction approach that allows people to teach their maghes using whatever
subtle body language cues that are produced during the praseof interaction.
As opposed to existing approaches, the meaning of these sahtles are adap-
tively learned by the machine from ongoing interactions wit the user. As
the machine learns the meaning of these subtle cues, the usan teach the
machine to perform a given task according to their prefereas.

By teaching the machine through these adaptively learned neverbal cues,
the agent completes these tasks much faster than a conveni@ user-interactive
agent and consequently maximizes user satisfaction.

In this chapter, we begin with the motivation behind our appoach and then
introduce our idea. We also ground our approach with existgnapproaches that

allow machines to learn from body language.

4.1 Towards Natural Forms of Human-Machine
Interaction

Human communication is intuitive and sustainable, allowingis to form e ec-
tive teams that collaboratively work towards solving comm@x problems. The
process of human communication involves both non-verbal &s and speech.

In the near future, we need to form similarly e ective teams vth intelligent
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machines, so that we can tackle more challenging problems. tibllately, we
hope to amplify our cognitive and physical capabilities ttough machines. As
a rst step towards achieving this grand prize of intelligene ampli cation, we
need to design approaches that allow people to communicatatarally with
machines, where the communicative process is as intuitive that of human
communication.

Ideal forms of human-machine interaction needs to enable ohanes and
their users to communicate naturally, similar to that of hunan communication.
In this thesis, we focus on using body language to improve hammachine in-
teraction, similar to how these cues are used in human commaation. People
naturally produce di erent non-verbal cues, without much eort, during the
process of communication (Frith, 2009; Pezzulo et al., 201Scheider et al.,
2016). Particularly, these subtle cues di er across peopénd are usually con-
ditioned upon their current situation or environment. The® cues are produced
as communicative signals and in uence the behavior of theobservers. For
example, while giving a talk to an audience, we usually makeeurate judg-
ments about what the audience is currently experiencing onderstanding and
use these judgments to adapt our talk. Our ability to percew others' inten-
tions and motivations or their levels of satisfaction fromheir body language
is fundamental for human communication (Adolphs, 2002).

Similar to human communication, people also produce subtleues dur-
ing their interactions with their machines in human-machie interaction do-
mains. More importantly, these cues are produced unintewtally without
any cognitive e ort. These cues are indicative of their sasfaction towards
the machine's behavior (Abdc et al., 2016). As a natural diretion for im-
proving human-machine interaction would be to use these sild cues to teach

machines perform a collaborative task.
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Our human-machine interaction approach of learning from pispective
body language assumes that a user is interacting with an ingshented learn-
ing agent in a human-machine collaborative task. An instancef this setup is
shown in Figure 4.1. The goal for both the user and the agent i® success-
fully complete the given tasks. Speci cally, the goal for th learning agent is to
gure out the right sequence of actions to take in order to copiete the given
tasks as fast as possible, and as a result, maximize user datition. The goal
for the user is to guide the learning agent in completing thesgiven tasks.

The human-machine interaction setup, which is used in thiesis, involves
a user interacting with an agent. The user observes the agenactions and
interactions within an environment as it learns to perform e given collab-
orative task. The interactions from the user are in the form fonon-verbal
cues and occasional negative rewards. The agent observessthcues through-
out the course of the task and receives these occasional redga The process
of providing a negative reward to the interacting agent is dked an explicit
feedbackand is achieved by the user pressing a button on the keyboartiVe
assume that, in real-world collaborative tasks, it is easi¢o provide evaluative
feedbacks in the form of body language than generating exqtifeedback.

During the interactive task, the user produces non-verbales that are in-
dicative of the agent's performance in the task and occasmlty provide explicit
feedback. As the agent observes these subtle cues and recethese explicit
feedback, it learns to associate these cues with the futurewards. Speci cally,
the agent learns a value function that maps the user's bodyrguage to its
future rewards. As a result, the agent learns to predict useasisfaction which
is measured in terms of the explicit feedback. Over time, thegent learns to
use these predictions to adapt its behavior before it receis explicit feedback
from the user. In short, the agent perceives the user's bodgriguage cues as
evaluative signals, critiquing and subsequently in uenaig the agent's behav-
ior so as to complete the task faster and according to the usepreferences.
This directly maximizes user satisfaction because the addaarns to quickly
complete the task as preferred by the user.

Learning the meaning of these non-verbal cues and learning a@ppropriate
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behavior based on these cues is occurs together and is haddiig conventional
temporal-di erence learning methods. Our method implicly involves two
processes: rst, the agent learns to the meaning of di eremon-verbal cues
in the form of a value function, and second, uses these predas to learn an
appropriate behavior that maximizes its rewards. Overallpur method allows
people to tea ch their machines using whatever subtle bodyniguage they
produce during interaction. This is a general approach ancheompasses any
subtle non-verbal cue. These cues are associated with thieiture rewards and
learned as a value function. As these cues forecast the futuesvards received
by the learning agent, these are called prospective body tamge cues and
we say that the agent islearning from prospective body languageHowever,
for the experiments in this thesis, we restrict our approacto the subtle cues
produced in the form of facial expressions by the user whiletéracting with
their machine and we call this restricted approaclHiace valuing as the agent

learns a value function over the user's facial expression.

4.3 Existing Approaches that Use Body Lan-
guage

In the previous sections, we described our approach that @s people to
teach their machines using subtle body language cues, whtrese cues inform
the agent about its future rewards. However, using body langge to teach
machines is a natural idea in the eld of human-machine intaction, and
naturally, many existing approaches have attempted at immving human-
machine interaction through body language. In this sectigrwe describe the
fundamental ideas that exist within the eld of human-machne interaction
approaches that use body language, in one way or the other,ttain machines.

In the next section, we contrast these with our approach.

4.3.1 Body Language as Instructions to Machines

The primary goal of a machine in a human-machine interactiotask is to

learn to perform a task according to the user's preference®A simple way
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of teaching the machine with body language to perform a tasls ito map
di erent non-verbal cues to di erent instructions to the machines. In these
cases, the user would need to produce the appropriate norrha cue so that
the machine executes the right instruction. This is the ovell idea of the
existing approaches described in this section.

Faria et al. (2007) designed a user interface that can be opérd using
the user's facial expressions. Their approach involves nmpg di erent facial
expressions to control signals. The facial expressions aeeognized from the
user's face that is observed through a simple webcam from arfable laptop,
which sends control signals to the wheelchair. In their appagh, the user
is required to produce a particular facial expression in oed to move the
wheelchair in a speci ¢ direction. The mappings between thacial expression
cues and instructions are prede ned by the system designémplying that the
users are required to remember these mappings and transl#teir expressions
accordingly to e ectively control these wheelchairs.

Similar approaches were also developed by many researchére popular
ones are listed here: Wei et al. (2009), Lievesley et al. (201 Faria et al.
(2012), Rechy-Ramirez et al. (2012), Tanaka et al. (2005),a&n et al. (2008),
Ferreira et al. (2007), She et al. (2014), Cruz et al. (2015Many of these
approaches used di erent methods for extracting facial exgssions and/or
EEG signals from the user. However, all of them still rely on # system
designer to map these cues to di erent control signals. Mornportantly,
these approaches require the user to remember the body lange mappings
and translate their cues to e ectively control the system.

Reis et al. (2009) designed a comprehensive framework thdioeed users
to control their wheelchairs through a combination of moddies, like voice,
facial expressions, head movements, keyboard, joystickeMore importantly,
their framework allowed the users to program their own sequoee of cues to
a control signal, prior to the operation of the wheelchair, @ opposed to ap-

proaches that relies on the system designer to map cues to coands.
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4.3.2 Body Language as Rewards to Machines

In this body of research, the general idea is to map non-veibzaues to reward
signals. The idea here is to shape the existing reward chahoé the learning
agent using user's body language. More speci cally, a specbody language
cue results in producing a certain reward to the agent. Manyfthe approaches
in this line of research rely on supervised learning apprd@ad to classify di er-
ent non-verbal cues and the mapping of these cues to di erergéward signals
is achieved by the system designer. Some approaches use alaristructions
as rewards instead of non-verbal cues.

There are no research works, to the best of my knowledge, thages body
language as reward signals to machines. However, this is awiolis idea, that
is fundamentally same as interacting with machines throughser-generated
rewards. As it is similar to that of learning from user-genetad rewards, this
research direction would also have similar issues, some diich are described
below.

The rst issue that arises when teaching a machine using usgenerated
rewards is that the reward distribution produced by the usechanges as the
experiment progresses. Speci cally, during the initial pa of the experiment,
the user provides more rewards and actively continues thisil the agent
learns a desired behavior. After the agent learns to behave am appropriate
manner, the user does not feel the necessity to continue withe interaction
process. Ideally, the user should not be providing rewardshen the agent
behaves in the right way. However, reinforcement learninggdrithms cannot
handle this, driving the agent to explore di erent actions ad as a result de-
teriorates its behavior. In order to generate a stable streaof user-generated
rewards, Knox and Stone (2009), introduced the TAMER framew&, where a
supervised learning model of the user-generated rewardsrs learned from
the user and then used in place of the user. This stabilizesethinteracting
agent, executing a behavior that is appropriate with the use However, when
the task changes or when the agent is faced with a new task, théhe user

needs to intervene and reprogram the supervised model in erdo handle this
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change of task.
An important requirement, and another potential limitation, in this line
of research is that complex training datasets need to be cted in order to

recognize subtle cues, that are speci c to the user.

4.4 Comparison to Existing Human-Machine
Interaction Approaches

In the eld of human-machine interaction, the existing idea either view body
language as instructions or as reward signals to the mach&meMore impor-
tantly, the approaches resulting from these ideas assumeatipeople produce
similar non-verbal cues to convey their reactions toward$i¢ machines. This
is a awed assumption to make, because di erent people proda di erent
body language to convey what they feel about their current tsiation. De-
signing approaches for human-machine interaction based trs assumption
would require the users to translate their body language taaform with their
machine's design. Using such approaches in real-world humaachine in-
teraction tasks, like the ones involving prosthetic limbs roautonomous cars,
would require the user to focus some part of their attentioncat e ectively in-
teract with the machine. Consequently, this cognitively imposes on the user,
making them to lose focus on what is important at hand. Ideal] this sce-
nario needs to be turned around. The machine needs to be adapt to the
user, learning from whatever subtle cues they produce dugrthe process of
interaction, rather than requiring the user to adapt to the nachine.

As opposed to these existing approaches, the approach we daatuced here
does not assume that all people produce similar body langwag More im-
portantly, our approach learns the meaning of the di erent nn-verbal cues
directly from ongoing interactions with the user. The mache learns to as-
sociate whatever cues with user-generated rewards, and rotiene, learns to
predict the user feedback from their body language. The meag of these
non-verbal cues are grounded in terms of the later rewardsehmachine re-

ceives from the user. As the machine learns to predict its futel rewards
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from the user, it can then adapt its behavior in order to maxinze its rewards
and thereby maximize user satisfaction. This is di erent om any existing
approaches to human-machine interaction because our appch learns the
meaning of non-verbal cues from the user.
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Chapter 5

Using Sarsa To Learn From
Prospective Body Language

In the previous chapter, we introduced our idea of teaching achines through
body language cues. Particularly, the machine learns to giaup whatever
subtle cues people produce during the process of interactiand associate
these cues with their user satisfaction. By learning a valdanction that maps
these non-verbal cues to future rewards, the users can teatle machines to
act according to their preferences, thereby teaching the mlaine to complete
the given tasks quickly. In contrast to our introduced apprach, the existing
approaches that learn from body language usually rely on tleystem designer
to map these di erent cues to instructions that are executedy the machine.
Some methods map these cues as reward signals to the learmmagchine. As
these mappings to rewards or instructions are non-adaptivéhey require the
user to translate their body language to e ectively use sucimachines, and as
a result cause signi cant cognitive load on the interactingiser.

In this chapter, we implement our approach using a standardcéion-value
learning algorithm, namely Sarsa, and compare its performee with another
agent that learns only from user-generated rewards. Specally, we implement
our approach to learn from subtle facial expression cues piiced by the user
while interacting with the machine whereas the conventionagent relies only
on the user-generated rewards to gure out the right appro&cto complete the
given tasks.

Though our approach is general enough to learn from any bodgnguage
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cue, here, we restrict ourselves to facial expression cuéghe user and this

approach is called face valuing.

5.1 Implementation using Sarsa

The face-valuing approach involves a user interacting witan implemented
agent which is learning to complete a given human-machinelladorative task.
In order to complete this task quickly, the user needs to commicate their
preferences to the machine. Particularly, the agent needs tgure out the
right action to take, according to the user in order to compke the task.

A simple way of realizing this approach as an interactive ageis by using a
standard reinforcement learning algorithm called Sarsa. his is a simple and
popular action-value learning algorithm. Sarsa extends teporal-di erence
learning to learn an action-selection policy which can be ed to pick actions
that maximize rewards achieved by the learning agent. For aomprehensive
description about this algorithm refer to the textbook writen by Sutton and
Barto (2017).

Experiment Setup.  The face-valuing approach involves a setup where
a user is interacting with a virtual agent, who observes thegent through a
display. At every time step, the agent receives a new raw imagrom a standard
webcam. This image is assumed to contain the user's face asgiocessed into
features through a standard facial detection algorithm, wibh is then tile-coded
to form the feature representation for the agent. These faates approximate
the current state of the agent and is generated at each timeegt from the
facial expression cues of the user. The reinforcement leiguign agent learns to
associate and predict its expected rewards from these fegduepresentations,
learned with occasionally generated explicit correctiveédback from the user.
Based on these action-value predictions, the agent learns take actions that
maximize user satisfaction (i.e., minimize the explicit #dback received over
time). Through this approach, the agent learns to take actiws prior to the
user generating any explicit feedback.

In subsequent sections, we describe the process involvedconstructing
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is processed and 68 facial landmark points are extracted migia popular facial
landmark detection algorithm (Kazemi et al., 2014). Theseatial landmark
points are simple two dimensional coordinates over the rawmput frame that

denote the position of certain special locations of the userface, as shown in
Figure 5.1. Particularly, these landmark points localize $i@nt regions of the
face, namely the eyes, eyebrows, nose, mouth and jawline. €l points are
also called key points and are usually used for aligning migdte images taken
from di erent viewpoints. However, these are su cient for ou purpose and
our experiments as they provide a crude approximation of tHacial expression
produced by a user.

At every time step, the agent receives a raw frame from the wedm, from
which it extracts these 68 keypoints. These keypoints are moalized by sub-
tracting out their mean value and dividing them by their stardard deviations.
Out of these 68 key points, 23 points are selected, which exdés the features
corresponding to the jawline. Each of these 23 points, aredividually tile-
coded with 4 tilings. Each of these tilings are of size 1010. This results in a
feature vector of size 9200 and this vector forms a part of ttetate space. It
is referred as (s).

Facial landmark points are chosen as features for represiegt facial ex-
pression cues because these points are easy to compute fram images in
real-time, without involving much computation. This is appealing because we
are concerned with building a real-time human-computer ieraction approach
that allows users to communicate with their learning agentthrough ongoing
interactions. The form of communication involves using derent facial cues,
with its meaning learned from ongoing interactions involvig infrequent ex-

plicit feedback.

5.1.2 Sarsa Learning Algorithm

Reinforcement learning algorithm is the core component ofup face-valuing
approach. The facial feature detection algorithm is used twonstruct the state
representation from the user's facial expression cues, ke important learn-

ing process happens through the following reinforcemental@ing algorithm.
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Particularly, the learning process is responsible for agsating facial expression
cues to the future rewards experienced by the agent while op&ng within the
simulated environment.

In this face-valuing approach, user satisfaction is formakd as an action-
value function of a learning agent and is learned through Teporal-Di erence

learning.

Algorithm 4  Face Valuing: Implementation using Sarsa

INPUT:  ;;;  Winit
W Wit . W is the weight vector for the action-value function
ew O . ey Iis the eligibility trace for the action-value function

for num. of episodesio
obtain initial state S
construct the features (S) corresponding to initial state S
(from the user's face, as described in Section 5.1.1)
select actionA based on state features(S) (for example, -greedy)
features corresponding t&; A
while S is not terminal do
take action A, observe next stateS° and rewardR
construct the features (S9 corresponding to the next stateS°
select actionA® based on (S9
0 features corresponding t&% A°
R+ w> % w”

ew ew +
W w+ ey
S s
A A°
0
end while
end for

At every time step, the images obtained from the webcam aregeessed into
features corresponding to the facial expression cues of tiiger, who is inter-
acting with the agent. Using these features, the agent estines its likelihood
of picking di erent actions. The learning agent consists od set of parameters
w 2 R", which is incrementally updated from rewards received by &hagent.
This set of parameters, when multiplied with the features eoesponding to
a state-action pair, gives an estimate of the expected rewhthat would be

received by the agent by picking this corresponding actiorAs the algorithm
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could complete an episode successfully. However, the corigrp-object com-
bination depends on the user who ultimately evaluates the agt's behavior.
The task is formulated as an undiscounted episodic MDP with @ reward
at every time step from the environment. Also, there is no rewd from the
environment for a termination of an episode. The only avaitde reward signal
is from the interacting user: by pushing a button, the user e¢aproduce a

reward of 1 to the agent for the corresponding time step.

5.2.1 State Space

The state space for the agent without face valuing consist§the given object's
ID and the agent's current selected grip ID, along with a biakerm. Speci cally,
the ID of the object that is displayed in an episode is one-henhcoded to form a
binary valued vector of sizam, wherem is the total number of objects available
in an experiment setting. Similarly, the ID of the agent's ctrent selected grip
is one-hot encoded to form a binary valued vector of sizg wheren is the
number of grips available to the agent at its grip-changingtation. Both these
vectors are concatenated along with a bias term with a valud @ to form the
state's feature vector of sizan + n + 1. This forms the state space for the
agent without face valuing.

For the face-valuing agent, the state space consists of theafures corre-
sponding to the user's facial expression cues. The faciahthnark points from
the user's face are extracted, at each time step, and procedsnto a vector
of size 9201. This vector is the feature representation cesponding to the
user's facial expression cues and represents the state gpfe the face-valuing
agent.

5.2.2 Action Space

The complete action space for the agents (with and without aess to face
valuing) consists of the following actionsf grip; grip,;  ; gripn;"; #g, where
the rst n actions results in selecting the corresponding grip, fromset of n

grips available within an experiment setting. The remainig two actions move

the agent towards and away from the given object.
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Though there aren+2 actions, all of them are not available to the agent at
all times. The actions available to the agent depends on itopition relative to
the object and grip-changing station. When the agent is in thgrip-changing
station, the available actions ard gripy; gripo;  ; gripn; "g whereas when the
agent leaves the grip-changing stationf" ; #g actions are available. In other
words, the agent can change its grip only at this grip-changg station. Once
it leaves this station, the agent cannot change its grip unds it returns back

to this position.

5.2.3 User-Generated Rewards

As described previously, there are no reward signals from tlegvironment.
The sole source of reward is from the interacting user. Speaily, when

the user pushes the reward button, the agent receives al reward for the
corresponding time step. Moreover, on pressing this rewabditton, the agent
loses all its actions except#g until it reaches the grip-changing station.

The agent observes the state spaace every three-tenth of a secorehd

takes an action at every time step. The agent, however, hasahlreedom of
choosing the same action for many consecutive time steps wathiallows the

user to observe the agent's action and then expressively pesd to the agent.

5.3 Experiments and Results

The experiments and results in this section involved a compson between
two types of learning agents: one with access to the task-gpe features and

the other with access to face-valuing features. The agent igh uses only the
task-speci ¢ features does not have access to face-valuifggtures and is a
simple user-interactive approach that learns from human ietractions in the
form of rewards.

The rst set of experiments consisted of varying the numberfoobject

and grips available within a task and comparing the learningerformances of
the agents. In the second set of experiments, both these atgehad limited

number of grips available within the task, but a new object wagenerated for
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each episode. More importantly, no object was repeated dng this second
experiment, essentially making each episode a new task teetkearning agent.
This is a realistic setting of a real-world grasping task, wdre there are in nitely
many objects available in the world and they need to be pickedp using a
limited set of grips

Both the agents used in these two experiments were constradtusing the
Sarsa learning algorithm. Speci cally, two Sarsa agentsne with face-valuing
features and the other with task-speci c features, were ekated. Throughout
the course of the experiment, the user does not know the typé agent that
is currently interacting. In other words, the experiments wre conducted in a

blind manner and consisted of 15 episodes.

5.3.1 Experiment 1: Multiple Grip and Object Setting

In this rst experiment, we varied the number of available gips and objects
available within the simulated task and compared the learng performances
of di erent user-interaction agents. Speci cally, for di erent object and grip
settings, we compared the learning performances of an agevith access to
task-speci ¢ features and an agent with access to face-vadg features.

Each experiment consisted of 15 episodes. At the beginning every
episode, an object and a grip, randomly selected from the set available
objects and grips, is displayed to the user through the displ. During an
episode, the object remains xed whereas the agent can chanigs grip from
one of its available grips. The episode terminates only on acxessful grasp

using an appropriate grip.
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(a) 2 objects & 2 grips (b) 2 objects & 4 grips (c) 2 objects & 8 grips

(d) 4 objects & 2 grips (e) 4 objects & 4 grips (f) 4 objects & 8 grips

(g) 8 objects & 2 grips (h) 8 objects & 4 grips (i) 8 objects & 8 grips

Figure 5.3: Total time steps taken for di erent grip and objet settings by
Sarsa learning agents.
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(a) 2 grips setting (b) 4 grips setting (c) 8 grips setting

Figure 5.4: Total number of user-generated rewards (i.e., @icit feedback)
provided to the learning agents.

The plots of total time steps taken and total user-generatetewards accu-
mulated by the agents during this experiment are shown in Figas 5.3 and
5.4. The plots in Figure 5.3 represents the cumulative time k&n by a learn-
ing agent to complete a successful grasp over multiple egies. The plots in
Figure 5.4 displays the number of times the user provided angicit feedback
to the learning agents. Both these graphs were generatedrfraghe same user
experiments, conducted in a blind manner. A perfect agent #t knows its
user's intentions would receive no user-generated exgif@edback in all these
settings. Moreover, it would take exactly 11 time steps forampleting an
episode: one time step for picking the right grip and ten timsteps for moving
towards and grasping the given object.

From the plots in Figure 5.3, the agent with access to face-vahg features
quickly adapted with respect to the user's preferences inlahe experiment
settings. The face-valuing agent achieved this performamavith signi cantly
less number of user-generated feedback than that of the agenth access to

task-speci c features.

5.3.2 Experiment 2: In nite Object Setting

This second experiment was designed to show the performarncgrovement

obtained from face valuing in a di cult and a realistic task. In this experiment
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Figure 5.5: Total time steps taken to complete the in nite obgcts setting by
Sarsa learning agents.

setup, a new object is generated at the beginning of every spde in the
grip-selection task. Speci cally, each episode uses a nebjext, making each
episode a new task to the learning agent. The objective forgHearning agent
here is to complete the grasp of this given object by seleagjira grip from its
limited set of grips. This setup allows in exploring the ahiy of a face-valuing
agent to leverage from previous learning experiences to aesls new or changed
tasks.

It is important to note here that, in this experiment setting, an agent
with task-speci ¢ features cannot learn the user's prefenees from task-speci c
features. This is because each episode is a new task to therlea agent. The
task-speci c agent can solve this task only through trial ad error: by trying
out each grip for each object.

The graphs in Figure 5.5 show the total time steps taken by thes&rn-
ing agents. From this gure, it is quite clear that the face-mluing agent is
much quicker in adapting to its user's preferences, which @communicated
as facial expression cues. Particularly, the body languagéthe user does not
change much throughout the task and this allows the face-wahg agent to
reuse its previous learning to complete unseen tasks withwmebjects. This
is in contrast to the task-speci ¢ agent, which cannot reusis previous learn-
ing because of its state space. More importantly, these rdisucon rm the

conclusions drawn from the previous experiment, which is &t face-valuing
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agents can complete human-machine collaboration tasks ruaster than the
agent using task-speci c features because it relies dirgcon the user's body
language for guring out the correct sequence of action to ka.

A standard t-test between the learning performances of thegants with
and without face valuing gives a value of 0.0002, meaning thhe results are
statistically signi cant. These values were obtained frona paired t-test using

a two-tailed distribution.

5.4 Discussion

Several studies have shown that users, to a certain extenteawilling to am-
plify their cognitive and physical abilities through machines. For example, in
medical domains, it is common for people with amputations textend their
capabilities or overcome their limitations by forming panberships with ma-
chines (Williams, 2011). However, the current technologieseaunsustainable
and unscalable to form successful human-machine partnegsh The funda-
mental issue that hinders in achieving this goal is that thexésting technologies
are not capable of identifying and adapting to the changingeysonal prefer-
ences of their users. Instead, these technologies expeat thser to translate
their communicative signals according to the system desigwhich leads to
user frustration towards the system. This issue serves as erisus bottleneck
to intelligence ampli cation. The human-machine interacton approach, intro-
duced in this thesis, serves as the rst steps towards achiag this ambitious
goal of intelligence ampli cation.

Though our experiments were simulated, we believe that oupproach can
be much more valuable in a realistic robot setting | we expecta robot's
behavior to elicit more expressive facial feedback from theser, in comparison
to our simple simulated domains. More importantly, these gxessive feedback
would serve as powerful features to a face-valuing agent.

The grip-selection task is a task where the learning agent eds to gure
out the goal from its ongoing interactions with a user. The ant, operating
within this task, can be termed as agoal-seeking agenPilarksi et al., 2015).
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In order to demonstrate the signi cance of our approach, weoaducted two
sets of experiments: the rst one involved multiple objecgrip settings on
the grip-selection task. The second experiment involved igenerating a new
object for each episode. This in nite object setting is pement to real-world
scenarios, where there are uncountable number of objectstitan be grasped
from a limited set of grip patterns.

In our experiments, we compare learning agents that operatath di erent
state spaces. Particularly, one agent operates with a staspace that identi es
the given object and the current selected grip by the agent. Uy this task-
speci c state representation, the agent can learn to iderfti the correct object-
grip combinations from user-generated rewards. The agemalrns to pick the
correct grip after trying out each possible grip for a given object and this paly
is learned through user-generated rewards. For a face-vialg agent, the state
space consists of the user's facial expression cues thatrsgessed at each time
step. This state space conveys the user's preferences oeintions through
facial expressions. The agent using this state space leamosassociate the
meaning of these expressions with its experienced rewardidore importantly,
this state space lets the agent gure out the user's intentgrespective of the
task as this is independent of the task. This allows the agemd learn faster
in a task without trying out every possible grip. Speci caly, this signi cantly
reduces the amount of experience required by the agent to leaa behavior
according to the user's preferences.

The results from the rst user experiment (Section 5.3.1) suggsts that the
face-valuing agent learns to adapt quicker to its user's pierences in a given
task, when compared to an agent without access to face valginMoreover,
from the plots comparing distribution of user-generated weards, it can be ob-
served that the face-valuing agent achieves this performaawith signi cantly
fewer number of explicit feedback from its user.

From the second user experiment (Section 5.3.2), we empally show a
scenario where a conventional agent can fail. From both usekperiments,
we can see that the face-valuing agent successfully adaptelacompletes one

episode after another by relying on helpful clues in the formf facial expres-
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sions, speci cally by learning a value function over thesedial expressions.
On the other hand, the agent without face valuing can rely oglon the user-
generated reward signals for identifying the correct gripf a given object. In

tasks with many possible outcomes, for example a task with mya object-grip

combinations, relying only on the reward channel to commucéte user intents
is not a scalable or sustainable approach.

From our experiments, we can clearly see that the face-vatgj approach al-
lows the agent to perceive an evaluative feedback directiyofn the user's facial
expression cues, thereby allowing the agent to gure out theser's preferences
in a given task. Our results suggests that, by learning a vadufunction over
the user's facial expression cues, the agent can adapt quycto the user's pref-
erences, requiring less explicit corrective feedback frahe user. The learning
process took place as follows: during the initial phase of tlexperiment, the
agent used the occasionally provided explicit feedback tedrn value function
over the user's facial expressions. These cues served asulsties about the
future rewards that the agent would receive by following itgurrent behavior,
thereby guiding and adapting its behavior.

Limitations of using action-value methods in our approach. The
approach we introduced in this thesis involves learning fmo whatever subtle
cues the user produces while interacting with an agent. It isnportant to
note here that these body language cues and their associatiwith future
rewards are task independent, meaning that this learned fation can be used
in di erent tasks than the ones used for initial training. Paticularly, we
can think of scenarios where the user interacts with a simuta where the
agent learns to pick on di erent cues speci c to the user andater share this
learning with a real-world machine, like a prosthetic arm oan autonomous
car. Sharing and transferring the learning from a user acr®@sasks improves
the overall experience across these tasks, as it would ink®imuch less training
when compared to learning from scratch.

An action-value implementation of face valuing does not extig conform
to this idea of transferability across di erent domains andasks, because of the

fact that the values and policy are closely coupled as actiomlues. It would
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be desirable to design an approach which learns a value fuect based on the
user's body language independent of the action-selectioaligy, so that we can

share this value function across domains and learn the pglirom scratch.
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Chapter 6

Using Actor-Critic To Learn
From Prospective Body
Language

In the previous chapters, we introduced our idea for teachgrmachines through
prospective body language and an action-value approach &arhieving this idea
as an implemented system. Also, we introduced the processohstructing the
state space for a face-valuing agent, along with a simulategip-selection task
for evaluating our approach. Using this simulated task, we oducted exper-
iments comparing the face-valuing agent with a conventiohaser-interactive
agent.

In this chapter, we introduce an actor-critic architecturefor implementing
our idea for learning from body language. Speci cally, usgna Sarsa agent
estimates the utility of each action that is available in a gien state. This
means that the method relearns information when they can aally be reused
across these actions. More importantly, an action-value ppoach does not
easily allow in transferring the learned value function aoss domains. To
address this speci ¢ issue, we introduce an actor-critic @poach that reduces
the number of parameters that need to be learned to solve a kaand easily
allows in sharing this learned value function across multi@ domains, without
losing its advantage over a conventional user-interactivagent that learns from

user-generated rewards.
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6.1 Implementation using an Actor-Critic Method

The setup used in the following experiments are the same assdebed in
the previous chapter. The approach involves a user interasyy with an imple-
mented learning agent in a human-computer collaborative sk, where the user
needs to communicate their preferences e ectively in ordeuickly complete
the given tasks. Here, user preferences are over the gripstfae agent in order
to complete the task quickly.

In the following section, we describe the actor-critic ardtecture that we
use for implementing our face-valuing agent.

Actor-critic methods are popular reinforcement learning appaches that
consists of two separable learning modules, namely the acend critic. The
actor is responsible for learning a policy that is used for leeting an action for
a given state and the critic critiques the actions selectedylihe actor module.
Speci cally, the critic generated the error signal that drves learning in both
these modules.

The actor learns a function that produces the likelihood ofhmosing an
action for a given state within the environment. The actor usally increases
the likelihood of picking an action if it produced a higher thn average TD-
error for a given state and otherwise it reduces its likelitom. The critic module
learns the state-value estimates for the states observed the agent during its
interaction with the environment. A standard TD( ) algorithm is used for
learning these state estimates.

In this face-valuing approach, user satisfaction is formaked as the critic's
value function of a learning agent and is learned through teporal-di erence
learning methods. The actor module learns a policy that chges actions
according to the critic's estimate for a given state.

In the actor-critic method, the action selection behaviors learned directly
from rewards received over time, instead of learning actieralue estimates
and then computing an action-selection policy. Speci call the actor module
learns an action-selection policy which is parameterized by 2 R". This

policy (sj ) is like a function that takes in the state as input and produes the
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Algorithm 5 Face Valuing: Implementation using Actor-Critic Method

INPUT: vio o5 Winit s init
W Winit . W is the weight vector for the critic
init . Is the weight vector for the actor
ew O . ey Is the eligibility trace for the critic
e 0 . e is the eligibility trace for the actor

for num. of episodesio
obtain initial state S and (S) from facial features
while S is not terminal do
select actionA for state S (using (S))
take action A, observeS®and R
R+ w”> (89 w> (S

ew ewt+ (S)
W W+ ey
e e +r log (AjS; )]
+ e
S s
(S) (9
end while
end for

probability of each action available within the environmeh The actor-critic

method also consists of a critic module that critiques the #ons selected
by the actor. This critic is parameterized by a di erent set & parameters
w 2 R". Usually, a standard TD learning algorithm (as described inhe
background section), is used for learning the critic's pamaeters. Also, this
TD-error generated by the critic drives the learning in the etor module. In
simple terms, the actor module learns to increase the likkbod of picking an
action for a given state when it produces a positive TD-errorOtherwise, this
likelihood decreases.

The state representation is usually shared between actoraaritic modules.
However, here, we choose to use the critic's predictions ofetlturrent state
as input to the actor module (denoted as (S) in Algorithm 5). Intuitively,
it makes sense to pick one action when the state has a largetiraste of
expected reward and pick the other action when the state hassmaller value
estimate, especially in domains where the action space cae parameterized

as a continuous spectrum between two opposing actions. Cespondingly, for
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number of grips. At the beginning of each episode, a new olj@as generated
and presented to the interacting user. This object was locadl at a distance
from the location where the agent and its grip are spawned. Ehobjective for
the learning agent here is to complete a grasp of this givenjebt successfully
by using one of the appropriate grips chosen from this limiteset of grips.
It is important to note here that the agent can switch its griponly at the

grip-changing station. The agent cannot switch its grips wén it is away from
this grip-changing station.

This experiment was designed to show the performance impesaent achieved
through our face-valuing approach in a di cult and a realisic task, where the
agent needs to grasp a new object that is generated in each nepisode. The
experiment tests the utility of reusing the agent's previosi learning experiences
within the grip-selection task.

Each experiment involved 15 episodes and the results obtash&om our
experiments are reported in Figure 6.1. The gure on the left as obtained
from a user who had previous experience interacting with thiace-valuing
agent and the simulator and the gure on the right was obtaineé from 5 dif-
ferent users who had no prior experience with the approach tre simulator.
The graphs report the cumulative time taken by the correspating learning
agents in completing a set of 15 episodes, each of which imeal the agent in
selecting an appropriate grip and successfully grasping aw object.

From the plots, it is clearly observed that the face-valuingagent achieves
a much better performance that a conventional agent that leas from user-
generated rewards. Particularly, the face-valuing agentds the ability to reuse
its previous learning experiences to solve new tasks, whehnés ability arises
from the state space constructed using the user's body larage cues. On the
contrary, the task-speci c agent operates with a state spachat has no poten-
tial to reuse or leverage from previous experiences as eaplsede generates a
new object.

A standard t-test between the learning performances of thegants with
and without face valuing gives a value of 0.005 (for Figure gLlkft)) and a

value of 0.02 (for Figure 6.1Right)), meaning that the results are statistically
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signi cant. These values were obtained from a paired t-tesising a two-tailed

distribution.

6.3 Discussion

In this chapter, we introduced an actor-critic approach foface valuing, which
learned a value function grounded in the user's facial exg®ons, independent
of the action-selection policy. The motivation behind thigs that, ideally, we
would want to share this learned value function across muftie domains as
this is task-independent. Particularly, the user's body laguage would remain
the same, have the same meaning, irrespective of the task theachine is
performing. We can leverage this insight by sharing the leaed value function
to di erent tasks, and as a result, improve the overall usergerience with the
machine. It is important to note here that this actor-critic approach allows in
transferring the learned value function across multiple doains without much
e ort, and this is not possible in the action-value version bface valuing.

In the actor-critic implementation of face valuing, the paky operates over
a state space that is based on the critic's estimate. Specally, the critic's
value estimate is tile-coded using a one dimensional tileser and this forms the
state representation for the actor module. This is a simplepresentation of the
actor module because, essentially, the module learns tolp@ne action when
the estimate is below a certain threshold. Otherwise, it leas to pick other
actions. Such a policy representation is suitable only foredain tasks, like
navigation or tasks with binary choices. The representatiocapability of this
actor module is su cient to learn a policy over a linear spesum of an action.
For example, if the agent is learning to navigate, we can foutate a continuous
action space for such a domain where an action at one end of #pgectrum can
move the agent forward with maximum speed and an action at thepposite end
of this spectrum moves the agent in reverse with maximum speeSimilarly,
the actions between this spectrum produces similar consemeces with slower

speeds.
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Chapter 7

Discussions and Extensions:
From Facial Expressions to
Body Language

In this thesis, we introduced approaches that allows users tommunicate with
their machines through simple and intuitive channels, specally, through
their body language cues. These cues are used to forecastrtteechine's future
rewards and because of this, these cues are called prospechody language
cues. We strongly believe that this work would serve as thest steps towards
building more natural and high bandwidth channels of commueation between
humans and machines.

There are many scopes for improving our approach in order toahdle
di erent and complex forms of cues generated by the user, tleby moving
closer towards achieving intelligence ampli cation. Makig progress in these
avenues should produce many successful human-computedatmrations, es-
pecially those that are suitable for many real-world domam

In this chapter, we discuss a few important questions reladeto our ap-

proach and the potential future directions for extending ouapproach.

7.1 What is Missing in Existing Human-
Machine Interaction Approaches?

Human-machine interaction approaches are supposed to er@apkople in form-

ing e ective collaborations with their machines, resultiig in people amplifying
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their cognitive and physical capabilities. In order to acanplish this ambitious
objective, the process of communication between people andhchines need
to closely follow the principles underlying human communation, so that the
process of communication between these domains are compéa

Human communication is natural and intuitive because it reés on both
speech and body language. In this thesis, we focus on usindtil body
language cues to improve human-machine interaction, similto how body
language is used in human communication. Particularly, in hman communi-
cation, body language cues in uence the behavior of their ebrvers and are
produced involuntarily without much e ort. As a rst step to wards achiev-
ing sustainable human-machine interaction, we introducedur approach that
allows people to naturally teach their machines using suletlbody language
cues, that are produced during the process of interaction. Astudied in hu-
man communication, the body language of the interacting usé uences the
machine's behavior.

The existing approaches in the eld of human-machine interion are not
comparable to the process of human communication. Specilga these ap-
proaches do not allow people to communicate naturally with athines as they
do with their peers. The existing approaches that use bodyriguage for teach-
ing machines often rely on supervised learning approachesdeon the system
designer to map these cues to instructions or rewards.

These supervised approaches require labeled datasets fcagnizing the
di erent non-verbal cues produced by the people. However, is a di-
cult, cumbersome and time-consuming process to create anemsive labeled
dataset for recognizing nuanced non-verbal cues, that areopuced by people
in a variety of situations.

The existing approaches to human-machine interaction mapldy language
to instructions or rewards, assuming that these non-verbaues have similar
meaning across di erent people. The body language of peoplieers with their
situations and preferences. In such cases, the machinesuisgpg those users' to
produce unnatural cues in order to e ectively teach them. &iilar unintuitive

process occurs in approaches that use body language as indions to the
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machine.

Ideally, the meaning of these cues needs to be learned frongoimg inter-
actions by the machine as di erent cues can have di erent meéngs and these
depend on the people who produce them.

In this thesis, we introduced an approach that does not relyndarge super-
vised learning datasets for teaching machines through bodgnguage. More
importantly, our approach learns the meaning of these cues #¢hey are pro-
duced by the user during ongoing interactions, thereby all@ating this prob-
lem of creating an extensive dataset or hand-engineeringeih meaning to the
machine. By learning the meaning of these cues, the users daach their
machines to behave according to their preferences. We wodike to point
out here that this is a signi cant contribution and is vastly di erent from

conventional human-machine interaction approaches.

7.2 How Does Our Approach Di er from Ap-
proaches that Learn from User-Generated
Rewards?

In the previous section, we discussed the signi cance of oprospective body
language approach over existing human-machine interaati@approaches that
use body language. In this section, we draw out the importardi erences
between ours and those that learn from user-generated rewar

Many approaches, like the ones introduced by Knox and Ston&Q09)
and by lturrate et al. (2015), were developed recently for iproving human-
machine interaction through reinforcement learning. Thestechniques allow
the user to directly manipulate the existing reward channethrough user-
generated rewards, thereby teaching the machine to act acdimg to their
preferences. In these approaches, the user generates rdaawhich comple-
ments the reward signal from the environment. Using this connted reward
signal, the agent learns and adapts its behavior in order to arimize its re-
wards.

These approaches to human-machine interaction requiresnstant super-
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vision from the user in the form of user-generated rewards rtstughout the
operation of the machine. This contradicts the objective ofiuman-machine
interaction, which is that the agent needs to complete a taskccording to their
user preferences without involving much e ort from the userMore speci cally,
these interaction techniques should not require constanagervision from their
users. In order to meet this requirement, the machines neetts have some
level of autonomy and not expect expensive feedback throumit the course
of its operation.

A simple way of meeting these requirements is by adding theears body
language into the existing state space, which is exactly whaur approach
does. As a result, the agent learns to predict its future rewds directly from
the user's body language, which is a powerful source of feadk compared
to user-generated rewards. More importantly, these bodyrguage cues are
produced without much e ort as opposed to the process of prading user-

generated rewards.

7.3 Do People Produce Non-Verbal Cues While
Interacting With Their Machines?

In the previous chapters, we introduced our approach, wheresers can teach
their machines using body language cues without involving uuoh e ort from
the users. As opposed to existing methods, our approach alkbweople to
use high-bandwidth channels for communicating feedback tbeir machines.
However, in our experiments, we assumed that the users proédcfacial ex-
pression cues during their interactions with their agentsiNaturally, this brings
up the following question: do people produce facial exprésss or other body
language cues while interacting with their agents?

People often produce subtle body language cues while comnoating with
their peers. Many research works in psychology and a ectiveeuroscience
(Adolphs, 2002; De Gelder, 2006; Whalen et al., 2013; Jack & Soby 2015;
Scheider et al. 2016) have studied this speci c phenomenomore impor-

tantly, they study why people produce such non-verbal cuesnd how they
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in uence their observers.

It is reasonable to think that people do not produce such sulat cues while
interacting with machines. However, recently, Fridman et al (2017) discov-
ered that people produce signi cant body language while iatacting with their
machines. Speci cally, their work studied the predictive pwer of various body
language cues produced naturally by a user while driving arseautonomous
car through di erent environments. More importantly, their results suggest
that these non-verbal cues were powerful enough to predict &ent aspects
of their environments and about the car, like the tra ¢ densty, cruise con-
trol, road conditions, weather, and proximity to an interseton among others.
They created a dataset with 100 users logging in 2 million vieie miles, which
resulted in 43 000 hours of supervised training data. The entire processare-
ating this dataset and subsequently labeling this data tookbout 13 months.

Another research work, by Abdt et al. (2016), studied how udal these
body language cues were for predicting their satisfactiomhey used a dataset
obtained from a user study, which involved the users to drive car and operate
a voice-based navigation system. The users' faces alonghifteir conversation
with the navigation system were recorded and labeled with #ir satisfaction
level. The authors trained a supervised learning approactver this dataset
and found that their approach predicted the user satisfaatn with signi cant
accuracy. More importantly, they reported that the visual sream containing
the driver's face was more predictive of their satisfactiothan their conversa-
tion with the navigation system.

From these research works, it is clear that people do produnatural non-
verbal cues while interacting with their machines. More remtly, Fridman et
al. (2017a) and Fridman et al. (2017b) are beginning to buildipon these
results, by designing better user-interfaces for semi-automous vehicles.
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7.4 How Does Our Approach Relate to A ec-
tive Computing?

A ective computing is de ned as the study and development of ysstems that
can recognize, interpret, process and simulate human a egtwhere an a ect
is the experience of a feeling or emotion. Sometimes, a e& also de ned
as facial, vocal or gesture behavior that serves as a respsrie a stimuli.
The motivation of a ective computing is to simulate empathyin computers.
In short, a ective computing machines need to interpret thestate of mind of
people and adapt its behavior towards them. This modern elavas formalized
by Rosalind Picard in the seminal paper published in 1995.

From the de nitions of a ective computing, it is clear that our prospective
body language approach ts these requirements. Speci cgllour approach
seems to be the initial steps towards building a complete sgsh that identi-
es the user's state of mind from their body language and subguently adapts
their behavior towards them. It is also important to point ou here that the
existing research works in a ective computing rely on supeised learning ap-
proaches for recognizing di erent a ects from the user. Its surprising to see
that our work is the rst to comprehensively address this a €tive comput-
ing problem, without making any assumptions about the uses'body language.

Also, reinforcement learning seems to be promising approdcin a ective com-

puting.

7.5 Better Feature Representations for
Nuanced Body Language

The most important aspect that needs to be improved upon in @wpproach
would be the feature representation that forms the state repsentation of the
agent.

In the experiments described in this thesis, we processeditd landmarks
of the interacting user, which was extracted at each time gbe These facial

landmarks formed the feature representation to the agent. ugsh a feature
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representation is not powerful enough to encode cues thatterd for many
time steps, like nodding the head or curling the lips. Peopleften produce
such nuanced body language cues, which contain signi canbramunicative
value to the agent. By using better feature representationghe agent can
learn from such nuanced cues, and as a result, produce betbser experience.

A better approach towards building powerful feature reprentation would
involve the recent advances made in the eld of representat learning. In re-
cent times, the trend is to learn features directly from the dta by minimizing
some objective function. These representation learning aqaches involves
constructing a hierarchical network structure, called a neal network, whose
parameters are tuned through gradient-based optimizatioalgorithms to solve
a given task. This hierarchical organization enables thesetworks to learn
nonlinear feature representations directly from the datasubstantially improv-
ing its performance.

This approach of learning hierarchical representations gunded directly in
the data has achieved signi cant state of the art results in mny domains, like
translating languages (Cho et al., 2014), predicting patn survival (Miotto et
al., 2016), playing poker (Moraxk et al., 2017), Go (Siver et al., 2016) and
atari (Mnih et al., 2015). The performance improvements olained through
these hierarchical representation learning methods are mafolds over con-
ventional hand-engineered methods.

We hypothesize that, by using neural networks, our approacban learn
temporally extended and nuanced body language cues proddd® the user,
resulting in more powerful interaction techniques betweepeople and their

machines.

7.6 Integrating Di erent Modalities

Our approach of teaching a machine using prospective bodyguage was moti-
vated by the importance of improving human-machine interamn by studying
human communication. However, in order to achieve its compée potential,

we need to integrate this with speech and other body language
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People produce many di erent body language that range acresnultiple
modalities and they usually di er with people. For example people tend to
accentuate their hands while they speak. Sometimes, the po® exhibited
by people also have valuable information about their statefanind. Learn-
ing to understand such body language allows machines to bettunderstand
their user and their preferences. Integrating di erent modlities would al-
low the machines to better learn about their users and will e the research
community to signi cantly progress towards the ambitious gal of intelligence
ampli cation.
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Chapter 8

Conclusion

Body language plays a key role in human communication. Thesen-verbal
cues complement the speech in human communication and sifypthe process
of communication with our peers. More importantly, these aes are produced
naturally during the process of communication and usuallydve communica-
tive value. Our peers on observing these cues subsequenthapt their behav-
ior towards us.

An important goal of arti cial intelligence is to amplify our cognitive and
physical capabilities of people through machines. This isaked intelligence
ampli cation. As a rst step towards achieving this grand prize, we need to
design sustainable forms of human-machine interaction thalosely adheres
to the principles underlying human communication. Specially, we need to
design approaches that allow humans to communicate natukalwith their
machines, similar to how people communicate with each other

Many of the existing approaches to human-machine interaci that use
body language assume that the meaning of di erent cues arevgn to the ma-
chine from some external source. This is not a sound assungptito make
because these cues usually vary with people. As a result, thesxisting ap-
proaches requires the user to actively translate their noverbal cues in order
to t the system design. This process of translation requiek from the user
is unnatural and causes cognitive load on the user, makingese existing ap-
proaches unsustainable. More importantly, these existingpproaches do not
address the goal of this thesis | to create approaches that krn from people
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without their really trying.

In this thesis, we introduced our prospective body languagapproach,
which allows people to teach their machines using whateveptly language
cues they produce during the process of interaction. More esg cally, these
cues indicate their satisfaction towards the machine's belior. First, the
agent learns to predict its future rewards by mapping the uss body lan-
guage with the occasionally generated explicit feedback. hiB mapping is
achieved through a value function. Second, after this valuenction reliably
predicts its future rewards from the cues, the agent perce&s these cues as
useful evaluative feedback signals, informing the agent @it its performance.
More importantly, the agent utilizes this feedback to adaptits behavior so
as to maximize its rewards and user satisfaction. This proge of in uencing
behavior through subtle cues is similar to how people adap¢ir behaviors in
human communication.

As opposed to the existing approaches, our method does not uegg any
supervised learning datasets for recognizing the subtleesuproduced by the
user. Crucially, our method does not assume anything regand the user's
body language as our method learns the meaning of these cuastigh ongoing
interactions with the user. As a result, our approach does nogquire the user
to translate their cues according to the system design. We lmve this to be
the rst work in directly addressing the overall goal of thisthesis, where an
implemented system learns from people without involving naln e ort from
the people.

We expect that the our prospective body language approachrche easily
extended to many real-world human-machine interactions dwains, like in-
telligent prostheses, and self-driving cars. In the near tiure, we expect our
general human-machine interaction approach to improve thguality of life for
people by amplifying or augmenting their physical and cogtive capabilities

through machines.
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