
True Online Emphatic TD(λ):

Quick Reference and Implementation Guide

Richard S. Sutton

Revised June 6, 2015

TD(λ) is the core temporal-difference algorithm for learning general state-value
functions (Sutton 1988, Singh & Sutton 1996). True online TD(λ) is an improved
version incorporating dutch traces (van Seijen & Sutton 2014, van Seijen, Mah-
mood, Pilarski & Sutton 2015). Emphatic TD(λ) is another variant that includes
an “emphasis algorithm” that makes it sound for off-policy learning (Sutton, Mah-
mood & White 2015, Yu 2015). This document presents the implementation of true
online emphatic TD(λ), an algorithm that combines the true-online idea and the
emphatic idea, patterned after the combination, by van Hasselt, Mahmood, and
Sutton (2014), of the true-online idea and the gradient-TD idea (Maei 2011, Sutton
et al. 2009).

1 Setting and requirements

We consider the setting of general value functions, or GVFs (Maei & Sutton 2010,
Sutton et al. 2011, White 2015, Sutton, Mahmood & White 2015). Here we present
these ideas without assuming access to an underlying state (as in Modayil, White
& Sutton 2014).

The algorithm is meant to be called at regular intervals with data from a time
series, from which it learns to make a prediction. The time series includes a feature
vector φt ∈ Rn and a cumulant signal Rt ∈ R. The prediction at each time is linear
in the feature vector. That is, the prediction is of the form

φ>t θt =
∑
i

φt(i)θt(i)

where θt ∈ Rn is the learned weight vector at time t, and φt(i) and θt(i) are of
course the ith components of the two vectors. The learning process results in the
prediction at each time t coming to approximate the outcome, or target, that would
follow it:

φ>t θt ≈
∞∑

k=t+1

Rk

k−1∏
j=t+1

γj

1



if actions were selected according to policy π, and where γt ∈ [0, 1] is a sequence
of discount factors. We see from this equation why the signal Rt is termed the
“cumulant”; all of its values are added up, or accumulated, within the temporal
envelope specified by the γj . In the special case in which the cumulant is a reward
and the γj are constant then the GVF reduces to a conventional value function from
reinforcement learning.

To make the GVF problem well defined, the user must provide π and the γj .
The policy π is not provided directly, but in the form of a sequence of importance
sampling ratios

ρt =
π(At|St)
µ(At|St)

,

where St and At are the state and action actually taken at time t, and π(At|St) and
µ(At|St) are the probabilities of At in St under policies π and µ respectively. The
policy π is called the target policy, because it is under it that we are trying to predict
the outcome, as stated above, and µ is called the behavior policy, because it is it
that actually generates the behavior and the time series. Because only the ratio of
the two probabilities is required, there is often no need to work directly with states
or action probabilities. For example, in the on-policy case the target and behavior
policies are the same, and the ratio is always one. The discount factors are often
taken to be constant, but are allowed to depend arbitrarily on the time series, as
long as

∏∞
j=t+1 γj = 0 for all t.

In some publications concerning general value functions there is also specified a
fourth sequence pertaining to the prediction problem—the “terminal pseudo reward”
zt—to specify a final signal to be added in with the cumulants at termination. More
recently its has been recognized that this functionality can be included with just the
cumulant Rt by appropriately setting the discount sequence γt (see Modayil, White
& Sutton 2014). For example, if one wanted a terminal pseudo reward of zt only
upon termination, then one would use a cumulant of Rt = (1− γt)zt.

In addition to the time series of the feature vectors and cumulant signals, the
user must provide three sequences characterizing the nature of the approximation
to be found by the algorithm:

• It ∈ R+; the interest sequence specifies the interest in or importance of accu-
rately predicting at time t. For example, in episodic problems one may care
only about the value of the first state of the episode; this is specified by setting
It = 1 for the first state of each episode and It = 0 at all other times. (Or, as
suggested by the work of Thomas (2014), one may want to use It = γt.) In a
discounted continuing task, on the other hand, one often cares about all the
states equally, which is specified by setting It = 1 for all t.

• λt ∈ [0, 1]; the bootstrapping sequence specifies the degree of bootstrapping at
each time.

• αt ≥ 0; the step-size sequence specifies the size of the step at each time. One
common choice is a constant step-size parameter, e.g., αt = 0.1/maxtφ

>
t φt.

2



Another common choice is a step-size parameter that decreases to zero slowly
over time.

2 Algorithm Specification

Internal to the learning algorithm are the learned weight vector, θt ∈ Rn, and an
auxiliary shorter-term-memory vector et ∈ Rn with et ≥ 0. In addition, there are
the scalars Mt ≥ 0 and Ft ≥ 0. The emphasis Mt and the TD error δt are purely
temporary variables. The true online emphatic TD(λ) algorithm is fully specified
by the following equations:

δt = Rt+1 + γt+1θ
>
t φt+1 − θ>t φt (1)

Ft = ρt−1γtFt−1 + It, with F−1 = 0 (2)

Mt = λtIt + (1− λt)Ft (3)

et = ρtγtλtet−1 + ρtαtMt(1− ρtγtλtφ>t et−1)φt with e−1 = 0 (4)

θt+1 = θt + δtet + (et − αtMtρtφt)(θt − θt−1)>φt (5)

3 Pseudocode

The following pseudocode characterizes the algorithm and its efficient implementa-
tion in C++. First the init function should be called with argument n (the number
of components of θ and φ):

init(n):
store n
e← 0
θ ← 0 (or arbitrary)
F ← D ← γ ← 0

On each step, t = 0, 1, 2, . . ., the learn function is called with arguments αt, It, λt,φt, ρt,
Rt+1,φt+1, γt+1:

3



learn(α, I, λ,φ, ρ, R,φ′, γ′): ; α thru ρ are at t, the rest are at t+ 1

δ ← R+ γ′θ>φ′ − θ>φ ; or, do all 3 inner products in a single loop

F ← F + I ; F was ρt−1γtFt−1; now it is Ft

M ← λI + (1− λ)F

S ← ραM(1− ργλφ>e) ; scalar S saves computation

e← ργλe+ Sφ ; this + next 3 lines can be done in a single loop

∆← δe+D(e− ραMφ) ; D here is (θt − θt−1)>φt

θ ← θ + ∆

D ← ∆>φ′

F ← ργ′F

γ ← γ′

Finally, to obtain a prediction based on the learned weights, pass a feature vector
to the predict function:

predict(φ):
return θ>φ

If the task is episodic in the classical sense, then the terminal state should be
represented as a special additional state at which γ = 0, φ = 0, and with outgoing
transitions to the distribution of start states. As far as learn is concerned, there is
still just a single sequence.

4 Code

Implementations that closely follow the pseudocode are provided for various pro-
gramming languages in separate files. Where we have seen it as convenient and
non-obfuscating, the implementations are in an object-oriented style in which one
creates an instance of the algorithm that contains all of its internal variables.

Acknowledgements

The author gratefully acknowledges the assistance of Hado van Hasselt, Harm van
Seijen, and A. Rupam Mahmood in preparing this guide.

References

Maei, H. R. (2011). Gradient Temporal-Difference Learning Algorithms. PhD thesis,
University of Alberta.

Maei, H. R., Sutton, R. S. (2010). GQ(λ): A general gradient algorithm for

4



temporal-difference prediction learning with eligibility traces. In Proceedings of
the Third Conference on Artificial General Intelligence, pp. 91–96. Atlantis Press.

Modayil, J., White, A., Sutton, R. S. (2014). Multi-timescale nexting in a reinforce-
ment learning robot. Adaptive Behavior 22 (2):146–160.

Singh, S. P., Sutton, R. S. (1996). Reinforcement learning with replacing eligibility
traces. Machine Learning, 22:123–158.

Sutton, R. S. (1988). Learning to predict by the methods of temporal differences.
Machine Learning 3 :9–44.

Sutton, R. S., Barto, A. G. (1998). Reinforcement Learning: An Introduction. MIT
Press.

Sutton, R. S., Maei, H. R., Precup, D., Bhatnagar, S., Silver, D., Szepesvári, Cs.,
Wiewiora, E. (2009). Fast gradient-descent methods for temporal-difference learn-
ing with linear function approximation. In Proceedings of the 26th International
Conference on Machine Learning, pp. 993–1000, ACM.

Sutton, R. S., Mahmood, A. R., White, M. (2015). An emphatic approach to the
problem of off-policy temporal-difference learning. ArXiv:1503.04269.

Sutton, R. S., Modayil, J., Delp, M., Degris, T., Pilarski, P. M., White, A., Precup,
D. (2011). Horde: A scalable real-time architecture for learning knowledge from
unsupervised sensorimotor interaction. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems, pp. 761–768.

Thomas, P. (2014). Bias in natural actor–critic algorithms. In Proceedings of the
31st International Conference on Machine Learning. JMLR W&CP 32(1):441–
448.

van Hasselt, H., Mahmood, A. R., Sutton, R. S. (2014). Off-policy TD(λ) with a
true online equivalence. In Proceedings of the 30th Conference on Uncertainty in
Artificial Intelligence, Quebec City, Canada.

van Seijen, H., Sutton, R. S. (2014). True online TD(λ). In Proceedings of the 31st
International Conference on Machine Learning. Beijing, China. JMLR: W&CP
volume 32.

van Seijen, H., Mahmood, A. R., Pilarski, P. M., Sutton, R. S. (2015). An empirical
evaluation of true online TD(λ). In Proceedings of the 2015 European Workshop
on Reinforcement Learning.

Yu, H. (2015). On convergence of emphatic temporal-difference learning. In Pro-
ceedings of the Conference on Computational Learning Theory.

White, A. (2015). Developing a Predictive Approach to Knowledge. Phd thesis,
University of Alberta.

5


