
RLJ | RLC 2024

An Idiosyncrasy of Time-discretization in
Reinforcement Learning

Kris De Asis
kldeasis@ualberta.ca
Department of Computing Science
University of Alberta

Richard S. Sutton
rsutton@ualberta.ca
Department of Computing Science
University of Alberta

Abstract

Many reinforcement learning algorithms are built on an assumption that an agent
interacts with an environment over fixed-duration, discrete time steps. However,
physical systems are continuous in time, requiring a choice of time-discretization
granularity when digitally controlling them. Furthermore, such systems do not wait
for decisions to be made before advancing the environment state, necessitating the
study of how the choice of discretization may a�ect a reinforcement learning al-
gorithm. In this work, we consider the relationship between the definitions of the
continuous-time and discrete-time returns. Specifically, we acknowledge an idiosyn-
crasy with naively applying a discrete-time algorithm to a discretized continuous-
time environment, and note how a simple modification can better align the return
definitions. This observation is of practical consideration when dealing with envi-
ronments where time-discretization granularity is a choice, or situations where such
granularity is inherently stochastic.

1 Introduction

Reinforcement learning provides a framework for solving sequential decision making problems based
on evaluative feedback (Sutton and Barto, 2018). It remains a promising approach for robot learn-
ing as it can allow for real-time adaptation of behavior. Many reinforcement learning algorithms
assume that the agent-environment interaction occurs at synchronous, discrete time steps, where
the environment waits for an action before advancing. In contrast, real-world physical systems are
continuous in time, and do not wait for an agent’s input. As such, time-discretization becomes a
necessary and important consideration, as evidenced by Mahmood et al. (2018a).

Prior work suggests that current reinforcement learning algorithms are sensitive to the choice of
discretization. Tallec et al. (2019) emphasize that action-values converge to state-values as the
discretization interval approaches zero, creating degenerate cases for algorithms like Q-learning.
Similarly, Munos (2006) showed that the variance of policy gradients can be infinite under the same
limit. Zhang et al. (2023) characterize a fundamental bias-variance trade-o� with the degree of
discretization while Mahmood et al. (2018a) detail another trade-o� between having fine-grained
control and being able to discern the changes between subsequent states. Finally, Farrahi and Mah-
mood (2023) provide guidelines for time-discretization-aware parameter selection by acknowledging
how changes in discrete-time parameters influence the underlying continuous-time objective.

In this work, we explicitly view the discrete-time objective as a discrete approximation of the
continuous-time objective. By considering when rewards occur, particularly in existing continuous-
control environment setups, we identify an idiosyncratic dependence on the choice of discretization
beyond those listed by Tallec et al. (2019) and Farrahi and Mahmood (2023). Specifically, the
discrete-time return can be viewed as mixing two Riemann sums. We characterize and demonstrate
that this is a relatively poor integral approximation in comparison with a conventional Riemann
sum and provide a simple modification to the definition of the return to better align the objectives.
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The contributions of this work are as follows:

• We acknowledge and characterize an issue with naively applying a discrete-time reinforce-
ment learning algorithm to a discretized continuous-time environment in terms of a discrep-
ancy between the discrete-time and continuous-time definitions of the return.

• Based on an integral approximation perspective, we propose a simple modification to the
definition of the return to alleviate this idiosyncratic dependence on time-discretization.

• We characterize when the modification will have a modest impact and support our claim
with empirical evaluation in both continuous-time prediction and control.

2 Definitions of the Return

In discrete-time reinforcement learning, the discounted return from time step t onward is defined as:

Gt =
T ≠1
ÿ

k=t

“k≠tRk+1, (1)

where T is the final time step of an episodic task, or Œ in an infinite-horizon setting. In continuous-
time reinforcement learning (e.g., Doya, 2000; Mehta and Meyn, 2009; Frémaux et al., 2013; Lee and
Sutton, 2021; Tallec et al., 2019), we instead define the integral return from time step t onward:

G̃t =
⁄ T

t
“·≠tR· d· . (2)

This formulation is pertinent to applications with real-time interaction (e.g., robotics). Despite being
continuous in time, robots are often digitally controlled, necessitating understanding the impact of
the choice of time-discretization and how it relates these two objectives.

3 When Rewards Occur

There are notational di�erences in the literature with respect to time indices in the discrete time
return (Equation 1). Some define it to start from Rt+1 (e.g., Sutton, 1988; Precup et al., 2000; van
Seijen et al., 2009; Barreto et al., 2017), as presented in this document, while some would start from
Rt (e.g., Watkins, 1989; van Hasselt, 2010; Mnih et al., 2015; Wang et al., 2016). This inconsistency
is inconsequential when solely considering the discrete-time setting as the rewards occur at the same
locations in an agent’s stream of experience. However, it has implications when viewed as a discrete
approximation to an underlying integral return. Thus, it is worth considering when rewards occur.

We emphasize the focus on a setting where there is an underlying continuous-time objective of which
a digital learning agent samples at an arbitrary (and potentially variable) frequency. Despite the
discrete-time notational di�erences, it is often agreed upon that from the agent’s perspective, the
reward and next state are jointly observed. This is reflected in environment step calls in relatively
standard reinforcement learning APIs (e.g., Brockman et al., 2016), agent-environment interaction
diagrams (e.g., Sutton and Barto, 2018), or explicit acknowledgement that reward can be a function
of state, action, and next state (e.g., Puterman, 1994). In real-time settings that do not wait for an
agent’s input, meaningful evaluative feedback must come after time t as actions take time to execute
and to have a causal influence. Hardware limitations on sampling rates further delay when a system
can receive feedback for an action. In many existing robotics environments, where the considered
setting is especially pertinent, rewards are often explicitly computed based on the next time step’s
state information. For example, rewards based on distance traveled in some direction between two
time steps, or distance between an end-e�ector and a desired setpoint at the subsequent time step,
as done by Todorov et al. (2012), Brockman et al. (2016), and Mahmood et al. (2018b).

Of note, semi-MDPs and options (Sutton et al., 1999; Precup, 2000) address the problem of when
rewards occur, but under the assumption that one has access to higher-frequency interaction with the
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environment to integrate the discounted sum of rewards within the discretization interval. It is akin
to the agent being aware of and able to time when each component of a temporally-extended reward
occurs. Here, we consider when one does not have access to these higher-frequency samples but is
aware of how much time has elapsed between discrete decision points. Acquiring such information
may not be possible due to hardware limitations, and highlights a nuance that arises when naively
applying a discrete-time algorithm to a discretized continuous-time environment.

4 Implications for Time Discretization

If we consider rewards jointly arriving with the next state, at least from the agent’s perspective,
then there is an idiosyncrasy with respect to approximating an underlying integral return. While
definitions of the discrete-time return may di�er in their use of reward time indices, they are consis-
tent on when discounting begins: the first reward is given weight “0 = 1, with subsequent rewards
weighted by increasing powers of “. We can view the integral return in Equation 2 to be of the form:

⁄ T

t
f(·)g(·)d· , (3)

where f(·) is the discounting term and g(·) is the reward signal. A right-point Riemann sum
approximation to this would yield:

n≠1
ÿ

i=0
f(·i)g(·i)�, (4)

where � = T ≠t
n and · = {t + �, t + 2�, ..., T}. The right-point Riemann sum beginning with t + �

aligns with an agent jointly receiving a reward with the observation of the next state. However,
this sum would weight the first reward by “� ”= “0. This highlights that if one naively applies a
discrete-time reinforcement learning algorithm to a discretized continuous-time environment, it is
akin to a left-point Riemann sum for discounting and a right-point Riemann sum for rewards:

n≠1
ÿ

i=0
f(·i)g(·i+1)�, (5)

where · œ {t, t + �, t + 2�, ..., T}. See Figure 1 for a visualization of this Riemann sum. This
sum still converges to the correct integral as n æ Œ as Bliss’s Theorem (1914) shows that each
function may be evaluated anywhere in the interval. However, for the specific case where a left-
point Riemann sum is used for discounting, we expect this to perform worse than committing to a
right-point Riemann sum. If one draws a rectangle with opposite corners at any two points of an
exponential decay, the area above and below the curve represents the approximation errors of left-
and right-point Riemann sums, respectively. There will always be more area above the curve than
below due to the curvature of exponential decay, implying that an underestimate (right-point) has
strictly lower error than an overestimate (left-point). This is visualized in Figure 2.

To rectify this discrepancy and commit to a right-point Riemann sum approximation, we simply
multiply the discrete-time return by a factor of “. For example, with � = 1:

“Gt = “Rt+1 + “2Rt+2 + · · · . (6)

For a fixed, pre-specified action cycle-time �, there is no loss of generality, as the discrete-time return
is proportional by a factor of “��. However, this is not the case when � may vary over time, for
example, due to an adaptive algorithm (e.g., Karimi et al., 2023) or inherent stochasticity. These
concerns similarly apply to a variable “ and may extend toward tuning fixed-� or “ in practice in
terms of an unintuitive dependence on discretization. To emphasize the dependence on �, we note
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Figure 1: The resulting sum when applying a discrete-time algorithm to a discretized continuous-
time domain. Note how rectangle heights may fall out of the function’s range within an interval.

Figure 2: A visualization of the left-point and right-point Riemann sum approximation errors for
an exponential decay. Due to curvature, a right-point Riemann sum will always have lower error.

the more explicit definition of the right-point Riemann sum return:

GRP
t

def=
T ≠1
ÿ

k=t

“
qk

i=t
�i+1Rk+1�k+1 (7)

= “�t+1Rt+1�t+1 + “�t+1+�t+2Rt+2�t+2 + · · · .

Tallec et al. (2019) and Farrahi and Mahmood (2023) have acknowledged the modifications of scaling
rewards by � and exponentiating “ by � in terms of improving robustness to time-discretization.
The key di�erence and contribution in Equation 7 being the earlier discounting.

5 Comparison with Standard Riemann Sums

To see how the discrete-time return (DTR) in Equation 5 compares with a right-point Riemann
sum, we use them to numerically integrate random continuous-time signals. Inspired by robotics,
we consider periodic signals and Gaussian mixtures. Periodic signals are comparable to signals
pertaining to robot locomotion, while Gaussian mixtures instead resemble both sparse and distance-
based rewards depending on the spread of each Gaussian. We fix the signal length to 3 seconds,
with no loss of generality due to being continuous in time. Each signal generator is detailed below:

Random Periodic Signals - This signal sums 6 sinusoids
q5

i=0 Ai sin(Êit + „i) with angular
frequencies Ê œ { 2fi

4 , 2fi
2 , 2fi, 4fi, 8fi, 16fi}, amplitudes Ai ≥ N (0, 1), and phase shifts „i ≥ U(0, 2fi).

Random Gaussian Mixtures - This signal sums 6 Gaussians
q5

i=0 N (µi, ‡i) with means µi ≥
U(0, 3) and standard deviations ‡i ≥ U(0, 3

2 ).
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For each method, we varied the number of intervals n œ {5, 10, 25, 50, 100}, the discount factor
“ œ {0.5, 0.75, 0.875}, and measured the absolute error of the integral approximation relative to a
fine-grained mid-point Riemann sum with 104 intervals. The values of “ used may appear small
and unrepresentative of typical values. We however note that the discount is per second and that
for a robot sampling every 30 ms, “ = 0.5 is e�ectively “� = 0.50.03 ¥ 0.98 per discrete time step.
Averaged across 106 randomly generated signals of each type, the results can be seen in Figure 3.

Figure 3: Numerical integration approximation error on discounted random signals. Results are
averaged over 106 signals and shaded regions represent one standard error.

As expected, the errors generally increase as � Ã 1
n increases. There is a consistent dip in error with

the periodic signals which is likely due to the intervals coincidentally aligning with the pre-specified
frequencies. Across all settings, DTR had larger absolute error and is consistent with our hypothesis
that DTR would perform worse than right-point when integrating discounted signals. The gap closes
as “ æ 1 as the sums are equivalent at this extreme.

We then considered stochastic intervals to simulate variable time-discretization. This was imple-
mented by sampling, sorting, and re-scaling a set of n + 1 uniform random points to represent
interval endpoints. This is particularly pertinent as DTR is no longer proportional to right-point
and reflects the variability in applications on real-time systems. Fixing “ = 0.75, Figure 4 shows re-
sults averaged across 106 randomly generated signals of each type plotted against average �. Errors
generally increased, with DTR maintaining larger approximation error across every setting.

Lastly, to see whether results hold beyond exponential discounting, we considered the product of each
pair of the signal generators. This evaluates each sum in a more general numerical integration setting,
while resembling transition-dependent “ as White (2016) has advocated for in reinforcement learning.
Averaged across 106 randomly generated signal pairs, the results can be seen in Figure 5. Perhaps
surprisingly, the gap between DTR and the right-point Riemann sum widens dramatically. This
suggests that beyond the structure of discounting, DTR is a generally worse integral approximation.
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Figure 4: Numerical integration approximation error on discounted random signals, with stochastic
discretization intervals. Results are averaged over 106 signals and shaded regions represent one
standard error.

Figure 5: Numerical integration approximation error on undiscounted products of random signals.
Results are averaged over 106 signals and shaded regions represent one standard error.

A key takeaway from these results is that shifting the discount factor in the discrete-time return
yields a better prediction target (e.g., in value-based methods) in terms of error between the integral
return. To reiterate, in the fixed � case, the sums are proportional despite the gaps in approximation
error. This suggests that the improvement is inconsequential for control. However, in the variable
� setting, we expect that learning from estimates which better approximate the underlying integral
return should improve the capability to maximize it. We explore this further in the next section.

6 Discretized Continuous-time Control

To evaluate the right-point Riemann sum in a continuous-time control setting, we build o� of the
REINFORCE algorithm (Williams, 1992). Such a choice is due to the algorithm’s simplicity, al-
lowing for more confidence in attributing di�erences in performance. We specifically use online
REINFORCE with eligiblity traces (Kimura et al., 1995) and dropped the “t term:

z Ω z + Ò◊ log fi(At|St)
◊ Ω ◊ + –Reff z
z Ω “�t+1z,

where �t+1 is the elapsed time between time steps t and t + 1, Reff = Rt+1�t+1 for the discrete-
time return, and Reff = “�t+1Rt+1�t+1 for the right-point Riemann sum. The above algorithm
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employs the recommendations of Farrahi and Mahmood (2023) for making algorithms more robust
to time-discretization, emphasizing that the proposed right-point modification is complimentary.

We designed a simulated Servo Reacher environment based on the setup by Mahmood et al. (2018b),
with physical parameters sourced from a Dynamixel MX-28AT data sheet. This custom environment
allows for fine-grained computation of the integral return, and flexibility in the discretization intervals
an agent can sample at. Full environment specification can be found in Appendix A. To simulate
the inherent stochasticity of a real robot, Gaussian noise was added to the target discretization
interval, �t ≥ N (�µ, 10 ms), with a hard minimum interval of 1 ms. We additionally included a
1% chance to sample the interval from N (1000 ms, 10 ms) to simulate “catastrophic” events akin
to communication errors. Of note, in less-exhaustive experiments not presented, such catastrophic
events did not strongly impact or change the conclusions of the results.

Each agent’s policy used a two-hidden-layer fully-connected network with tanh activations, with its
output being treated as the mean of a Gaussian with an initial (bias unit) standard deviation of 1.
We fixed “ = 0.25, which when using an interval of 40 ms, corresponds with “0.04 ¥ 0.95 per discrete
time step. We considered target discretization intervals �µ œ {40, 80, 120} ms with a 4 second time
limit and measured the episodic integral return. Averaged over 100 runs of 25 (simulation) minutes,
Figure 6 shows parameter sensitivity curves and the best parameters’ learning curves.

(a) Parameter Sensitivity (�µ = 40 ms) (b) Parameter Sensitivity (�µ = 80 ms)

(c) Parameter Sensitivity (�µ = 120 ms) (d) Learning Curves (�µ = 120 ms)

Figure 6: Servo Reacher results for REINFORCE using the discrete-time return (DTR) and right-
point Riemann sum (RP), averaged over 100 runs. Shaded regions represent one standard error.

An initial observation is a systematic lag between the sensitivity curves of the two algorithms at low
–. This is due to the return magnitudes being roughly proportional by a factor of E[“�t ]. If one
absorbs this factor into the step-size, the right-point Riemann sum can be viewed as using a smaller
e�ective – in the policy gradient update. Scaling the figure to use this e�ective – can be found to
align the curves at low –. Nevertheless, we find that after accounting for this shift, REINFORCE
with the right-point Riemann sum never performed worse and can significantly outperform the
discrete-time return with both algorithms properly tuned. The right-point Riemann sum is seen to
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improve with increasing �µ, in line with the approximation error results in Section 5. Acknowledging
that the two returns are roughly proportional by E[“�t ], the results support that improvements are
expected as this term deviates from 1 (i.e., decreasing “ or increasing �µ).

7 Conclusions and Future Work

In this work, we identified and characterized an idiosyncrasy of time-discretization in reinforcement
learning. Specifically, a nuance between the definitions of the discrete-time and continuous-time
returns when viewing one as a discretization of the other. Our results suggest that when one does
not have access to evaluating the integral return via options, one can better align the objectives
by shifting the discount factor to begin discounting sooner. This provides unification in that the
discrete-time return becomes a relatively straight-forward discretization of the integral return. We
strongly emphasize the simplicity of the modification and how apart from the “ = 0 extreme, such
a modification has no loss of generality in discrete-time or with fixed discretization intervals due to
proportionality with the conventional discrete-time return. The returns are equivalent as “� æ 1,
but as “� deviates from 1, the right-point return is a better prediction target in terms of integral
approximation error and improves control performance with variable time-discretization. Beyond
integral approximation, the modification has intuitive appeal in that results from catastrophically
long delays are attenuated in the return, rather than fully crediting an action for that outcome.

This work assumed that rewards better align with the subsequent time-step, as is often the case in
the setups of existing continuous-time environments. However, should there be domain knowledge
suggesting that an environment’s rewards align with some other point in an interval, the ideas
generalize in that discounting should be properly exponentiated to reflect this information.

Regarding avenues for future work, the integral approximation perspective suggests opportunity
to explore return modifications corresponding to other integral approximation techniques. If one
were to additionally track predecessor rewards, it opens up the possibility of interpolation-based
approximations like the trapezoidal rule. Notably, Ayoub et al. (2024) concurrently considered
trapezoidal approximations of the Monte Carlo return while exploring when to discretize. For the
case of exponential discounting, however, we could further leverage that term’s closed-form integral.
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A Servo Reacher Environment Details

The environment state x is a column vector containing the DC motor’s angular velocity [rad/s], the
DC motor’s current [A], the output shaft’s angle [rad], the output shaft’s angular velocity [rad/s],
and the output shaft’s target angle [rad], respectively. The state vector is updated as follows:

ẋt Ω

S

W

W

W

W

U

≠ bm
Jm

Kt
Jm

0 0 0
≠ Kt

La
≠ Ra

La
0 0 0

0 0 0 1 0
≠ bm

JmN÷
Kt

JmN÷ 0 0 0
0 0 0 0 0

T

X

X

X

X

V

xt +

S

W

W

W

W

U

0
1

La

0
0
0

T

X

X

X

X

V

At

xt+1 Ω xt + ẋt�s

where �s = 10≠4 [s] is the simulation discretization granularity, and At is an input voltage with
built-in saturation limits of œ [≠12, 12] [V]. The output shaft angle is clamped œ [≠1.306, 1.306]
[rad] in accordance with Mahmood et al. (2018b). The physical parameters used are detailed below:

La Armature Inductance 2.05 ◊ 10≠3 [H]
Ra Armature Resistance 8.29 [Ohm]
Jm Rotor Inertia 8.67 ◊ 10≠8 [kg · m2]
bm Rotor Friction 8.87 ◊ 10≠8 [N · m · s]
Kt Torque Constant 0.0107 [ N·m

A ]
N Gear Ratio 200
÷ Gear E�ciency 0.836

Given a target discretization interval > 10≠4 [s], the above updates are repeated until the target
elapsed time is reached, keeping track of any overshoot and compensating accordingly in the next
time interval. As a reinforcement learning environment, an agent observes the output shaft’s angle,
angular velocity, and target angle. The initial output shaft angle, ◊0, and target angle, ◊target, are
uniformly sampled œ [≠1.306, 1.306] at the start of each episode, and an episode terminates when
|◊t+1 ≠ ◊target| < 0.1 [rad] with angular velocity ◊̇t+1 < 0.1 [rad/s]. An agent provides a continuous-
valued action as a voltage, and receives a reward |◊t+1 ≠◊target|, computed and received jointly with
the next observation.
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