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Abstract

Temporal-difference (TD) networks are a formal-
ism for expressing and learning grounded world
knowledge in a predictive form[Sutton and Tan-
ner, 2005]. However, not all partially observ-
able Markov decision processes can be efficiently
learned with TD networks. In this paper, we ex-
tend TD networks by allowing the network-update
process (answer network) to depend on the recent
history of previous actions and observations rather
than only on the most recent action and observa-
tion. We show that this extension enables the so-
lution of a larger class of problems than can be
solved by the original TD networks or by history-
based methods alone. In addition, we apply TD net-
works to a problem that, while still simple, is sig-
nificantly larger than has previously been consid-
ered. We show that history-extended TD networks
can learn much of the common-sense knowledge of
an egocentric gridworld domain with a single bit of
perception.

Temporal-difference (TD) networks are a formalism for ex-
pressing and learning grounded knowledge about dynamical
systems[Sutton and Tanner, 2005]. TD networks represent
the state of the dynamical system as a vector of predictions
about future action–observation sequences. Each prediction
is an estimate of the probability or expected value of some
future event. For example, a prediction might estimate the
probability of seeing a particular observation at the next time
step. The predictions generated at each time step are thought
of as “answers” to a set of “questions” asked by the TD net-
work.

Representations that encode the state of a dynamical sys-
tem as a vector of predictions are known as predictive repre-
sentations[Littman et al., 2002; Jaeger, 1998; Rosencrantz
et al., 2004]. Predictive representations are a relatively
new area of research; as a community we are answering
fundamental questions about their possibilities and limita-
tions. So far, the results have been encouraging. Singh et
al. have shown that one particular representation known as
linear predictive state representations (or linear PSRs) can

represent anynth-order Markov model or partially observ-
able Markov decision process (POMDP)[Singhet al., 2004;
Littmanet al., 2002]. Further, they showed that the size of the
PSR scales at least as well as the existing approaches; a linear
PSR model is at least as compact as the equivalent POMDP
or nth-order Markov model. TD networks are a generaliza-
tion of linear PSRs and therefore inherit their representational
power[Singh, 2004].

TD networks have been applied successfully to simple en-
vironments, both fully and partially observable. Although TD
networks have the expressive power to accurately model com-
plex partially-observable environments, we show that the ex-
isting learning algorithm is insufficient for learning some of
these models.

In this paper, we explore the classes of environment whose
model could not previously be learned and we improve TD
networks so that they can learn models of these environments.

In Section 1 we review the TD networks specification. In
Sections 2 and 3 we examine the class of problems that we
have been unable to learn with the existing specification of
TD networks, augment the specification, and present new re-
sults. We present the results of applying these augmented TD
networks to a more complex grid-world domain in Section 5.
Finally we conclude and discuss the direction of our future
research in Section 6.

1 TD Networks without History
In the following text we describe a specific instantiation of
the original TD networks specification that is instructive for
understanding the details of our work. For information on the
general specification of TD networks we direct the reader to
the original work[Sutton and Tanner, 2005].

The problem addressed by TD networks is a general one
of learning to predict aspects of the interaction between a de-
cision making agent and its environment (a dynamical sys-
tem). At each of a series of discrete time stepst, and
agent takes an actionat ∈ A and the environment responds
by generating an observationot ∈ O. In this work, we
will consider TD networks with two observations,0 and
1. The action and observation events occur in sequence,
at−1, ot, at, ot+1, at+1, ot+2. This sequence will be called
experience. We are interested in predicting not just each next
observation, but more general, action-conditional functions
of future experience.



The focus of this work current is on partially observable
environments—environments where the observationot is not
a sufficient statistic to make optimal predictions about future
experience (ot does not uniquely identify thestateof the envi-
ronment). We will be using TD networks to learn a model of
the environment that is accurate and can be maintained over
time.

A TD network is a network of nodes, each representing
a single scalar prediction. The nodes are interconnected by
links representing target relationships between predictions,
observations, and actions. These nodes and links determine
a set of questions being asked about the data and predictions,
and accordingly are called thequestion network.

Each node on the TD network is a function approximator
that outputs a prediction using inputs such as the current ob-
servation, the previous action, and the predictions made at the
previous time step. This computation part of the TD network
is thought of as providing the answers to the questions, and
accordingly is called theanswer network.

Figure 1 shows a typical question network. The question
of nodey0 at timet is ‘If the next action isa1, what is the
probability that the next observationot+1 will be 1?’. Sim-
ilarly, nodey2 asks ‘If the next action isa1, what will node
y0 predict at timet + 1?’. This is a desired relationship be-
tween predictions, but also a question about the data. We can
unroll this interpredictive (or TD) relationship to look at the
extensive relationship betweeny2 and the data, which yields
the question ‘If the next two actions area1, what is the prob-
ability thatot+2 will be 1?’.

In a fully observable (Markov) environment, it is natural
for the question network to be a set of questions that are
in some way interesting to the experimenter. In partially-
observable environments the structure of the question net-
work has additional constraints; the answers should be a suf-
ficient statistic that accurately represents the state and can be
updated as new data becomes available. Although the ques-
tion of how to discover a question network that expresses a
minimal sufficient statistic is important, it is tangental to the
focus of this work. The question networks we use are not
minimal, and a network like that in Figure 1 likely contains
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Figure 1: Symmetric action-conditional question network.
The network forms a symmetric tree, with a branching fac-
tor of |A|. This example has depthd = 4. Some of the labels
have been left out of this diagram for clarity, each of these
nodes should have a labelyi and each is conditioned on some
action.

extraneous questions.
Formally,yi

t ∈ [0, 1], i = 0, . . . , n− 1 denotes the predic-
tion for nodei at time stept. The column vector of predic-
tionsyt = (y0

t , . . . , yn−1
t )T is updated according to a vector-

valued prediction function with modifiable parameterW:

yt = σ(Wtxt) (1)

This prediction function corresponds to the answer net-
work, wherext ∈ <m is a feature vector,Wt is a n × m
matrix of weights, andσ is the S-shaped logistic function
σ(s) = 1

1+e−s . The feature vector is a function of the pre-
ceding action, observation, and node values.

In previous work on TD networks,xt had a binary compo-
nent for each unique combination of the current observation
and previous action (one of which is1, the rest0), andn
more for the previous node valuesyt−1. Additionally, xt has
a bias term (constant value of 1). In our experiments we also
included real valued features with the complement of the pre-
dictions from the last time step(1− yt−1), although we later
found this was not necessary. The learning algorithm for each
componentwij

t of Wt is of the form

∆wij
t = α(zi

t − yi
t)(y

i
t)(1− yi

t)x
j
tc

i
t, (2)

whereα is a step-size parameter,zi
t is a target foryi de-

fined by a question network, andci
t ∈ {0, 1} corresponds

to whether the action condition foryi was met at timet.

2 Cycle-World Counterexamples
In our experimentation we found that TD networks are able
to solve certain, but not all of our small testing problems.
The success of learning does not seem to be directly corre-
lated with thecomplexityof the environment. In previous
work, TD networks were able to learn an accurate model of
a partially-observable seven-state deterministic random walk
as well as the probabilities in a fully observable stochastic
random walk[Sutton and Tanner, 2005]. Since that time, we
have discovered that TD networks are unable to learn an accu-
rate model of certain small partially-observable deterministic
environments. Careful analysis has determined that the ques-
tion networks that were used were sufficient to represent the
appropriate model, so the issue must lie somewhere in the TD
network specification.

Figure 2 presents a simple example of a task and question
network for which the solution is representable but not learn-
able by TD networks without history. The cycle world con-
sists of the four states shown on the left. The current state
of the system cycles clockwise through the states. There is a
single observation bit that is 1 at the top of the cycle, and 0
at all other times. On the right is a question network which
asks what the observation bit will be one, two, and three time
steps in the future. Recall that at timet, yt is calculated as a
function of(yt−1, at−1, ot,Wt). If we assume that theyt−1
is correct, there is a solution for the weights that will keepyt
correct at each successive time step. Unfortunately,yt−1 will
never be correct; the solution exists but will not be found.

To illustrate this, we must look at the question network,
and remember that it specifies target values for the answer



network. At the start of training,yt−1 will be likely be incor-
rect. There are no actions in this environment, so the current
observationot is the only useful input feature inxt. For the
network to become correct, it is necessary that some sequence
of questions can eventually be answered, starting oranchored
only with knowledge ofot. Also note that when training be-
gins, the only node with a valid target isy0, because its tar-
get is not a prediction, but rather the grounded observable
value ofot+1. As training progresses, the agent interacts with
the environment and some answers will be learned, anchored
only on the grounded observations. Eventually, the environ-
ment will reach a point whereot = 0 andy0

t shouldbe 1. The
information that distinguishes this case from the case where
ot = 0 andy0

t shouldbe 0 lies in acorrectanswer fory1
t−1.

Unfortunately, the target fory1
t−1 is y0

t . In this case, the cyclic
dependency between the question network and the temporal
flow of information eliminates the possibility of the TD net-
work learning a correct solution.

After considering this problem, it became apparent that it
is necessary to find an augmentation to the TD network spec-
ification to eliminate cyclic information dependencies. Such
a dependency occurs when the targetzi for nodei relies onyi

making accurate predictions. This dependency can be elim-
inated by providing additional input features to the TD net-
work. This additional information acts as an anchor for the
TD network predictions.
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Figure 2: A counterexample for TD-network learning with-
out history. On the left is a representation of the cycle world.
This environment has four states that are cycled through de-
terministically. On the right is the associated question net-
work. There are no actions in this world.

Incidentally, goodapproximatesolutions to the cycle world
can be learned by TD networks consisting of a single node.
Clearly, there is no way that a single predictive node can solve
this problem perfectly, but it can achieve very low error in an
unusual way. Whenot = 1, the network predicts approxi-
mately .001. On the next time step, the network will multiply
the previous prediction so as to predict approximately .01.
On the next step it will predict .1, and then finally .99 for the
step whereot will again be 1. Unfortunately this solution is
not stable, and continued training leads to oscillation between
this sort of approximate solution and strictly predicting 0 at
each step.

3 TD Networks with History
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Figure 3: Input vector for cycle world with 3-step history
and 3 levels of predictive nodes. On the left is the defini-
tion of each feature. The first feature is the bias term. The
next 8 features correspond to the 8 distinct 3-step histories
{ot−2ot−1ot} (not all are possible in this world). The final 3
features are the predictions from the previous time step. The
middle vector is a sample input vector for the third state from
the top of the cycle world at the start of learning. At this point,
all of the predictions are at their initial value, .5. Finally, the
rightmost vector is the input vector for the third state when
learning is complete, all of the predictions are accurate.

The cycle world is a problem in which there is a simple
relationship between the observations and recent experience.
Methods that try to directly learn such relationships are called
history-based methods. We will consider history-based meth-
ods which predictot+1 using a different variable for each
unique k-length window of history where a k-length window
of history is defined asat−kot−k+1...at−1ot. In this case, a
window of length 3 would be sufficient to uniquely identify
each state of the system and thus would be able to make accu-
rate predictions. Incorporating short history into the feature
vectorxt of a TD network should allow the TD network to
learn a correct solution to this problem. Figure 3 shows an
example of a hybrid input vector that uses 3 time steps of
history and 3 predictive nodes.

In order to test the hypothesis that incorporating history
into the input vectorxt of a TD network would allow it to
solve a greater class of problem, we used a cycle world like
that in Figure 2, except with six states instead of four. This
size was chosen to clearly illustrate the effectiveness of dif-
ferent configurations of history and predictive nodes. On this
problem, we tested three different methods: (1) TD networks
as previously specified without history, (2) a simple history-
based approach, (3) a combination of TD networks and his-
tory together. For each method we used several values for the
step size parameter; the best of these was used as the perfor-
mance measure for that method. For each method and step
size, the network was trained for at least one million time
steps. The 1-step prediction errors were averaged over the fi-
nal 20000 steps to produce an overall performance measure
for each method.



RMS
Error

Length of History

History only

1

1

2

3
4

5

Figure 4: Performance on the 6-state cycle world of TD net-
works extend to incorporate various lengths of history. The
different lines correspond to different depths of the question
network, as indicated by the numeric label.

The results, shown in Figure 4, show that the simple
history-based method only performed well when it had
enough history to solve the problem exactly. TD networks
without history correspond to the data points with history
length one. These performances are better than history of
length one, but not as good as the TD networks with his-
tory. It is also interesting to notice that the TD network is
able to solve the problem with a much shorter window than
the history-based method alone. This illustrates that our com-
bined algorithm is not simply using history instead of the pre-
dictive representation, but rather is leveraging the history to
learn a predictive representation. It is interesting that the per-
formance of the various combinations of history and predic-
tive nodes do not follow a clear pattern. For example, when
there are 2 predictive nodes, it appears that 2 or 4 steps of
history is better than having 3 steps. We have verified that the
minimum length of history required to solve the 6-state cycle
world exactly with 2 predictive nodes is a 4-step history. This
means that the low error seen with 2 steps of history is a case
of the TD network stumbling on a good approximate solution
when it could not represent an exact solution (as discussed at
the end of Section 2).

4 Indefinite-memory Problems
In the previous section, we introduced history to the TD net-
work specification in order to eliminate cyclic dependencies
and increase the class of problems where solutions can be
learned with TD networks. There appeared to be a tradeoff
between predictive levels in the question network and lengths
of history. From this example alone, it may not be clear that
the combined approach is superior to a history-only approach.
There is a potentially large class of problems that cannot be
represented with a history-only approach, but can be repre-
sented and solved by TD networks. Environments in this

class are such that there is no finite length of history that
can uniquely identify the current state of the environment.
We will refer to problems in this class as indefinite-memory
problems.

One simple example of an indefinite-memory problem is
thering world shown in Figure 5. Because states B, C, and D
are indistinguishable, there are sequences of actions that keep
the environment in that subset of states and will eventually fill
a fixed-length memory with useless information. In contrast,
a TD network can easily represent this environment, and can
never be made to forget its location in the environment.
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Figure 5: An indefinite-memory problem, the four-state de-
terministic ring world. There are two actions in this world,
nextandprevious. Nextadvances in clockwise rotation while
previousadvances in counter-clockwise rotation. Prediction
methods using a finite length history will lose localization af-
ter some number of transitions back and forth between states
B and C or C and D.

We applied TD networks with various depths of question
network and lengths of history to the 5-state ring world prob-
lem. The performance measure used was the same as in the
previous experiments, except in this case averaged over 25
independent runs of 10 million time steps. The results are
shown in Figure 6. As the history window increases, the
history-only method more closely approximates the correct
solution. This improvement seems to diminish as the his-
tory window gets larger, and is further hampered by the fact
that the number of unique histories grows exponentially with
the length of the window. With the predictive approach, the
problem is solved correctly with only 1 level of history and a
predictive question network of depth 3.

It is interesting that, provided enough time, the TD network
can learn a correct model of this environment without history,
something which it could not do for the cycle world. Espe-
cially puzzling was that these two problems seemed highly
related, the cycle world seemingly even less complex than
the ring world. The fact that actions have inverses in the ring
world eliminates the information flow dependencies that ex-
isted in the cycle world. In the ring world, the agent can in-
crementally learn more and more about the environment. In
early training, the agent can anchor itself whenot = 1 be-
cause this observation uniquely identifies this state. As time
passes, the agent can learn accurate 1-step predictions from
that anchored location. It can also learn 2-step predictions
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Figure 6: Performance on the 5-state ring world as a function
of length of history and depth of question network. The his-
tory method suffers from diminishing returns as size of the
history window increases. Learning also slows considerably
because the number of unique histories that can be observed
grows exponentially.

that involve leaving this position and then returning imme-
diately. This process can continue until this chaining effect
has allowed the agent to make accurate predictions from all
positions in the network.

5 Gridworld Experiments
In previous work, and so far in this paper, TD networks have
been applied only to abstract problems with fewer than 10
states. In this final section of the paper we present suggestive
results for a gridworld environment that is an order of mag-
nitude more complex than those previously considered. The
gridworld in Figure 7 shows the environment that we chose.
In this environment, the agent has a single perceptual input,
a single bit indicating whether there is a wall directly in front
of it. The agent also has a very limited action space, it can
either attempt to move forward or it can rotate 90 degrees
clock-wise. We encourage the reader to consider two analo-
gous tasks suitable for a human. First, consider sitting at a
table with two buttons and a light bulb. You are told that the
light bulb will turn on and off based on the buttons pressed
according to some unobservable process. If that unobserv-
able process were the map in Figure 7, could a human learn
this problem?

A second interpretation of the problem which should be
more familiar is navigating around a room with the lights off.
At all times you can feel if you are touching a wall, otherwise
nothing. What sorts of common-sense knowledge would you
apply to this type of scenario? The simplest knowledge is that
if you are touching a wall and you attempt to walk forward,
you will still be touching a wall. You would also know that 4
consecutive 90 degree turns ends with the same observation
that it started with. These are the types of knowledge that can

Figure 7: The gridworld used in the final experiment. The
agent’s location is represented by the triangle. The agent has
a very limited perceptual space, it observes 1 if the arrow
is pointing at a block, and 0 if the arrow is pointing at an
open space. This agent has only two actions, forward and
turn. Forward will move the agent 1 space in the direction
that the arrow points (if it is not blocked), while turn will
rotate the arrow clock-wise 90 degrees. There are 104 unique
environmental states in this world.

be learned easily with a history-based approach.
There are other types of common-sense knowledge that are

harder to learn with history. If you are facing wall, then
you turn around (180 degrees), observe no wall and walk
forward; what common-sense predictions could we make?
First, we would know that turning 180 degrees again will
be clear, and walking forward from there will take us back
to the wall. We also know that if we rotate 360 degrees
any number of times at any step of this process, the en-
tire process remains intact, nothing changes. This concept
is impossible to learn with a fixed length history. This sce-
nario exemplifies the conceptual and practical difference be-
tween predictive representations and history-based represen-
tations. After facing a wall, turning 180 degrees and going
forward, a 3-level history-based approach knows ‘I am in
the state described as{wall, turn, clear, turn, clear, forward,
clear}’. The predictive agent has a different representation,
more like ‘I am in the state where{Pr(clear|turn, turn) =
1, P r(wall|turn, turn, forward) = 1, etc.}’.

We ran a TD network of depth 5 with a history of length
6 in this environment for more than 50 million time steps to
give it the opportunity to learn about the causal structure of
its environment. At the end of this time we took control of its
decisions to explore particular places in the world as shown
in Figure 8. On the left, this figure shows the state of the en-
vironment at various points in time as the agent is controlled
from state to state. On the right a representation of the agents
predictions at each step is shown. These predictions show
that the agent has learned a great deal about its environment.

At t = 0 the agent is in a corner, and we can see that it
knows there is a wall on its left side and a wall behind it.
Notice just to the right of the ’A’ is a dark bar. This bar rep-
resents the prediction for turning right, going forward twice,
and then turning right three more times. The fact that this bar
is dark indicates that the agent correctly knows something
about the nearest interior blocked cell. Above the ’A’, the
agent also predicts a wall and below the ’A’ it predicts gray.
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Figure 8: A sample trajectory in the gridworld and a repre-
sentation of the associated predictions at several time steps.
The representation of the agent’s predictions is laid out as a
subjective action-conditional map of the area near the agent.
All of the colored bars correspond to some prediction that the
agent is making. For example, if the agent believes that it will
observe a wall by going forward, the bar in front of the trian-
gle of it is black. If the agent believes it will be clear, the bar
is white, and if the agent is uncertain, the bar is gray.

This shows that the agent does not completely understand that
it will be blocked if it chooses forward, turn forward, but it
surely knows it will be blocked if it went forward again at the
end of that sequence.

The white bars in front of the agent indicate that it believes
it will see clear if it goes forward for the next four steps, and
then it will see a wall.

At t = 3, the agent has moved along the wall and we can
see that its expectation of seeing a wall ahead of it has moved
closer, while to its left are all the predictions appropriate to
their being an extended wall.

At t = 8, the agent has moved along another wall. Note
that it knows how many steps it is from the wall ahead.

At t = 9 the agent has turned to the right and observed that
its way is blocked. This agent does not know all of the details
of its world, att = 9 we can see that the agents predictions
do not reflect many of the details of the environment.

By inspection, we can determine that much knowledge of
this gridworld environment has been obtained by the agent.
For example, the agent knows that if it is facing a wall and
goes forward, it will always see a wall. Further, when facing
a wall, the agent correctly does not change its other predic-
tions if told to go forward, it seems to know that the state is
not changing. The agent appears to know that four consecu-
tive turns should leave the set of predictions unchanged. The

agent also seems to have a sense of rotational persistence, if
it sees a wall, and then walks away and does a few rotations,
it remembers where the wall is if navigated back to it.

TD networks can learn what we would consider to be much
of the common-sense knowledge in a complex, perceptu-
ally deprived grid-world. In this case the agent learned con-
cepts related to rotation and persistence that were grounded
in primitive actions and observations.

6 Conclusions and Future Work
We have presented a straightforward extension of TD net-
works to incorporate the strengths of history-based methods.
The combination of history-based learning and TD network
learning is more than putting two algorithms into one box
and using the appropriate approach for a particular problem;
the combined algorithm is stronger than either of its parts on
their own.

There are still many questions about TD networks that de-
serve further attention. One question is whether there are
other classes of problems that cannot be solved with the aug-
mented TD network specification. Are there some types of
common-sense knowledge that cannot be learned with a TD
network? Can we learn optimal stucture for the question net-
work instead of specifying it manually? We expect to explore
these and other questions questions in future work.

Acknowledgments
The authors gratefully acknowledge the ideas and encourage-
ment they have received in this work from Satinder Singh,
Doina Precup, Michael Littman, Mark Ring, Eddie Rafols,
Vadim Bulitko, Anna Koop, and all the members of the
rlai.net group. This work was supported in part by NSERC
and iCORE.

References
[Jaeger, 1998] Herbert Jaeger. Discrete-time, discrete-valued

observable operator models: a tutorial. Technical report,
German National Research Center for Information Tech-
nology, 1998.

[Littmanet al., 2002] M.L. Littman, R. S. Sutton, and
S. Singh. Predictive representations of state. InAdvances
in Neural Information Processing Systems 14, Cambridge,
MA, 2002. MIT Press.

[Rosencrantzet al., 2004] Matthew Rosencrantz, Geoff Gor-
don, and Sebastian Thrun. Learning low dimensional pre-
dictive representations. InICML ’04: Twenty-first interna-
tional conference on Machine learning. ACM Press, 2004.

[Singhet al., 2004] Satinder Singh, Michael R. James, and
Matthew R. Rudary. Predictive state representations: A
new theory for modeling dynamical systems. InUncer-
tainty in Artificial Intelligence: Proceedings of the Twen-
tieth Conference, pages 512–519, 2004.

[Singh, 2004] Satinder Singh. Private communication, 2004.
[Sutton and Tanner, 2005] Richard S. Sutton and Brian Tan-

ner. Temporal-difference networks. InAdvances in Neu-
ral Information Processing Systems 17, pages 1377–1384,
Cambridge, MA, 2005. MIT Press.


