TEMPORAL CREDIT ASSIGNMENT
IN REINFORCEMENT LEARNING

A Dissertation Presented
By
Richard S. Sutton

Submitted to the Graduate School of the
University of Massachusetts in partial fulfillment
of the requirements for the degree of

DOCTOR OF PHILOSOPHY
February 1984

Department of Computer and Information Science

© Richard S. Sutton

All Rights Reserved

This research was supported in part by the Air Force Office of Scientific Re-
search, contract numbers AFOSR F33615-80-C-1088, AFOSR F33615-83-C-1078,
and AFOSR F33615-77-C-1191.

il

<

TEMPORAL CREDIT ASSIGNMENT
IN REINFORCEMENT LEARNING

A Dissertation Presented
By
Richard S. Sutton

Approved as to style and content:

L, /'4 1/ peive /J/ /7/’/; 2

Andrew G. Barto, Chairperson of Committee

74,4/; () se o

7
John W. Moore, Member

<’/4 ’? oA v/""z (/v{ -

—

)]

-7 I { -
Z;L'megz ;L . C@W«f«»«—

Edward M. Riseman, Chairperson
Dept. of Computer and Information Science

Michael A. Arbib, Member

il

Dedicated to Lucia and Bill

iv

Acknowledgements

This research was carried out in close collaboration with Andy Barto over the
last five and a half years. I take this opportunity to thank him for his guidance,
scholarship, criticism, and friendship. Much of this research was also carried out in
collaboration with Chuck Anderson. In particular, Chuck produced the software
used in the pole-balancing experiment described in Chapter VI, and performed
parts of that experiment. Contributions were also made by John Moore, Harry
Klopf, Steve Epstein, Martha Steenstrup, P. Anandan, and John Holland. I thank
Don Geman and Joe Horowitz of the Statistical Consulting Center for assistance

in mathematical analysis.

To the extent that the text of this disseration is clear and readable, it is due
to the guidance, criticism and editing of Andy Barto and John Moore. Michael
Arbib and Oliver Selfridge also read drafts of this dissertation and recommended

revisions that have been incorporated into the final dissertation.

Additional thanks are due to Harry Klopf, the AFOSR, Andy Barto, Bill
Kilmer, and Nico Spinnelli for providing the opportunity for me to pursue this
research, and to Michael Arbib, Sue Parker, and Ed Riseman for enhancing the
environment in which it was pursued. I thank Harry Klopf for initially suggesting
that I come to the UMass/Ambherst COINS Dept. to pursue research in the area

of learning systems.

For contributing software tools and assistance I thank Andy Cromarty, Alan
Morse, Don House, Frank Glazer, Lenny Wesley, and the COINS RCF Staff.

For any errors or naiveté I alone am responsible.

Richard S. Sutton
January 3, 1984

ABSTRACT
Temporal Credit Assignment in Reinforcement Learning
February, 1984
Richard S. Sutton, B.A., Stanford University
M.S., Ph.D., University of Massachusetts
Directed by: Andrew G. Barto

This dissertation describes computational experiments comparing the perfor-
mance of a range of reinforcement-learning algorithms. The experiments are de-
signed to focus on aspects of the credit-assignment problem having to do with
determining when the behavior that deserves credit occurred. The issues of knowl-
edge representation involved in developing new features or refining existing ones

are not addressed.

The algorithms considered include some from learning automata theory, math-
ematical learning theory, early “cybernetic” approaches to learning, Samuel’s
checker-playing program, Michie and Chambers’s “Boxes” system, and a number of
new algorithms. The tasks were selected so as to involve, first in isolation and then
in combination, the issues of misleading generalizations, delayed reinforcement,
unbalanced reinforcement, and secondary reinforcement. The tasks range from

simple, abstract “two-armed bandit” tasks to a physically realistic pole-balancing

vi

task.

The results indicate several areas where the algorithms presented here perform
substantially better than those previously studied. An unbalanced distribution of
reinforcement, misleading generalizations, and delayed reinforcement can greatly
retard learning and in some cases even make it counterproductive. Performance can
be substantially improved in the presence of these common problems through the
use of mechanisms of reinforcement comparison and secondary reinforcement. We
present a new algorithm similar to the “learning-by-generalization” algorithm used
for altering the static evaluation function in Samuel’s checker-playing program.
Simulation experiments indicate that the new algorithm performs better than a
version of Samuel’s algorithm suitably modified for reinforcement-learning tasks.
Tieoretical analysis in terms of an “ideal reinforcement signal® sheds light on the
relationship between these two algorithms and other temporal credit-assignment

algorithms.

vii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS .
ABSTRACT

LIST OF TABLES

LIST OF ILLUSTRATIONS

Chapter
I. INTRODUCTION.

Artificial Intelligence .

Reinforcement Learning .

The Critic and Heuristic Reinforcement .
Secondary Reinforcement

Simplifications and Extensibility .
Methodology

Overview by Chapters

II. EXPERIMENTS WITH NONASSOCIATIVE TASKS

Reinforcement-Comparison Algorithms

The Independence-of-Path Assumption .

Tasks .

Algorithms

Results

Discussion

Absolute Expediency of a Reinforcement-Comparison Algorithm
Extensions

Conclusions

viii

vi
xi

xii

w0 O e W

10
11

13

14
16
17
20
23
33
38
40
41

III. ASSOCIATIVE LEARNING 43

Approaches to Associative Learning 44
Independent-Step Associative Learning. 53
Tasks b4
Algorithms BT
Results 63
Discussion. 80
General Discussion 89
IV. DELAYED REINFORCEMENT 92
Eligibility Traces 93
Reinforcement Comparison Under Dela.yed Remforcement .. 97
Experiment 1: The Effectof Delay 100
Experiment 2: Sooner Is Better. . . . e . 108
Experiment 3: Comparison of Algorithms on Nonassocxatwe Tasks 112
Experiment 4: Associative-Delay Asymmetry 116
Conclugions L .. 118
V. SECONDARY REINFORCEMENT ALGORITHMS. 121
The Ideal Reinforcement Signal 122
The Adaptive Heuristic Critic Algorithm 126
Time-Blind Tasks 134
Time-until-Failure Tasks 139
Time-until-Success Tasks . . . e 140
Samuel’s “Lea.rnmg-by-Generahzatlon” Algorxth*n B) |
Witten’s Adaptive Controller . . . e e e 145
Equivalent Expressions for the AHC Algonthm e e ... l47
Conclusions 150

VI. EXPERIMENTS INVOLVING SECONDARY REINFORCEMENT . 151

Dllustrations of the Behavior of the AHC Algorithm 152
Sutton and Barto’s Classical Conditioning Model 164
Experiment 1: Reinforcement Anticipation 166
Experiment 2: An “Easy” Action Sequence 172
Experiment 3: Misleading Generalizations 177
Experiment 4: Pole-Balancing 182
Summary 189

VIiI. CLOSING .

Reinforcement Comparison

Ideal Reinforcement Signal

The AHC Algorithm and Samuel’s Chec

Limitations and Future Work

Applications .

Reinforcement Learning .
REFERENCES

ker-Playing Program

192

192
194
195
186
197
169
200

PPN

LIST OF TABLES

Summary of Nonassociative Tasks .
Nonassociative Learning Algorithms .
Associative Learning Tasks .

Associative Learning Algorithms . .
Statistical Significance Results of Chapter III
Learning Algorithms of Chapter IV
Learning Algorithms of Chapter VI

Details of Cart-Pole Simulation

18
21
55
59
79
98
168
186

PRID TR ON

10.

23.

24.

25.

26.

27.

28.

LIST OF ILLUSTRATIONS

Information Flow Among Components of a Learning Process .
Algorithm Performance on Task 1 of Chapter IT .
Algorithm Performance on Task 2 of Chapter IT .
Algorithm Performance on Task 3 of Chapter IT .
Algorithm Performance on Task 4 of Chapter II .
Algorithm Performance on Task 5 of Chapter I .
Algorithm Performance on Task 6 of Chapter I1
Summary of Algorithm Performance on all Tasks of Cha,pter II
Algorithm Performance on Task 1 of Chapter Il
Algorithm Performance on Task 2 of Chapter II1
Algorithm Performance on Task 3 of Chapter III
Algorithm Performance on Task 4 of Chapter IIl
Algorithm Performance on Task 5 of Chapter III
Algorithm Performance on Task 6 of Chapter III
Algorithm Performance on Task 7 of Chapter III
Algorithm Performance on Task 8 of Chapter III
Algorithm Performance on Task 9 of Chapter III . .
Algorithm Performance on Task 10 of Chapter ITI .
Algorithm Performance on Task 11 of Chapter IIT .
Algorithm Performance on Task 12 of Chapter Il .
Summary of Algorithm Performance on Tasks 1-10 of Chapter IH
Effect of Delayed Reinforcement on the Performance of
Algorithms Without Eligibility Traces
Effect of Delayed Reinforcement on the Performa,nce of
Algorithms with Short Eligibility Traces .
Effect of Delayed Reinforcement on the Performance of
Algorithms with Moderate Length Eligibility Traces
Effect of Delayed Reinforcement on the Performance of
Algorithms with Long Eligibility Traces
Interaction of Eligibility Trace Length and Performance
on Delayed-Reinforcement Tasks
Comparison of Algorithm Performance with and WIthout
Delay Asymmetry .
Algorithm Performance on High Tasx

il

25
26
27
28
29
30
31
65
66
67
68
69
70
71
72
73
74
75
76

103

104

105

106

107

110
113

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.
44,

45.
46.

47.

48.

49.

Algorithm Performance on Low Task
Algorithm Performance on Middle Task .
Summary of Algorithm Performance on a Task with
Associative-Delay Asymmetry . .
State-Transition Structure of two Envxronments that are
Problematic for Definitions of the Ideal Reinforcement Signal .
An Environment that is very Different as a Time-Blind and as
a Non-Time-Blind Task . .
Behavior of the AHC and RC Algonthms when Presented thh
a Brief Stimulus Followed by Primary Reinforcement
Behavior of the AHC Algorithm when Presented with a
Temporal Sequence of Stimuli Followed by Primary Reinforcement
Behavior of the RC Algorithm when Presented with a
Temporal Sequence of Stimuli Followed by Primary Reinforcement
Behavior of the AHC Algorithm when Presented with a Stimulus
and Primary Reinforcement in a Variety of Temporal Configurations
Behavior of the AHC Algorithm when Presented with two Stimuli
and Primary Reinforcement in a Variety of Temporal Configurations
Behavior of the AHC Algorithm with -y = .98 when Presented
with a Sequence of Stimuli Followed by Primary Reinforcement .
State-Transition Structure of the Environment used in
Experiment 1 of Chapter VI .
Algorithm Performance on Expenment 1 of Chapter VI
State-Transition Structure of the Environment used in
Experiment 2 of Chapter VI
Algorithm Performance on Experlment 2 of Chapter VI
State-Transition Structure of the Environment used in
Experiment 3 of Chapter VI
Algorithm Performance on Expenment 3 of Cha,pter VI
The Cart-Pole System to be Controlled in Experlment 4 of
Chapter VI . .
Average Performance of 3 Best Algorxthms on Pole-Balancmg
Task, Logarithmic Scale .
Average Performance of 3 Best Algonthms on Pole«Ba.lancmg
Task, Linear Scale . .
Individual Runs of 3 Best Algorxthms on Pole-Balancmg Task

xiii

114
115

118

129

136

154

156

158

159

161

163

167
170

173
178

179
180

183

188

189
190

CHAPTER 1I

INTRODUCTION

The credit-assignment problem for a complex learning system (Minsky, 1961) is
the problem of properly assigning credit or blame for overall outcomes to each of the
learning system’s internal decisions that contributed to those outcomes. In many
cases the dependence of outcomes on internal decisions is mediated by a sequence
of actions generated by the learning system. That is, internal decisions affect
which actions are taken, and then the actions, not the internal decisions, directly
influence outcomes. In these cases it is sometimes useful to decompose the credit-
assignment problem into two subproblems: 1) the assignment of credit for outcomes
to actions, and 2) the assignment of credit for actions to internal decisions. The
first subproblem involves determining when the actions that deserve credit were
taken, and the second involves assigning credit to the internal structure of actions.
Accordingly, the first subproblem is called the {emporal credit-assignment problem,

and the second the structural credst-assignment problem.

For example, consider the difficulties a learning system faces in assigning credit
for the outcome (win, loss, or draw) of a game of chess. The outcome depends on
the moves selected, but the moves typically depend on a multitude of internal
decisions made by the learning system. The temporal credit-assignment problem
is to assign credit to moves for the game’s outcome, by determining precisely when

the position became worse and when better. The structural credit-assignment

problem is to determine which internal decisions are responsible for the selection of
each move, and thereby convert the credit assigned to moves into credit assigned

to internal decisions.

The original complete name given to the credit-assignment problem by Min-
sky (1961) was “the basic credit-assignment problem for complex resnforcement
learning systems” (emphasis added). Although the current use of the term credit-
assignment is not restricted to reinforcement learning (e.g., Dietterich et. al., 1982),
the complete name nevertheless reveals the close relationship between them. For
the purposes of this dissertation, a learning system is defined as a system that uses
information gained during one interaction with its environment to improve its per-
formance in subsequent interactions (after Smith, 1980). A reinforcement-learning
system is a learning system that learns under the influence of reinforcement, where
resnforcement is feedback from the environment that assigns credit to the learning
system’s actions but does not assign credit to their internal structure or indicate

what actions would have been better.

Supervised learning pattern classification (see e.g., Duda and Hart, 1973), for
example, is not reinforcement learning because the environment, in this case called
a “teacher,” indicates what actions should have been taken and thus implicitly as-
signs credit to particular internal decisions. The hypothetical chess-playerdiscussed
above, on the other hand, would be engaged in reinforcement learning because the
outcome of a game only evaluates actions made; it does not indicate which actions
should have been made, and it provides no information at all about the decision

processes internal to the learning system.

This dissertation describes a series of experiments focused on the temporal
credit-assignment problem in reinforcement learning. A range of algorithms from
the artificial intelligence and learning automata theory literature, as well as several

new algorithms, are systematically compared. Whenever possible, the issues re-

garding structural credit-assignment are postponed for future work. The separation
of temporal and structural credit assignment enables complex issues in temporal

credit assignment to be studied in relatively simple reinforcement-learning tasks.

Artificial Intelligence

The earliest studies of learning in artificial intelligence (AI) occurred in the
1950’s (e.g., Farley and Clark, 1954; Minsky, 1954; Selfridge, 1956, 1959; Rosen-
blatt, 1957). By the end of the decade enough experience had been accumulated
with complex learning tasks (e.g., Newell, 1955; Samuel, 1959; Friedberg, 1958;
Friedberg et. al., 1959) to identify some of the fundamental difficulties in con-
structing effective learning systems (e.g., see Minsky and Selfridge, 1961; Minsky,

1961). Foremost among these was the credit-assignment problem.

Most learning programs during these early years of AI were capable of only
rudimentary forms of credit assignment and thus could address only relatively sim-
ple problems in which credit assignment was very easy. The algorithms developed
by Farley and Clark (1954) and Rosenblatt (1957), for example, assigned credit
equally to each decision leading to an overall outcome. Samuel, on the other hand,
directly addressed many important issues in credit assignment and used more so-
phisticated algorithms in his celebrated checker-playing program (Samuel, 1959,
1667).

As the difficulties in attaining effective learning systems became apparent, in-
terest in learning in AI waned. From the mid 1960’s to the end of that decade
relatively little work was done on learning or credit assignment within Al. Al’s
shift away from learning was solidified by the elucidation of some theoretical lim-
itations of the simplest learning machines (Minsky and Papert, 1969) and further
disappointing results (e.g., Fogel, Owens, and Walsh, 1966). The early AI research

into learning and adaptive systems was subsequently pursued more in the fields of
pattern classification (e.g., see Duda and Hart, 1973) and function optimization
(e.g., see McMurtry, 1970; Jarvis, 1975) than in AL

The 1970’s saw a gradual renewal of interest in learning. Several influential
Al systems appeared during this decade that incorporated learning at a high level
(e.g., Winston, 1970; Waterman, 1970; Sussman, 1973; Buchanan et. al., 1976;
Lenat, 1976; Mitchell, 1978; Soloway, 1978). In the 1980, this trend appears
to be continuing and strengthening (e.g., Minsky, 1980; Dietterich and Michalski,
1981; Langley and Simon, 1981; Rissland and Soloway, 1981; Mitchell et. al., 1981;
Carbonell, 1982; Feldman, 1981, 1982; Schank, 1983). Concomitantly, there is
renewed interest in, and growing appreciation of, the credit-assignment problem.
Dietterich et. al. (1982), for example, notes the increasing interest in learning, and
interprets the learning algorithms of several Al systems in terms of their techniques

for solving the credit-assignment problem.

Reinforcement Learning

The term reinforcement learning seems to have come into use in Al and the
engineering disciplines through early work by Minsky (1954, 1961; see also Minsky
and Selfridge, 1961). Psychologists do not use this particular phrase, although
the idea has plainly arisen from their study of reinforcement, and particularly of
instrumental (operant) conditioning. The field of reinforcement learning control
theory also uses the term (e.g., Mendel, 1966; Mendel and McClaren, 1970), and it

is used in many studies of machine learning in areas related to Al

A commonly studied special case of reinforcement learning is that in which the
learning system’s task is to select a stngle optimal action rather than to associate

different actions with different stimuli. In such nonassociative learning problems

the reinforcement is usually the only input the learning system receives from its
environment. Nonassociative reinforcement learning has been studied as function
optimization (e.g., McMurtry, 1970; Helland, 1975), which includes the study of
hillclimbing algorithms (e.g., Howland, Minsky and Selfridge, 1960), as learning
automata theory (e.g., Narendra and Thathachar, 1974), and in regard to the two-
armed bandit problem (e.g., Cover and Hellman, 1970). Although several issues
in nonassociative reinforcement learning are considered in detail in Chapter II, the
primary focus in this dissertation is associative resnforcement learning. In asso-
ciative reinforcement learning tasks, different actions may be optimal in response
to different stimuli. Consequently, the learning system receives stimuli other than

reinforcement, and stimulus-action associations must be learned.

The work of Klopf (1972, 1982) has emphasized that associative reinforcement
learning is different from both nonassociative reinforcement learning and other
types of associative learning (e.g., supervised learning pattern classification). As-
sociative reinforcement learning has not received as much attention from cyberneti-
cians and Al researchers as has these other types of learning, yet it is an cbvious
way to improve the performance of a problem-solving system; its essence is the
“caching” of search results in an associative memory so that future search is con-
verted into simple memory access. The importance of this process is appreciated
by AI researchers (see, e.g., Lenat, Hayes-Roth, and Klahr, 1979), but its use is

not widespread.

Some of the earliest Al work concerned associative reinforcement learning (Far-
ley and Clark, 1954; Minsky, 1954; Minsky and Selfridge, 1961). However, inter-
est in the field quickly shifted from associative reinforcement learning to other
associative-learning problems such as pattern classification. Modern Al research
on learning systems has also, for the most part, declined to consider associative

reinforcement learning and its credit-assignment prcblems.

Outside of Al, algorithms for associative reinforcement learning have been con-
sidered in psychology’s mathematical learning theory (e.g., Bush and Mosteller,
1955; Bush and Estes, 1959), in learning automata theory (e.g., see Narendra
and Thathachar, 1974), and in reinforcement learning control theory (Mendel and
McClaren, 1970). In the latter two cases, however, the primary focus has been
on nonassociative reinforcement learning, with associative reinforcement learning
treated as multiple independent instances of nonassociative reinforcement learning.
A similar approach has been taken by Jarvis (1970), in which separate pattern

recognition and nonassociative reinforcement-learning algorithms are combined.

The Critic and Heuristic Reinforcement

It is common in Al to divide a learning system into components including a
performance element, a knowledge base, and a learning element (Buchanan et.al.,
1978; Dietterich et.al., 1982). Figure 1 shows such a division for the learning sys-
tems examined in this dissertation. All lines of communication among the learning
system’s major components and between the learning system and its environment
are shown. The learning system receives stimult and a primary resnforcement signal
from the environment, and in return generates actions. The performance element is
the component of the learning system responsible for selecting actions as a function
of stimuli, where the selections or selection probabilities at a given time depend
on the state of the knowledge base. The learning element is responsible for making
21l changes in the knowledge base. Breaking slightly with earlier usage (Buchanan
et.al., 1978), the term critic is used here to refer to the component of the learning
system responsible for converting primary reinforcement into a higher quality rein-
forcement signal. This second reinforcement signal is said to be based on heuristics,
either given a priori or learned, and is accordingly called the heuristic resnforcement

signal.

ENVIRONMENT K=

PRIMARY
STIMULI REINFORCEMENT

— CRITIC

HEURISTIC
REINFORCEMENT ACTIONS

LEARNING
—

ELEMENT 3—‘

KNOWLEDGE
BASE

_> PERFORMANCE [
ELEMENT

LEARNING SYSTEM

Figure 1. Information Flow Among Components
of a Learning Process. Single width lines indicate
pathways restricted to transmitting scalars. The critic
component transforms primary reinforcement to heuris-
tic reinforcement and receives information from no other
component of the learning system.

Since the critic’s only output is a reinforcement signal, it can contribute to the
learning process only by aiding temporal credit assignment, not structural credit
assignment. By generating a high (low) reinforcement value at a certain time,
the critic indicates that credit (blame) should be assigned to the action chosen at
that time, but the critic has no means to indicate what action would have been
better, what aspects of the action should have been different, or how the internal
decision-making processes of the performance element should be changed. All

of this structural credit assignment is assumed to be performed by the learning

element, using the heuristic reinforcement provided by the crific. The research
reported in this dissertation is primarily concerned with temporal credit assignment
performed by a critic, i.e., by converting primary to heuristic reinforcement with

the aid of past experience and stimulus information.

Secondary Reinforcement

One way in which a critic can generate a heuristic reinforcement signal that is
more useful than the primary reinforcement signal is through secondary resnforce-
ment. If particular stimuli are regularly followed by high reinforcement, then a
good critic should assign credit o behavior occurring near the time of occurrence
of those stimuli, rather than to behavior occurring near the time of the high rein-
forcement. Credit should be assigned at the earlier time because that was when
the critic was first informed that the high reinforcement was coming, and thus
the most likely time of the action that caused it. Credit delivered by stimuli that
have acquired reinforcing properties through this kind of association with primary
reinforcement is called secondary reinforcement; the stimuli themselves are called
secondary resnforcers. Stimuli can also become secondary reinforcers by associa-
tion with previously established secondary reinforcers rather than with primary
reinforcement. Thus, secondary reinforcement can be “chained” backwards. Min-
sky (1961) has discussed the addition of secondary-reinforcement mechanisms to

reinforcement-learning systems.

Although secondary reinforcement is one of the most important ways in which
heuristic reinforcement can be an improvement over primary reinforcement, it is
excluded from consideration in the early chapters of this dissertation. Chapters II,
ITl, and IV concentrate instead on other temporal credit-assignment issues and on

reinforcement-comparison mechanisms (see Chapter II), the second major class of

mechanisms studied here for constructing helpful heuristic reinforcement signals.

Because information about the actions selected is not used in temporal credit
assignment, or at least it is not in any of the cases considered here, Figure 1
shows the critic as not receiving any information from the performance element. A
temporal credit-assignment algorithm in a sense assigns credit to times and thus

indirectly to the actions made at those times, rather than to the actions themselves.

Simplifications and Extensibility

The research strategy taken here is predicated on the assumption that the
problems of temporal credit assignment are in the main separable from those of
structural credit assignment. If this is correct, then the results and new algorithms
presented here should be extensible to tasks and learning systems that are much
more sophisticated with respect to knowledge representation and structural credit

assignment.

Al is an experimental science, yet the complexity of its programs and problem
domains often makes the interpretation of results very difficult. Programs often
contain so many components and parameters that limitations on computer time
and the sheer number of possibilities make it impossible to experimentally evaluate
how each contributes to performance. Although the researchreported here does not
fully escape these problems, they are greatly eased by simplifying all aspects of the
tasks and learning algorithms not directly relevant to temporal credit assignment.
By virtue of these simplifications, temporal credit-assignment issues are explored
much more thoroughly than would otherwise have been possible, albeit at the cost
of neglecting other issues, most notably those of knowledge representation and

structural credit assignment.

10

The most important simplifications made here are that, in all tasks consid-
ered, 1) the learning system chooses between only two actions at each time, and
2) the correct stimulus-action mapping can be implemented by a performance el-
ement and knowledge base consisting of a linear-threshold operation and a single
real-valued vector. Since enormously more complex decision-making processes are
commonly studied in Al, these are drastic simplifications. However, the complexity
of the decision-making mechanism enters into the credit-assignment process only
after credit has been assigned to the actions taken at each time, and thus it af-
fects structural but not temporal credit assignment. Temporal credit is assigned
independently of the actions selected and of the action-selection process. Assigning
temporal credit using secondary reinforcement, for example, is done purely on the
basis of observing stimuli and their temporal relationship to primary reinforcement;
knowledge of the actions selected or of how they were selected is not needed and
not used. In the case of playing chess, discussed earlier, temporal credit assignment
consists of determining exactly when one’s position has become worse and when
better. The difficulty of this judgment is not affected by the complexity of the
process used to select moves; it can be made purely by inspection of board posi-
tions. Further, a good temporal credit-assignment algorithm for one move-selection

process should also work well with any other.

Methodology

The methodology used throughout most of this dissertation relies strongly on
computer simulation. Through series of simulation experiments, the relative per-
formance (usually, the rate of learning) of a variety of algorithms on specific tasks
is determined. Wherever possible, algorithms proposed by other researchers are

included, allowing the demonstration of advances over existing methods.

11

The research reported here progresses incrementally from very simple and con-
strained tasks to more complex and general one with successive chapters. Each in-
crement introduces a characteristic set of problems and issues, and suggests a new
set of experiments and algorithms for investigation, some of which are explored. In
addition, algorithms and tasks analogous to those of preceding chapters, suitably

generalized, are examined to extend and check the generality of earlier results.

Overview by Chapters

Chapter II describes experiments with discrete-action nonassociative reinforce-
ment learning. By excluding the associative aspect, the experiments of this chapter
focus on reinforcement learning in one of its most elemental forms. The algo-
rithms compared in this chapter include several well-studied learning automata
algorithms. The experiments of this chapter introduce the problem of unbal-
anced reinforcement and mechanisms of reinforcement comparison that help solve
it. Results are presented that strongly suggest the superior performance (learn-
ing rate) of algorithms using reinforcement-comparison mechanisms. In Chapter
III reinforcement-comparison mechanisms are generalized from nonassociative to
associative reinforcement learning. The results of this chapter’s experiments show
that some intuitively satisfying algorithms have serious difficulties when compared
to other algorithms. The experiments of Chapter IV deal with the deleterious ef-
fects on learning of delayed reinforcement. The results confirm those of preceding
chapters and establish a baseline performance level with which to compare that of
secondary reinforcement algorithms. Chapter V discusses the design of an adap-
tive heuristic critic (AHC) algorithm for implementing secondary reinforcement,
and relates it to the temporal credit-assignment algorithms used by Samuel (1959,
1967) and Witten (1977). In Chapter VI experiments are described illustrating
the behavior of the AHC algorithm and comparing its performance with that of

12

other algorithms. One of the tasks considered in Chapter VI is that of learning to
balance a pole under conditions that create a difficult temporal credit-assignment
problem. This task is due to Michie and Chambers (1968a,b), whose “Boxes” al-
gorithm is one of those with which performance on this task is compared. Chapter

VII contains concluding remarks.

CHAPTER II

EXPERIMENTS WITH NONASSOCIATIVE TASKS

This first series of experiments concerns nonassociative tasks in which the only
signal the learning system receives from its environment is a scalar primary rein-
forcement signal. Such tasks are nonassociative because there is no non-reinforcing
stimuli with which to associate actions. The learning system must find and con-
sistently choose an action so as to maximize the expected value of the primary

reinforcement signal.

The simplest reinforcement-learning tasks are nonassociative, and the tasks
considered in this chapter are particularly simple nonassociative tasks. Never-
theless, temporal credit-assignment issues arise in this chapter’s tasks that also
affect performance on more complex tasks, including those considered in subse-
quent chapters. The issues can be investigated much more easily and thoroughly
in the simple tasks than in the complex ones. Subsequent chapters concern tasks
of greater complexity and generality, but rely on the results obtained with simpler

tasks in the present chapter.

The experiments described in this chapter were designed to compare the con-
vergence rates of a variety of algorithms across a variety of nonassociative tasks.
Although ideally one would like to determine analytically the relative convergence
rates of the algorithms, in practice this is very difficult. Whereas a large number

of disparate algorithms and tasks can be considered experimentally, mathematical

13

14

results concerning convergence rates are difficult to obtain even in simple cases.
One mathematical result is presented relating to the convergence (but not rate of

convergence) of one of the new algorithms presented here.

Reinforcement-Comparison Algorithms

There are two broad traditions of research into two types of nonassociative
reinforcement-learning problems. One is that of function optimization (includ-
ing the study of hillclimbing algorithms) (see e.g., McMurtry, 1970, or Jarvis,
1975), and the other is that of learning automata theory (LAT) (e.g., Narendra
and Thathachar, 1974; Lakshmivarahan, 1981) and mathematical learning the-
ory (MLT) (e.g., Bush and Mosteller, 1955; Bush and Estes, 1959; Luce, Bush
and Galanter, 1963, 1965; Atkinson, Bower and Crothers, 1965). The LAT and
MLT researchers are primarily interested in problems with discrete action spaces in
which the learning system chooses one out of two, or one out of n, actions, whereas
those studying function optimization are primarily interested in continuous action
spaces, such as the parameter space of a control system. In addition, LAT and MLT
researchers are most interested in problems that have discrete outcomes, such as
binary-reinforcement, or success/failure, problems, while those who study function
optimization are most interested in problems with continuous-valued performance
measures. These differences have led to differences in the way problems are for-
mulated, and ultimately to differences in algorithms and how they are evaluated.
The major type of problem studied in LAT and MLT has also been studied as the
“n-armed bandit problem” (e.g., Bradt, et al., 1956; Cover and Hellman, 1970).

Most research into associative reinforcement learning has concerned algorithms
that either evolved from, or are very similar to, those studied in LAT and MLT.

Accordingly, this tradition of research into nonassociative reinforcement-learning

15

problems is focused on in this chapter’s experiments. The algorithms developed
within this tradition are global-search algorithms that cannot become trapped on
local optima. Unlike hillclimbing algorithms, for example, they do not search by
trying actions that are near previous actions. Actions are not related to one an-
other in terms of nearness or similarity, or in any other sense. Since they are not
local, gradient methods, these algorithms typically do nct incorporate explicit com-
parisons of current reinforcement levels with past reinforcement levels. Within the
framework used in the LAT-MLT tradition, it is not useful to estimate the change
in reinforcement as a function of change in action (since all changes in actions are
the same). It may nevertheless be useful fo compare the current reinforcement level
with past reinforcement levels. Algorithms that do this are called reinforcement-
comparison algorithms. As is discussed below, almost all LAT and MLT research
seems to have been restricted to algorithms that are not reinforcement-comparison

algorithms (called non-reinforcement-comparison algorithms).

A task is called an unbalanced-reinforcement task if its primary reinforcement
signal is biased towards a predominance of either positive values (indicating credit
should be assigned to the learning system’s behavior) or negative values (indicat-
ing blame). Tasks in which the distribution of reinforcement signal values is bal-
anced around the neutral value zero are called balanced-reinforcement tasks. One
might expect a reinforcement-comparison mechanism to provide an advantage on
unbalanced-reinforcement tasks. By comparing current reinforcement with past re-
inforcement, a reinforcement-comparison mechanism can produce a new (heuristic)
reinforcement signal which is balanced or nearly balanced. Removing imbalances
in this way may aid learning. The experiments described in this chapter were

designed to test this hypothesis.

16

The Independence-of-Path Assumption

The failure to consider reinforcement-comparison algorithms in MLT can be
traced to the “independence-of-path assumption” that practically all researchers
in this field adopted. The tndependence-of-path assumption is the assumption that
the only memory of past experience a learning system retains is contained in the
probabilities of selecting each action. In other words, these action probabilities
encode the entire state of the learning system. Its subsequent behavior is completely
independent of the path (i.e., sequence of events) by which the action probabilities

reached their current values.

The independence-of-path assumption precludes the consideration of
reinforcement-comparison algorithms. A reinforcement-comparison algorithm by
definition retains memory about past levels of reinforcement and uses it to guide
changes in its action probabilities. Thus a reinforcement-comparison algorithm’s
current state includes its memory of past reinforcement levels in addition to the

action probabilities, and it cannot meet the independence-of-path assumption.

As learning automata were initially defined (Tsetlin, 1961, 1973), they in-
cluded the possibility of reinforcement-comparison algorithms. However, possibly
due to the strong influence =~ MLT has had on LAT, most contemporary LAT is
restricted to algorithms that meet the independence-of-path assumption. In brief,
a stochastic learning automaton is an automaton whose next state is determined
by a probability distribution over its states, where the probability distribution is
modifiable by a learning process. If the states of the automaton are placed in
one-to-one correspondence with its actions, as is often done, then the automaton
retains no memory except for that of its previous action and its current probability
distribution. Since knowledge of the previous action is used to update the proba-
bility distribution, and not to select actions, this restriction is identical to that of

the independence-of-path assumption.

17

Contemporary LAT research seems to be restricted to the case of a one-to-
one correspondence between actions and states. For example, Narendra and
Thathachar in a review article (Narendra and Thathachar, 1974) define learn-
ing automata in the general case, but then go on to consider only the restricted
class of automata. In his book Lakshmivarahan (1981), another researcher in this
area, simply includes the restriction in his definitions. I have recently become
aware of several algorithms discussed by Mars and Poppelbaum (1981) which are
reinforcement-comparison algorithms. The relationship between these algorithms

and those discussed here has not yet been investigated.

MLT and LAT have demonstrated that non-reinforcement-comparison algo-
rithms are capable of eventually solving nonassociative reinforcement-learning
problems. Several forms of asymptotic near optimality — near-optimal perfor-
mance as time goes to infinity — have been shown for the non-reinforcement-
comparison algorithms considered in these fields. However, in practice, rate of
convergence is of critical importance to the usefulness of an algorithm, and those
that have been proven to to be near optimal have tended to be very slow. This
chapter describes a series of computer simulations of 10 learning algorithms, some
that are reinforcement-comparison algorithms, and some that are not, applied to 6
nonassociative reinforcement-learning tasks. These experiments were designed to

compare the convergence rates of the algorithms across tasks.

Tasks

The 6 learning tasks are summarized in Table 1. There are 3 each of 2 types

of tasks, called binary-reinforcement tasks and continuous-reinforcement tasks. In

18

Table 1. Summary of Nonassociative Tasks.

Task Reinforcement r range 7 mean Relevant
Number Type Action 1 Action 0 Algorithms
1 Binary {1,-1} 9 .8 1-9
2 Binary {1,-1} 2 1 1-9
3 Binary {1,-1} 55 45 1-9
4 Continuous R 9 8 4-10
5 Continuous R —.8 -9 4-9
6 Continuous R .05 —.05 4-9

binary-reinforcement tasks each interaction of the learning system with the envi-
ronment has one of two outcomes. The goal of the learning system is to maximize
the number of interactions that result in one outcome, called success, and minimize
the number that result in the other outcome, called fatlure. The learning system is
made aware of the outcome of its action y[t| taken at time ¢ by the reinforcement
r[t + 1] it receives at time ¢+ 1. If the outcome is success, r[t + 1| has the value

+1, and if the outcome is failure, r[t + 1] has the value —1.

In continuous-reinforcement tasks each cutcome is a real-valued reinforcement.
For example, the reinforcement r[t + 1] corresponding to the action y[t] might
take on values in the real interval [—1,+1]. In continuous-reinforcement tasks the

goal of learning is to maximize the expected value of the reinforcement.

All 6 tasks are binary-action tasks: the learning system chooses one of two

actions, Action O (y[t] =0) or Action 1 (y[t] =1).

For binary-reinforcement tasks, the environment is fully characterized by two

19

conditional probabilities. One is the probability that r[t+1] = +1 given that y[t] =
0, and the other is the probability that r[t + 1] = +1 given that y[t] = 1. The
success probabilities conditional on each action for the three binary-reinforcement

tasks are given in Columns 4 and 5 of the first three rows of Table 1.

For simplicity the tasks were constructed such that Action 1 is the better
action on all tasks*. On Tasks 1-3 this was achieved by selecting a higher success
probability conditional on Action 1 than that conditional on Action 0. These tasks
include one on which both success probabilities are high (Task 1), one on which
both success probabilities are low (Task 2), and one on which one of the success
probabilities is greater than —21- and the other less than % (Task 3). Tasks in which
the distribution of positive and negative reinforcement values is not balanced are
called unbalanced-reinforcement tasks. Tasks 1 and 2 (and Tasks 4 and 5, discussed

below) are unbalanced-reinforcement tasks.

One might expect an unbalanced-reinforcement task such as Task 1 to present a
special problem for learning algorithms because even the incorrect action is followed
by success almost all (80%) of the time. An unbalanced-reinforcement task such
as Task 2 might also be problematic because the correct action is followed by
failure almost all (80%) of the time. By contrast, a balanced-reinforcement task
such as Task 3 should be easy to solve, because the correct action is successful
more than half the time and the incorrect action is unsuccessful more than half
the time. Thus, these three tasks cover the major classes of non-trivial binary-

reinforcement/binary-action tasks.

Columns 4 and 5 of the last three rows of Table 1 list the expected value of the
reinforcement signal for each action on the three continuous-reinforcement tasks.

For each of these tasks reinforcement is selected according to a uniform distribution

* Since all learning algorithms applied to these tasks are symmetrical with respect to the two
actions, they can not take advantage of this uniformity.

20

centered at the mean indicated in Table 1 and extending 0.1 to either side. For
example, if the learning system selects Action 1 at time ¢ on Task 4, then the
reinforcement at time ¢+ 1 is selected according to a uniform distribution over the
interval from 0.8 to 1.0. The means and widths of the uniform distributions de-
termining reinforcement were selected close together and narrow respectively so as
to amplify differences between binary-reinforcement and continuous-reinforcement

tasks.

The three continuous-reinforcement tasks (Tasks 4-6) were selected to cover
roughly the same space of relative difficulties as the binary-reinforcement tasks.
One task was constructed so that the expected value of reinforcement would be
positive for both actions (Task 4), one so that the expected value of reinforcement
would be negative for both actions (Task 5), and one so that the expected value
of reinforcement would be positive for one action and negative for the other (Task

6). Tasks 4 and 5 are unbalanced reinforcement tasks.

Algorithms

The 10 learning algorithms are summarized in Table 2. Each algorithm selects
its actions probabilistically; =|t] denotes the probability with which Action 1 is
selected at time ¢. Not all algorithms were applied to all tasks. The tasks to which

each algorithm was applied are indicated in the last column of Table 2.

Algorithms 1-3 are well-known learning automata algorithms. They are, re-
spectively, linear reward-inaction (Lgy), linear penalty-inaction (Lpy), and linear
reward-penalty (Lpp). These algorithms apply different update equations for

success and failure and are only applicable to the binary-reinforcement tasks.

Algorithm 10 is also a learning automaton algorithm (Mason, 1973). It was

21

Table 2. Nonassociative Learning Algorithms.

Algorithm Update Rule Relevant Tasks
1 wlt + 1) = xlt] + {g,(”{t] — =l i :{fi ﬂ -4 1-3
2 W+”=“M+{&me_ﬂm,§$iﬂzil 1-3
S s R BT P
4 wlt + 1] = wlt] + ar[t + 1](y[t] - 1) 1-6
5 w[t + 1] = wlt] + arft + 1](y[t] — #[t]) 1-6
6 wlt + 1] = wlt] + a(rft + 1] - r[t])(s]t] - 3) 34
7 wlt + 1] = wlt] + a(r[t + 1] - r[t]) (4]¢] - =[e]) 3.4
8 wlt +1] = wlt] + afr[t + 1] - pl¢])(st] - }) 1-6
9 wlt +1] = wlt] + a(r[t + 1] - ple])(y]t] - =[¢]) 1-6
10 xlt + 1] = 7t] + arft + 1)(]t] - #[¢)) "

Where:

wlo) =0, o] = .;. dle (1,0}, >0,

and =|t] is the probability that yft] =1.

For Algorithms 4-9: yft] = { (1)’ gtzjli-i:g[t] >0

where g5[t] is a normally distributed random variable of mean 0 and standard deviation o, = .3.

For Algorithms 8 and 9: p[t + 1] = p[t] + B(r[t + 1] — p[t]), where p[0]=r[l] and B=0.2.

22

designed for tasks in which the environment returns a real-valued reinforcement
in the interval from 0 and 1. These tasks are called S-model environments in the
learning automata literature (see e.g., Narendra and Thathachar, 1974). Algo-
rithm 10 was applied only to Task 4, because this is the only task in which the

reinforcement is always between 0 and 1.*

Whereas Algorithms 1-3 and 10 directly update the probability =[t] of choosing
Action 1, Algorithms 4-9 operate by updating a modifiable parameter w(t] that

determines this probability according to:

w[t] = ®(wlt]/0y), (1)

where ®(-) denotes the unit normal distribution function, and ¢, = .3. Compu-
tationally, Algorithms 4-9 determine their action y[t| according to the sign of the
sum of w[t] and a random variable g[t] selected according to a normal distribution
with mean 0 and standard deviation oy, . If the sum is greater than 0, Action 1 is

chosen, otherwise Action O is chosen:

Jit] = {1, if wlt] +n[t] > 0; @)

0, otherwise.

This manner of selecting actions yields the probability #[t] as a function of
w[t| given by (1). The normally-distributed random variables used in these exper-
iments were obtained by passing a uniformly-distributed (pseudo-)random number
though the inverse of the normal-distribution function, approximated by linear in-
terpolation with a 20-element table. This method gives a good approximation to
the normal distribution in its tails, which can be important in preventing spurious

convergence.

* Algorithm 10 could also have been applied to Tasks 1-3 by using r[t] = 0 for failure instead
of r[t] = —1, but in this case Algorithm 10 would be equivalent to Algorithm 1.

23

According to (1), any value of w(t] determines a legitimate value for #[¢], i.e.,
one between 0 and 1. Algorithms that update w[t], such as Algorithms 4-9, are
therefore relatively easily applied to a wide range of different tasks. Unlike the
algorithms that update =[t] directly, one need never worry about #[t] exceeding
the allowed range for a probability. Algorithms 4-9 are the only algorithms applied
to all 6 tasks.

Algorithms 4-9 include both reinforcement-comparison algorithms (6-9) and
non-reinforcement-comparison algorithms (4 and 5) of several different types. Dis-
cussion of their differences and similarities is deferred until the discussion of the

results of the simulation experiments.

Each algorithm is parameterized by a single parameter o that determines the
learning rate. For small positive values of «, learning is slow. For larger values of
o, learning is faster, but if o is too large, then too much weight is put on early
experience and convergence onto the incorrect action is possible. Accordingly,

performance is typically an inverted-U shaped function of «.

Results

For each algorithm and each task to which it was applied, simulation experi-
ments were performed with 8 different values for the learning-rate parameter «.
These 8 values are the non-positive powers of 2, 20 through 2-7, ie., o = 1.,
.5, .25, .125, .0625, .03125, .015625, and .0078125. For each algorithm, task, and
learning constant, 200 simulation runs were made, each of 200 time steps. The
200 runs differed from each other only in the choice of the initial seed for the

pseudorandom number generator.

At the end of each run the final probability with which the algorithm selected

24

Action 1, w[201], was determined. Since for all tasks Action 1 is the better of
the two actions, this probability provides a measure of the performance of the
algorithm. Figures 2-7 are plots of the average value of this final probability,
averaged over 200 runs, for each algorithm, task, and o value. Each figure presents
all the averages for a single task. For example, Figure 2 plots all the data from all

runs made with Task 1.

In most cases performance of each algorithm was an inverted-U shaped function
of a.* Since many of these algorithms are quite different and use the a parameter
in different ways, it is not valid to compare the performance of different algorithms
at the same a values. The approach taken here is to compare the performance of
different algorithms on a task each with its own best o value, that is, each with
the a value that resulted in the algorithm’s best average performance on the task.

Using this performance measure, Figure 8 compares all algorithms on all tasks.

Consider the performance of Algorithms 6-9, shown in the lower graphs of
Figures 2-8. On Tasks 4-6, Algorithms 6-9 performed virtually identically. On
Tasks 1-3, Algorithm 9 performed slightly better Algorithms 6-8, but the general
trend in performance as « varies is very similar, and the best performances of
all these algorithms are not greatly different. Since these algorithms performed so
similarly, and since Algorithm 9 performed the best of them on all tasks, only data
from Algorithm 9 is plotted in the upper graphs of each figure for comparison with
the other algorithms.

The performance plots in the upper graphs of Figures 2-8 (due to Algorithms
1-5 and 9-10) show much wider variation than those in the lower graphs. On all

tasks except Task 6, some algorithms performed very well, while others performed

* The major exceptions to this generalization are Algorithms 6-9 on Tasks 4-6, in which
performance continued to improve with o over the entire range of « ’s tested. Performance
would probably have continued to improve slightly for these algorithms if higher values of «
had been tested, but the performance levels are already so high that the question is moot.

TASK 1, ALGORITHMS 1-5,9

1)

AVERAGE FINAL PROB (Y

TASK 1. ALGORITHMS 6-9

1.0r
S L9k e . 9
W = ~ I3
= a ° N
= P o.
[- o

2. of e R N
&
- //' 7 [™~
g 7 ® / : \
w ’,ﬂ/ ®
& Z
= .
« .6 [%
>
e
.Sk

i i L i i i 1

.0078 . 01586 .0313 . 0625 125 25 S 1
ALPHAR

Figure 2. Algorithm Performance on Task 1
of Chapter II. Task 1 is a binary-reinforcement
task with an imbalance of positive over negative re-
inforcement signal values. Each point represents the
average performance over all runs with a particular
algorithm and o value, where performance on a run
is defined as the probability of selecting the correct
action at the end of the run. Points due to the same
algorithm (with different « values) are connected
by lines; the numeric label indicates the associated
algorithm.

TASK 2, ALGORITHMS 1-5,98

8l

AVERAGE FINAL PROB (Y

2.5k 9.
" O g 8 —c\8
> — —
= _ = o... \-\ ~e
2 ol P . RN
a ®
| ’ ° \‘\ 7
< //// 6 - e
- . 7F /‘:)
& .6F ¢
(19
> L]
[a
. S5F
1 i 1 i 1 1 J
.0078 . 0156 0313 . 0625 . 125 25 5 1.
ALPHA

Figure 3. Algorithm Performance on Task 2
of Chapter II. Task 2 is a binary-reinforcement
task with an imbalance of negative over positive re-
inforcement signal values. Each point represents the
average performance over all runs with a particular
algorithm and o value, where performance on a run
is defined as the probability of selecting the correct
action at the end of the run. Points due to the same
algorithm (with different o values) are connected
by lines; the numeric label indicates the associated
algorithm.

26

TASK 3, ALGORITHMS 1-5,9

1)
w
T

AVERAGE FINAL PROB (Y
~
T

o
6 LS
sb N PR .
i 1 H 1. i i i
.0078 .0158 .0313 .0625 . 125 .25 .5 1.
RLPHA
- THSK 3, ALGORITHMS 6-9
Z .9k
i]
> N
—
S P e ~ _8
o .8t - e
T Y >
B % ~ ~
% / 6. e \ A
.7 ; @ N e ~
- A 70 T
" e
= I \:\
g . BF V 1 ™~
<
5»
i 1 13 i i 1]
0078 .0156 0313 625 125 25 5 1
ALPHA

Figure 4. Algorithm Performance on Task 3
of Chapter II. Task 3 is a binary-reinforcement
task with a balanced distribution of positive and
negative reinforcement signal values. Each point
represents the average performance over all runs
with a particular algorithm and a value, where per-
formance on a run is defined as the probability of
selecting the correct action at the end of the run.
Points due to the same algorithm (with different o
values) are connected by lines; the numeric label in-
dicates the associated algorithm.

27

TASK 4, ALGORITHMS 4,5,9,10

0
z
[ia}
&
a
)
@
z
—
[
Wl
0D
fast
[a g
ui
>
a
TASK 4, ALGORITHMS 6-8
1.0, — 1
8 .u‘w!"‘"“'*
0-'/”:[‘ 6!7)819

7o -
> e
=
€ .8 /
1 '/
T /7
z .

L7k
- &
-
x .6 \.»’.’4
18] ‘/‘
> o
@ e

.5k

1 i L i i 1 i 1]
L0078 .0156 .0313 .0625 .125 .25 .5 1.

ALPHA

Figure 6. Algorithm Performance on Task 4
of Chapter II. Task 4 is a continuous-reinforcement
task with an imbalance of positive over negative re-
inforcement signal values. Each point represents the
average performance over all runs with a particular
algorithm and a value, where performance on a run
is defined as the probability of selecting the correct
action at the end of the run. Points due to the same
algorithm (with different o values) are connected
by lines; the numeric label indicates the associated
algorithm.

28

TASK 5, ALGORITHMS 4,5, 9

el

P

P

1)

AVERAGE FINRL PROB (Y

TASK 5., RBLGORITHMS 6-9

- 6,789

— . 9r /

; .

> e

- r

g .sf /

o E

z e

= .

Z 7k

A &

o -

a

@ . B /'/

w "

b .

@ v

.5+
1 i 1 i I i] i
. 0078 .0156 .0313 .08625 . 125 .25 .5 i.

ALPHRA

Figure 6. Algorithm Performance on Task &
of Chapter II. Task 5 is a continuous-reinforcement
task with an imbalance of negative over positive re-
inforcement signal values. Each point represents the
average performance over all runs with a particular
algorithm and a value, where performance on a run
is defined as the probability of selecting the correct
action at the end of the run. Points due to the same
algorithm (with different o values) are connected
by lines; the numeric label indicates the associated
algorithm.

29

—

(o]
1

=1)
©
T

AVERAGE FINRL PROB (Y
~
T

o
.5k
L 1 L] 1 i i |]
.0078 .01586 .0313 .0625 . 128 .25 .5 1.
ALPHA
) TASK 6, ALGORITHMS 6-9
1.0 e T
Lok /'/ 8789
> '
o .
g of -
.
.7 :
””/
o e
@
x . B "’/
w L
T «
. 5F
H i i 1 1 i
.0078 .0156 .0313 .08625 . 125 25 S 1

ALPHA

Figure 7. Algorithm Performance on Task 6
of Chapter II. Task6 is a continuous-reinforcement
task with a balanced distribution of positive and
negative reinforcement signal values. Each point
represents the average performance over all runs
with a particular algorithm and « value, where per-
formance on a run is defined as the probability of
selecting the correct action at the end of the run.
Points due to the same algorithm (with different o
values) are connected by lines; the numeric label in-
dicates the associated algorithm.

30

31

SUMMARY, ALGORITHMS 1-5,9,10

1.0r /5»— — e e e e
2l e

= /o -

i L g o =N /\ -

=9 ’ e /\,/\\

g - =\
> 7 N A\

g8 RN

z ’ \ 10

H /7 \

L ‘ \\

w7 L AN /

I o \

«@ ..

g e \‘/

W N

@ & "«,\” o

© LT

Wb T e ®

[en} . 2
1 i i i
1 2 3 4 S 51

TRASK

SUMMARY, ALGORITHMS ©6-3

Or ﬁ L -
W oo
i‘*"”“’::if’:‘\\?//»”
= | ~ ¥
= S . g

7 8

2.8 6°
@ o
< o
= o
Ll rl
w7
a
o
w
=
a . 8 |
2‘3
o

.5

1 i
i 2 3 4 S 5
TASK

Figure 8. Summary of Algorithm Perfor-
mance on all Tasks of Chapter Il. Each point
represents the performance level of a particular al-
gorithm on a particular task with the o value at
which performance was best for that algorithm on
that task. Points due to the same algorithm (on
different tasks) are connected by lines; the numeric
label indicates the associated algorithm.

32

very poorly, varying from task to task. Algorithm 4, for example, performed the
best of all algorithms on Tasks 3 and 6, but worst of all algorithms on Tasks 4 and
5, as well as performing very poorly on Task 2. Algorithm 1, on the other hand,
performed the best of all algorithms on Task 2 and performed only “reasonably
well” on Tasks 1 and 3, the only other tasks to which it was applied.

Of those algorithms whose performance is plotted in the upper graphs of Figures
2-8, the only one that performed well on all tasks is Algorithm 9. Algorithm 9
performed the best of all algorithms on Tasks 1, 4, and 5, tied for best on Task 6,

and was a close second on the remaining Tasks 2 and 3.

To determine which differences between performances are statistically signifi-
cant, a one-tailed f-test was used to determine the probability of obtaining each
observed difference given the null hypothesis that underlying populations have the
same mean value. According to this measure, almost all the performance differ-
ences shown in Figure 8 are highly statistically significant. For example, even the
difference between the best performances of Algorithms 9 and 5 on Task 3, one of
the smallest differences mentioned above, is statistically significant at the P < .01

level.

Although the one-tailed £-test is an appropriate statistic for these data, there
are several reasons for caution in applying and interpreting it. First, there is
sampling error in «: not all values of o were used in these experiments, and thus
a statistically significant difference could appear between two algorithms merely
because the optimal value was used for one while the optimal value for the other
fell between those used. Fortunately, in these data there do not seem to be very
large changes in performance from one value of o to the next value near the optimal
a. Second, the t-test does not take into consideration the fact that only the best
averages for each task and algorithm are compared. If the rest of the data had

been included, more differences might be significant.

33

Discussion

Algorithms 6-9: Short-Term vs. Long-Term Reinforcement Compari-
son. Algorithms 6-9 are reinforcement-comparison algorithms. Algorithms 6 and
7 compare the current reinforcement and the preceding reinforcement, rlt+1]—rt] .
Algorithms 8 and 9 are somewhat more ccmplex. Rather than compare current
reinforcement with immediately preceding reinforcement, they compare it with a
long-term measure of prior reinforcement. These algorithms compare current re-
inforcement with a real-valued variable called the ezpected level of reinforcement,
whose value at time ¢ is denoted p[t]. That is, they update w according to
r[t + 1] — p[t], where p[t] is an exponentially-weighted average, or trace, of the
preceding reinforcement values r[t], r[t — 1], r[t — 2], ..., with greater weight

going to more recent reinforcement values. In particular,
plt+ 1 =plt] + Bt +1]—plt) V>0 and ploj=0, (3)

where 0 < f < 1. B = .2 for all simulation runs reported here. Since p[t] is
incremented fractionally according to its difference from r[t + 1], p[t] tracks the
level of r[t+1]. If r remains constant, p asymptotically approaches that constant
level. The parameter £ determines how quickly p matches a fixed level of r, and
how quickly it tracks a changing level of r. A fairly low value for g, such as the .2
used in these experiments, implies that p[t] tracks r[t + 1] relatively slowly. With
B = .2, p[t] is 20% (.2) due to r[t], 16% (.2-.8) due to r[t — 1], 13% (.2-.82)
due to r[t—2], and 2% (.2-.8!") due to r[t —10], etc. If B is 1, then p[t] exactly
equals r[t], and Algorithms 8 and 9 reduce identically to Algorithms 6 and 7.

The lower part of Figure 8 shows that the reinforcement-comparison algorithms
with the long-term measure of preceding reinforcement (Algorithms 8 and 9) per-

formed significantly better than those with the short-term measure (Algorithms 6

34

and 7) on Tasks 1-3, and identically on Tasks 4-6.

Algorithms 4-9: Structural Credit Assignment. For the moment consider
Algorithms 4-9 in pairs, 4 with 5, 6 with 7, and 8 with 9. The algorithms of
each pair are identical except for the factors of their update equations involving
which action is taken. The even-numbered algorithms use y[t] — -;- in this capacity
whereas the odd-numbered algorithms use y[t] — w[t]. Both factors involve the

action taken at time ¢, and the second factor also involves the action probability.

y[t] — % is -% when Action 1 is chosen and —-;- when Action 0 is chosen. The
absolute value of this factor is constant, and its sign encodes which action was
taken. The factor y[t] — x[t] is somewhat more complex. On the earliest trials
before wlt] has changed very much from 0, y[t] — #[t] operates exactly as y[t] — 1
does because lt] is is near its initial value of 1. As wlt] moves significantly away
from 0, =[t] moves toward either 0 or 1, and y[t] — x[t| begins to behave differently
from y[t] - %— . The two factors always have the same sign, but their absolute values
differ. In comparison to y[t] — %, y[t] — x[t] amplifies changes in wl[t] on those
steps on which the less-likely action is taken, and diminishes changes in w[t] on
those steps on which the more-likely action is taken. For example, if w[t] is .9,
then y[t] — «[t] is 1 — .9 = .1 if the more-likely action, Action 1, is chosen, and

0 — .9 = —.9 if the less-likely action, Action 0, is chosen.

It is not clear from the results shown in Figure 8 which algorithm of each pair is
better. Algorithm 9 (using y[t]| —«[t]) performed somewhat better than Algorithm
8 (using ylt] -—%) on Tasks 1-3, and as well as Algorithm 8 on Tasks 4-6. Algorithm
7 (using y[t] — 7[¢]) in turn performed somewhat better than Algorithm 6 (using
y[t] — 1) on Task 2, worse on Task 1, and as well on Tasks 3-6. These differences
are significant at the P < .01 level except for the differences on Task 1, which are
significant only at the P < .05 level.

35

The differences between the performances of Algorithms 4 and 5 were much
larger and more varied than those between the members of the other pairs of
algorithms. Algorithms 4 and 5 performed nearly equally as well on Tasks 4 and
6 (the difference on Task 4 is not statistically significant; the difference on Task 6
is significant, but it probably would not have occurred if higher values of a had
been tried for Algorithm 5). On the remaining tasks, Algorithm 4 (using y[t] — §)
performed significantly better than Algorithm 5 (using y[t] — #[¢]) on Tasks 1 and

3, and dramatically worse on Tasks 2 and 5.

What is the reason for the very poor performance of Algorithm 4 on Task 27
Task 2 is the binary-reinforcement task whose outcome is failure on almost all steps
irrespective of the action chosen, although failure is slightly less likely (.8 versus

.9) if Action 1 is chosen. Algorithm 4 uses the following update rule:
1
w(t + 1] = w(t] + ar[t + 1](y[t] - 5)’

where r[t+1] € {—1,1} on Task 2. This algorithm moves w in the right direction—
positively—on Task 2, but as it starts to favor Action 1, the movement of w begins
to slow down and ultimately stops. The problem is that as the algorithm starts to
choose Action 1 more often than Action 0, most failures occur on Action 1 steps
simply because Action 1 steps occur more frequently, and most steps end in failure
in any case. The equilibrium probability of selecting Action 1 — that value of
m at which the expected value of w(t + 1] given w[t] is the same as w[t] — for

Algorithm 4 on Task 2 is readily computed. At equilibrium,
E {wlt +1] | w[t]} = wlt],
where E{- |-} denotes a conditional expectation. In other words,

E{Ault] | wlt]} = E {w|t + 1] — w[t] | w[t]} = o.

36

Using P{- |-} to denote a conditional probability,

E{avwlt] |wlt]} = P{ylt] = 1| w[t}P{rlt +1] =1]|y[t] =1} «1(1 - .5)

+P{ylt] = 1| wlt]}P {rlt + 1] = 1] y[t] = 1} (~1)(1 - .5)
+P{ylt] = 0| wlt]}P{r[t +1] = 1| y[t] = 0} & 1(0 — .5)
+P{ylt] =0 | wlt]}P {r[t +1] = -1 y[t] = 0} a (—1)(0 — .5)

=rt].2a.5
+ [t 8o (~.5)
+ (1 - n[t]).1 a(—.5)
+(1—nlt]) 9.5

= Sal.1+.9+nlt](2-8+.1- .9)] —0,

implying that
w[t] = 4/7 ~ 57.

Figure 3 shows that the final values of 7 for Algorithm 4 were in fact all near .57.

Algorithm 5 differs from Algorithm 4 only in the replacement of the ylt] —
% factor by y[t] — m[t], and yet this is enough to completely solve the problem
described above. As Algorithm 5 starts to choose Action 1 more often, it oo
starts experiencing more steps on which it chooses Action 1 and whose outcome is
failure, but because of the y[t| — #[t] factor, the effect of each of these failures is
diminished. Unlike Algorithm 4, Algorithm 5 results in the probability of choosing

the correct action continuing to increase towards 1 on Task 2.

In conclusion, these results show that algorithms using y[t] — 7[t] sometimes
show improved and sometimes degraded performance over the corresponding al-
gorithms using y[t] — 1. Where y[t] — x[t] improves performance, it sometimes
improves it dramatically, and where it degrades performance, it degrades it rela-
tively little. Finally, for the best performing algorithms (8 and 9), the y[t] — «[t]

factor results in a small consistent improvement across tasks.

37

Algorithms 1-10: Reinforcement-Comparison Mechanisms. The algo-
rithms with reinforcement-comparison mechanisms (Algorithms 6-9) performed
much better across tasks than the comparable algorithms without reinforcement-
comparison mechanisms (Algorithms 4 and 5). Although Algorithm 4 performed
best of all algorithms by small margins on the balanced-reinforcement tasks (3 and
6), it performed far worse than the reinforcement-comparison algorithms on Tasks
2, 4, and 5. On Tasks 4 and 5 all reinforcement-comparison algorithms showed
complete and correct learning, and all other applicable algorithms showed only a
very low level of learning. These results indicate that reinforcement-comparison
mechanisms improve performance on unbalanced-reinforcement tasks (1, 2, 4, and
5), and at least do not degrade performance on balanced-reinforcement tasks (3
and 6).

Algorithms 1, 2, 3, and 10 are learning automata algorithms commonly dis-
cussed in the literature. Although these algorithms are not particularly noted for
their speed of learning, they provide useful reference points with which to compare
the performance of the other algorithms. Algorithms 1-3 could be applied only to
the binary-reinforcement tasks (1-3). Algorithms 2 and 3 were the poorest per-
formers on these tasks, and Algorithm 1, on balance, performed significantly worse
than several of the other algorithms, including particularly the best reinforcement-
comparison algorithm, Algorithm 9. Algorithm 10 was the only learning-automaton
algorithm applied to Task 4. However, it did no better than the other algorithms
in challenging the greatly superior performance of the reinforcement-comparison

algorithms on the continuous-reinforcement tasks.

38

Absolute Expediency of a Reinforcement-Comparison Algorithm

This section presents a proof regarding the asymptotic convergence of a
reinforcement-comparison algorithm. Such convergence results are often difficult
to obtain for algorithms, such as reinforcement-comparison algorithms, which do
not adopt the independence-of-path assumption. The following proof illustrates

that such results are at least possible in special cases.

Consider the reinforcement-comparison algorithm defined by:
n[t + 1] = «[t] + Ax|t] where An[t] = a(r[t + 1] — r[t])(y[t] — =[t]), (4)

0 < a < 0.5, «[t] is the probability that y[t] = 1, and r[t+1] € {—1,1} is success
or failure depending on the action y[t] € {0,1}. Performance J[t] at time ¢ is

defined as the expected value of the reinforcement signal at time ¢:
J[t] = E {r[t + 1] | =[t]}.

An algorithm for generating successive values for 7 is normally said to be absolutely

ezpedient if and only if performance increases in expected value from step to step:
E{J[t+1] | «[t]} > J[t], (5)

for all t, for all values of «[t], and for all possible binary-reinforcement tasks (i.e.,
for all (non-equal) success probabilities for the two actions) (cf. e.g., Narendra and

Thathachar, 1974).

The criterion of absolute expediency given by (5) is not well-defined for the
algorithm given by (4), because, in using the expression E {J[t+ 1] | «[t]}, (5)
implicitly assumes that the expected value of J[¢t + 1] is well-defined given only
n[t]. For algorithms such as (4), which include memory variables other than

m[t], this is not so. Although E {J[t+ 1] | x[t]} is not defined for this algorithm,

39

E{J[t+1] | n[t],x[t — 1]} is. It is this quantity which is shown here to increase
from step to step. That is, henceforth a criterion is used which considers an

algorithm to be absolutely expedient if and only if:

E{J[t+1] | xft], x[t — 1]} > J[¢], (6)

for all ¢, for all values of #[t] and #[t— 1], and for all binary-reinforcement tasks.

Theorem. The algorithm given by (4) meets the criterion of absolute expediency

given by (6).

Let

pr=P{rlt+1]=1]ylt] =1} and po=P{rt+1]=1]y[t] =0}.

Then

Jit] = E{rlt + 1] | x[t]}
= pi#ft] + po(1 — #[t]) — (1 — pa)xt] — (1 — po)(1 — n[¢])

=2ps— 1+ Zﬁ[t](pl - po).

Since J[t + 1] is a linear function of [t + 1], it suffices to show that
E {Anr[t] | x[t], x|t — 1]} is of the right sign, i.e., is positive if p; > py, and negative
if p1 < po. To compute this expected value one must consider 8 cases, one for each

of the possible combinations of values for y[t], r[t + 1] and r[t]:

40

E{Axl[t] | x[t],x[t — 1]} =
w(t] py P {rlt] =1 x[t — 1]} a« 0(1 — x[t])

+xt] p1 P {r[t] = —1| x[t — 1]} @ 2(1 — =[t])

+aft] (L= p1) P{rlt] = 1| xft — 1]} & (-2)(1 — =[t])

+x[t] (1 —p1) P{r[t] = —1| x|t — 1]} 2 O(1 — =[¢])

+ (1 —=[t]) po P{r[t] = 1| x[t — 1]} « 0(0 — x[t])

+ (1 —x[t]) po P{r[t] = —1| =]t — 1]} @ 2(0 — =[t])

+ (1 —=ft]) (1 —po) P{rlt] = 1| x[t — 1]} & (-2)(0 — =[t])

+ (1 —=[¢]) (1 —po) P{rlt] = —1| x[t — 1]} 2 0(0 — =[t])
(Letting g = P {rft] =1 | x[t — 1]})

= wft)(1 - #[t]) & 2(101(1 —q)-(-p)a-po(1-g)+(1- po)q)
= a 2x(t](1 — #[¢])(p1 — po)-

Since [t] is always between O and 1, this expression is always of the same sign

as p; — po- Q.E.D.

Extensions

The simulation experiments reported here need to be extended and verified
in several ways. A great many more algorithms should be tried, including other
algorithms from the learning automata literature, algorithms from the n-armed
bandit literature, and reinforcement-comparison algorithms other than those tried
here. For example, an algorithm that forms separate estimates of the expected

reinforcement for each action, and then compares them to determine its action

41

probability is a reinforcement-comparison algorithm, though different from those

compared here, and would make an interesting addition to this study.

The only real difficulty in extending the experimental work in the direction
of additional algorithms is the great number of possible algorithms and the large
number of experiments that would need to be run. In the experiments reported
here only a single parameter of each algorithm was varied to determine its highest
performance level, but for other algorithms 2 or even 3 parameters may need to be

varied.

The experiments reported here also need o be extended to other tasks. Other
variants of the binary-action with binary or continuous-reinforcement tasks investi-
gated here would be useful, but it is probably more important to experiment with
other classes of tasks. Tasks with more than 2 actions or more than 2 discrete
reinforcement levels (called Q-model environments in the LAT literature) come to

mind.

Finally, further mathematical analysis is also clearly called for. The superior
performance of reinforcement-comparison algorithms in these simulations suggests
that such algorithms may be worth analyzing, despite the difficulties. Only a single
minor result has been presented here; other mathematical results relating to the
convergence of reinforcement-comparison algorithms, or to the learning-rate of such

algorithms, would be of great interest.

Conclusions

These results strongly suggest that learning automata theorists and mathe-
matical learning theorists may have excluded some of the fastest learning algo-

rithms by not considering reinforcement-comparison algorithms. On unbalanced-

42

reinforcement tasks, reinforcement-comparison algorithms tend to learn much more

rapidly than analogous algorithms without reinforcement-comparison mechanisms.

These results do not prove that reinforcement-comparison algorithms are supe-
rior to non-reinforcement-comparison algorithms. Strictly speaking, the conclusion
that reinforcement-comparison mechanisms greatly improve learning rate applies
only to this particular set of algorithms and tasks. However, these results can-
not help but suggest that remembering past reinforcement levels for subsequent
comparison may be an essential feature of robust and high-performance learning

algorithms for discrete-action nonassociative reinforcement-learning tasks.

CHAPTER 1III

ASSOCIATIVE LEARNING

Associative-learning tasks are tasks in which a mapping from input to output
must be formed by the learning system. Stimuli and actions must be associated in
such a way that the occurrence of a stimulus evokes the most suitable or appro-
priate action. Learning in pattern classification, for example, is associative learn-
ing because associations are learned between patterns (stimuli) and classifications
(actions). However, pattern-classification learning is typically not reinforcement
learning because the learning system is not required to search for the best clas-
sifications — these are provided by a “teacher” during a training sequence. In
nonassociative-learning tasks, such as those considered in the preceding chapter,
the learning system need only find the best action, it need not associate it with

any stimulus.

The word “associative” in associative learning is not meant to suggest that it is
necessarily symmetrical, non-symbolic, or distributed, but only that what is learned
is an association or linking of actions to stimuli. Any such other connotations of
the word “associative” are coincidental. This kind of learning could equally well be
called “mapping learning,” to emphasize that a set of relationships, or “map,” is
learned, or it could equally well be called “learning with stimuli” to emphasize that
this type of learning always involves non-reinforcing stimuli used to select actions

as well as reinforcement input to evaluate them.

43

44

The experiments described in this chapter compare the performance of 11
associative-learning algorithms on 12 associative reinforcement-learning tasks. The
algorithms are generalizations of those studied in Chapter II. The experiments focus
on problems of misleading generalization occurring when similar stimuli must be
discriminated. In Chapter II, reinforcement-comparison mechanisms were shown
to improve performance on unbalanced-reinforcement tasks. One purpose of the
experiments of Chapter III is to determine whether they ease the problem of mis-

leading generalizations as well.

Approaches to Associative Learning

There have been at least three approaches to the problem of associating actions
with stimuli: The tndependent-assocsations approach, the stimulus-sampling-theory
approach, and the linear-mapping approach. Each of these approaches to associa-
tive learning and the relationships between them are discussed below. A fourth
approach, not discussed here, is based on matching stimuli to prototypes, and se-
lecting actions based on which prototype matches best (e.g., Reilly, Cooper and
Elbaum, 1982; Hampson and Kibler, 1982; Spinelli, 1970; Anderson et.al., 1977).

An important issue in evaluating approaches to associative learning is that of
stimulus similarity. How stimulus similarity is handled determines when general-
ization between stimuli occurs and when discrimination is possible. Generalization
between stimuli occurs when training to one stimulus transfers and influences be-
havior (action selections) to another stimulus. When the transfer is positive, i.e.,
when the action learned in the presence of the first stimulus becomes more likely
to occur in the presence of the second stimulus as a result of the training, then
the two stimuli are said to be similar. Stimulus discrimsnation refers to the ability

of a system fo learn to perform two different actions in response to two different

45

stimuli. In stimulus discrimination, one is usually concerned with discriminating
between stimuli that are similar, in which case generalization between them may
make their discrimination difficult. The ability to perfectly discriminate stimuli
implies the ability to overcome any generalization between them and to behave

differently to them with 100% reliability.

The Independent-Associations Approach. One approach to associative learn-
ing is to make a separate association to action for every stimulus presented to
the learning system. Since each association is distinct and separate from every
other, a separate memory variable (or variables) is required for each stimulus. To
the extent memory is limited, this requirement restricts the usefulness of this ap-
proach to tasks with comparatively small numbers of distinguishable stimuli. The
independent-associations approach has been used in reinforcement learning con-
trol theory (Mendel and McClaren, 1970), and in mathematical learning theory
(Bush and Mosteller, 1955), and occasionally in learning automata theory (Laksh-
mivarahan, 1981; Witten, 1977) and artificial intelligence (Michie and Chambers,
1968a,b). It is also the basis of “table-lookup” approaches to storing mappings
(Raibert, 1978). Because all stimuli are treated separately, no stimuli are similar

and no generalization can occur, and hence stimulus discrimination is trivial.

By ignoring the issues of stimulus similarity, generalization, and discrimination,
the independent-associations approach gives up the opportunities they provide.
Transfer of training due to generalization can greatly increase the rate of learning
(assuming similar stimuli should elicit similar actions). In complex learning tasks
it may be rare for the exact same stimulus to occur twice in the lifetime of the

learning system. In such cases, generalization between stimuli is essential.

On the other hand, an advantage of the independent-associations approach is

that it permits one to apply reinforcement-learning algorithms known to work on

46

nonassociative tasks directly to associative tasks. To do this, one allots a sepa-
rate instance of the nonassociative algorithm for each stimulus that will ever be
presented to the learning system. Whenever a stimulus occurs, the corresponding
algorithm takes one step. This reduces the associative task to a set of independent
nonassociative tasks. Using the independent-associations approach and this tech-
nique, any algorithm known to work for nonassociative tasks can be applied with
confidence to associative tasks as well. For this reason the independent-associations
approach has remained of considerable theoretical interest despite its requirement

for small numbers of distinct stimuli and its lack of generalization capabilities.

A slight modification of the independent-associations approach as discussed
thus far is to make independent associations not with stimuli, but with groups of
stimuli, where the grouping of stimuli is determined before training. This mod-
ification replaces the requirement of a small number of different stimuli with the
requirement of a small number of groups of stimuli. For example, Michie and
Chambers’s “Boxes” system (Michie and Chambers, 1968a) uses this approach to
divide a continuous state space constituting an infinite number of stimuli into 162
groups. This sort of modification introduces a primitive form of stimulus similarity
and generalization. Stimuli within a group are all treated as the same stimulus, so
complete generalization occurs between them, while discrimination between them
is impossible. The biggest problem with this approach is deciding how the stimuli
are to be grouped. Which stimuli should be grouped together and which need to

be treated separately is usually an important part of the problem.

The Stimulus-Sampling-Theory Approach. One approach to associative
learning which does include stimulus similarity and generalization is that of stim-
ulus sampling theory (Estes, 1950, 1959a,b). In stimulus sampling theory (SST),
stimuli correspond to subsets of a large number of independently variable stimulus

components. (In SST these are usually called stimulus elements, but I will refer

47

to them here as stimulus components.) Each stimulus component is associated
in an all-or-none fashion with a particular action. The proportion of stimulus
components in a stimuli’s subset associated with an action determines the proba-
bility of that action’s being chosen in response to the stimulus. When a stimulus
is presented, a random sample is drawn from the corresponding subset of stimu-
lus components. As a consequence of a conditioning (learning) rule, the stimulus

components sampled may have their associations with action changed.

In SST two stimuli are said to be similar to the extent that their subsets have
common stimulus components. Generalization in SST works as follows. Training
with one stimulus increases the proportion of the stimulus components in its subset
associated with a particular action. If a second similar stimulus is then presented,
the probability of its eliciting the action is increased because a higher proportion of
the stimulus components it has in common with the first stimulus are conditioned
to the action. If all subsets are disjoint, then no generalization can occur. In this

special case, the SST approach reduces to the independent-associations approach.

Although SST’s approach to similarity works out fairly well for generalization
(La Berge, 1961; Carterette, 1961; Atkinson and Estes, 1963), it has greater diffi-
culty with discrimination learning. Under the SST approach a learning system can
never perform different actions to two similar stimuli with 100% reliability. The
common stimulus components of the similar stimuli cannot be allocated all to both
actions. Thus some proportion of at least one of the stimuli’s components must be
associated with the wrong action for that stimulus. Since in SST this proportion
directly determines the probability of selecting each action, perfect discrimination

is impossible.

Several directions have been taken in SST to handle this problem with discrim-
ination learning. One is based on the idea of somehow eliminating the effectiveness

of stimulus components in the intersection of stimulus subsets when discrimina-

48

tion between the corresponding stimuli becomes necessary. Work along this line is
usually based on the idea of selective attention (Restle, 1955; Zeaman and House,
1963; Lovejoy, 1968; Sutherland and Mackintosh, 1971). The other major di-
rection taken to handle stimulus discrimination within SST is based on the idea
that configurations of stimulus components may be perceived as whole patterns
or “gestalts” (Atkinson and Estes, 1963; Friedman, Trabasso and Mosberg, 1967).
Both of these remedies involve bringing in additional mechanisms to handle the

problem of discrimination learning.

The Linear-Mapping Approach. A third approach to stimulus similarity
has been widely used in pattern classification, control theory, neural-network and
associative-memory research, and animal learning theory. In the linear-mapping
approach, stimuli are represented as vectors, where each component of the vector
indicates the presence or absence (or extent) of a stimulus component. A linear
mapping is formed from the stimulus vectors to a quantity that determines the ac-
tion to be taken. As a consequence, similarity and generalization between stimulus
vectors is determined by the degree of their linear dependence, i.e., by their inner

product.

If the set of stimulus vectors is orthogonal, no stimuli are similar, and no
generalization occurs. In this case, the linear-mapping approach reduces to a

rather roundabout form of the independent-associations approach.

The linear-mapping approach is the approach used in the research reported
here. The experiments described in this chapter are concerned exclusively with
binary-action tasks in which the action y[t] is either 1 or 0. In the binary-action

case of the linear-mapping approach, actions are selected as follows:

] = { 1, if s[t] + nlt] > 0; ™

0, otherwise,

49

where
n

slt] = Y miltwilt], (8)
s=1

n[t] is a normally distributed random variable of mean 0 and standard deviation
oy, n is the total number of stimulus components, Z[t] = (z1[t], z2[t], ..., za[t])
is the stimulus vector presented at time ¢, and W[t] = (w1[t], walt],..., w,[t]) is a
modifiable weight vector, called the action-assoctation vector. For the special case
in which the same stimulus vector is presented on every time step, and in which
that vector has only one component, whose value is 1, (7) and (8) reduce exactly

to (2), the nonassociative action-selection equation used in Chapter II.

For cases with more than two possible actions, there are two subapproaches
within the linear-mapping approach. The distinct-actions subapproach requires
that there be a finite number of distinct actions, and the component-actions sub-
approach breaks actions up into independently-variable components, each of which
may be either binary or continuous. These two subapproaches are briefly described

below, but are not considered elsewhere in this dissertation.

The Distinct-Actions Subapproach. In the distinct-actions subapproach,
each stimulus component has a degree of association with each action. Let w;[t]
denote the strength of the association between stimulus component ¢ and action j
at time ¢, and let W(t]| = [wz-j{t]] denote the n X m matrix of these associations
where there are n stimulus components and m possible actions. The action
y[t] is selected based on the product of W{t] and the current stimulus vector,
denoted Z[t] = (z1[t], z2[t], ..., za[t]) . This product is an m-vector denoted 3t] =
(s1[t], s2[t], -, 8mlt]) ¢

8lt] = Wt]Z1t],

or, equivalently,

sl =) miltlwilt], Vi (9)
=1

50

The simplest technique for selecting the action y[t] from 5¢] is to choose the

action corresponding to the largest component of §l¢]:
ylt] =3, where s;{t] > si[t], Vk#j.

In reinforcement learning, however, it is usually better to choose probabilistically
rather than deterministically. A simple probabilistic rule is o add an indepen-
dent random variable #,[t] to each component of 5{t] and then select the action

corresponding to the component whose s;[t] 4+ n;[t] is largest:
ylt] =7, where sjlt] +nj[t] > sift] + melt], VE#7,

and each ;[t] is chosen from a normal distributtion with mean zero and standard

deviation oy .

The Component-Actions Subapproach. A second linear-mapping sub-
approach involves representing the actions as consisting of independently-variable
action components in the same way that stimuli are represented as consisting of
stimulus components. In this subapproach, actions are vectors of action compo-
nents, and each stimulus component has a degree of association, either positive
or negative, with each action component. Here w;;[t] denotes the strength of the
association between stimulus component ¢+ and action component j at time ¢,
and W[t] = [wij[t]] denotes the n X m matrix of these associations where there
are n stimulus components and m action components. §[¢] is computed as in (9).

The simplest rule for determining the action vector glt] = (y1[t], y2[t], ..., yml[t]) is

1, if s;[t] + n,t] > 05
y;lt] = Vj.
i1t { 0, else,

If a continuous-valued action vector (]t] € ®™) is desired, then §[t] is determined
by
y;lt] = s;{t] + n;lt],

51

where each 7;[t] is an independent normally-distributed random variable with

mean 0 and standard deviation oy .

Discrimination in the Linear-Mapping Approach. The linear-mapping
approach is better at discrimination than is the SST approach. In the SST ap-
proach, perfect discrimination between two stimuli is possible only if the stimuli are
totally dissimilar. In the linear-mapping approach, two vectors can be very simi-
lar, and perfect discrimination will still usually be possible. Roughly, two stimulus
vectors are similar in the linear-mapping approach according to the angle between
them. As long as the angle between two vectors is not zero, it is possible to fit
a hyperplane between them and thereby discriminate between them. Therefore,
very similar vectors can be mapped to completely different actions with as high a

degree of reliability as desired.

Although the linear-mapping approach is in some respects a better approach
to associative learning than either SST or the independent-associations approach,
it obviously has limitations. For example, considered by itself the linear-mapping
approach is not capable of forming nonlinear associations, or of arbitrarily catego-
rizing linearly-dependent stimulus vectors. To do these things it must rely on some
as yet unspecified additional mechanisms, as must SST in order to achieve perfect

discrimination.

Nevertheless, this study is concerned only with the linear-mapping approach,
despite these limitations, because even the linear problem remains largely unsolved
for associative reinforcement learning. The experiments presented in this chapter
suggest that some associative reinforcement-learning algorithms that have previ-
ously been investigated (e.g., Farley and Clark, 1954) fail when required to form
linear maps in interaction with certain types of environments. The forming of

linear maps for non-reinforcement associative learning has been well worked out

52

(see e.g., Rosenblatt, 1957, 1962; Widrow and Hoff, 1960; Nilsson, 1965; Duda
and Hart, 1973), and researchers in this area have gone on to consider nonlinear
mapping (e.g., Poggio, 1975; Reilly, Cooper and Elbaum, 1982). The strategy of
first studying linear mapping has proven to be a successful one for investigating as-
sociative learning that is not reinforcement learning; it is probably a good strategy

for associative reinforcement learning as well. *

The linearity or nonlinearity of a particular mapping is dependent on the way
stimuli are represented as stimulus vectors. What is nonlinear in one representation
may be linear in another and vice-versa. For example, in the extreme case, any
mapping can be made linear by representing stimuli as vectors only one component
of which is nonzero, a different component for each stimulus, i.e., by reducing
the linear-mapping approach to an independent-associations approach as discussed
earlier. In this case, since any stimulus can be mapped to any action by changing
the association of the stimuli’s dedicated component, any mapping can be formed.
Although this extreme approach, as mentioned earlier, is rarely useful, it illustrates
how strongly the linearity or nonlinearity of a mapping depends on the stimulus
representation. Any mapping can be implemented as a linear mapping with an

appropriately chosen representation.

When a mapping that is nonlinear in the original representation is required of
a system employing a linear mapping approach, some other mechanism or mech-
anisms must be relied on to change the representation so that the mapping be-
comes linear. The problems in doing this are closely related to the knowledge-
representation problem ephasized in Al (see e.g., Barr and Feigenbaum, 1981). It
is well known in Al that the way knowledge is represented is crucial in determining

the effectiveness of an intelligent system. This is just as true for learning systems.

* For one approach to nonlinear mapping in associative reinforcement learning, and further
discussion of this problem, see (Barto, Anderson, and Sutton, 1982; Anderson, 1982; Barto,
in press).

53

Among other things, a change in representation can completely change which stim-
uli are similar, dissimilar, or unrelated, and thereby change an easy learning task
into a hard one or vice-versa. A complex learning system, even if it relies on a
linear-mapping approach to form associations, must be able to find good repre-
sentations if it is to be maximally effective in the long run and over a wide range
of tasks. That mappings can be changed from nonlinear to linear by a change in
representation, and that such changes in representation must occur in any event,

provides additional justification for studying purely linear mappings.

How good representations might be found and modified is a large and complex
subject which is beyond the scope of this work. In terms of the division of the
credit-assignment problem, this issue falls in the area of structural rather than
temporal credit assignment, because it involves building and assigning credit to

internal knowledge-representation structures.

Finally, it is important to emphasize that the three approaches to associative
learning discussed above are ways of associating actions with stimuli, not algo-
rithms for deciding which associations to make. The differences among approaches
discussed above are largely independent of what learning algorithm is used. If an
approach is lacking in some capability, no learning algorithm can save it from the
deficiency. Conversely, if an approach has superior capabilities, then a learning al-
gorithm must be found to implement those capabilities before the superiority can

be considered significant.

Independent-Step Associative Learning

The experiments described in this chapter involve sndependent-step associative-

54

learning tasks. An independent-step task is one in which the interaction between
the learning system and its environment can be separated into steps, each of which
is independent of all others. In associative reinforcement learning, each step in-
volves the presentation of one stimulus vector to the learning system, its selection
of one action, and finally the delivery of a reinforcement feedback signal by the
environment. Such steps are said to be independent if the stimulus, action, and re-
inforcement of one step do not influence the stimulus or reinforcement of any other
step. In particular, the action selected on one step may influence the reinforcement

on that step but not that of any other step.

Formally, the restriction to independent-step learning tasks means that the en-
vironment does not change state. For these tasks the environment is characterized

by a sequence of stimuli, z[1], z[2], ..., and a map p such that
pXxY -R
p(z[t], ylt]) — rlt + 1],
where X is the stimulus space, Y is the action space, and the reinforcement space
R is the set of real numbers. As usual, p may be stochastic (probabilistic). A
single step involves the stimulus at time ¢, z[t|, the action at time ¢, y[t], and
the reinforcement at time ¢ + 1, r[t + 1]. Note that the reinforcement is denoted
as occurring one time step later than the stimulus and the action. This convention

is used because it is consistent with later descriptions of learning tasks that cannot

be divided into independent steps.

Tasks

This section provides a complete specification of the 12 tasks used in the ex-
periments of this chapter. Discussion of the rationale for using these particular

tasks is deferred until the “Discussion” section. Table 3 summarizes the 12 tasks;

ot
(933

Table 3. Associative Learning Tasks.

Expected Value of Relnforcement Stimulus Stimulus
Task Stimulus ! Stimulus #2 Frequency Intensity
y=1 y=0 y=1 y=0 & 2 @ # Steps Description
1 1(.55) -—.1(.45) -.1(45) .1{55) b5 5 I 1 1500
Symmetrical
2 A -.1 -.1 A S 56 1 1 200
3 -6(2) -.8(1) 6(.8) 8(9) b5 5 1 1 1500 Reinforcement
Level
4 —.6 -8 6 8 b 05 1 1 200 Asymmetry
5 .05(.525) -.05(.475) -.15(.425) .15(.575) 5 .5 1 1 1500 Reinforcement
Spread
6 .05 -.05 -.15 B 1 R 5 i 1 200 Asymmetry
7 .1(.55) -.1(45) -—.1(45) .1{55) .25 .75 1 1 1500 Stimulus
Frequency
8 1 -.1 -.1 1 25 75 1 1 200 Asymmetry
9 A(.55) —.1(45) —.1(45) .1{55) S5 5 5 15 1500 Stimulus
Intensity
10 1 -1 -1 A S 6 5 15 200 Asymmetry
11 —.4(.3) —.8(.1) .3(.65) O(95) .25 .75 .5 1.5 3000 Combined
Asymmetries

12 —.65 -.75 .55 .85 25 75 b 1.5 2000

each facet of the table is discussed below.

As in Chapter II, all tasks are binary-action tasks (y[t] =1 or y[t| =0). On
each time step ¢ the environment sends to the learning system one of two stimuli,

represented as vectors, and which are denoted #! and #2. For Tasks 1-8,

1 0
=11 and #£=]1]. (10)

56

For Tasks 9-12,
5 0
=15 and =] 15]. (11)
0 1.5

In both cases the two stimuli are clearly distinguishable via the first and third

components, but are similar via the second component.

One difference between the stimuli of Tasks 1-8 and those of Tasks 9-12 is their
intensity. The two stimuli of Tasks 1-8 are equally intense, whereas in Tasks 9-12
the first stimulus is half as intense as the stimuli of the other tasks, and the second
stimulus is one-and-a-half times as intense. This difference is indicated in Table 3

in the columns labeled “Stimulus Intensity.”

On all tasks the stimulus presented is selected probabilistically. On Tasks 1-6
and 9-10, the two stimuli are presented with equal frequency, i.e., each with a
probability of .5. On any given time step of Tasks 7-8 and 11-12, 72 is presented
with a probability of .75 and #! with a probability of .25. These probabilities are

listed in Table 3 in the columns labeled “Stimulus Frequency.”

The odd-numbered tasks are binary-reinforcement tasks and the even-
numbered tasks are continuous-reinforcement tasks. In the binary-reinforcement
tasks, the reinforcement r received from the environment is either a +1 (success)
or a —1 (failure), whereas in the continuous-reinforcement tasks the reinforcement

can take on any real value.

In all tasks, reinforcement r[t + 1] is a stochastic function of the preceding
action y[t] and stimulus Z[t]. Since there are two possible stimuli and two possible
actions, there are four possible combinations of stimulus and action. Columns 3-6
of Table 3 list the expected value of reinforcement for each task for each of these

four combinations.

For the continuous-reinforcement tasks, reinforcement is computed from the

57
expected values in Table 3 as

2t
rit+ 1] = r;[!q] + nlt],

where rj denotes the expected value of reinforcement corresponding to stimulus #

and action y, and where g[t] is a normally-distributed random variable of mean

0 and standard deviation o,. For all tasks except Task 12, o, = .1. For Task 12,

o, = .025.

For the binary-reinforcement tasks, reinforcement is computed from the prob-
abilities given in parentheses in Columns 3-6 of Table 3. Letting Pj denote
P{rlt+1] =1| Z[t]| = Z,y[t]| = y}, i.e., the probability of a successful outcome
given stimulus % and action y, the expected values given in Table 3 are computed

as follows:

rf=1-Pf-1-(1-P).

Simulation runs involving different tasks ran for different numbers of steps. For
each task, the number of steps its runs ran is listed in Table 3 in the column labeled

“Steps.”

Finally, the last column of Table 3 provides a verbal description of the type of
problem each pair of tasks presents to a learning algorithm. These descriptions are

elaborated later in this chapter.

Algorithms

All 11 algorithms use the linear-mapping approach to associative learning. That
is, they all update an action-association vector w[t] = (wy[t], w2lt],...,ws[t]) and

select their actions according to (7) and (8) with o, = .3 for all algorithms.

58

The update rules of some algorithms involve n{t], the probability that y[t] =1
given Z[t]. Determining y[t] according to (7) implies that

n[t] = ®(s[t]/ay),

where @ is the unit normal distribution function. All normally-distributed random
numbers used in these experiments were approximated by linear interpolation from

tables and uniformly-distributed random numbers as described in Chapter II.

The learning algorithms studied in this chapter differ only in the rules they use
to update the weight vector w[t]. The update rules and other relevant equations
for the 11 algorithms used in these experiments are given in Table 4. The update
rules are all simple extensions to the case of associative learning of the update rules
discussed in Chapter II. For the special case in which the same stimulus vector is
presented on every time step, and in which that vector has only one component,
whose value is 1, Algorithms 4-9 reduce exactly to the like-numbered algorithms of
Chapter II. Algorithm 4 is closely related to algorithms previously studied by Farley
and Clark (1954) and also by my colleagues and I (Barto, Sutton and Brouwer,
1981; Barto and Sutton, 1981).

The update rules of Algorithms 4-7 of this chapter are very similar to those of
Algorithms 4-7 of Chapter II (compare Tables 2 and 4). The primary difference
(besides the fact that the new rules update all the components w;[t] of a vector
w[t] whereas the rules of Chapter II update a scalar w[t]) is that the new update
rules each have one more factor than the corresponding update rules of Chapter
II. In all cases the additional factor determining the modification of w;[t] is the

corresponding stimulus-vector component z;[¢].

In the algorithms of Chapter II, w[t] directly effects y[t]. In the algorithms of
this chapter, each component w;[t] of W[t] has an effect (via (7) and (8)) on yl¢]

proportional to the value of z;[t], the corresponding stimulus-vector component.

Table 4. Associative Learning Algorithms.

Algorithm Update Rule Relevant Tasks

o — jt|)z:lt), ifr =

1 tm“+”=uﬂﬂ+{09m (e[t ﬁiﬁﬁzi 1,3,5,7,0,11
0, ifr =

2 W“+”=“ﬂﬂ+{aﬂ—um—th$L “ﬁiﬂzh 1,3,5,7,9,11
o — 7|t} |¢], ifr =

3 wilt + 1] = wlt] + { aﬁl[ﬂ i [i}),[t[]‘)]z’_[0 it r%:ii}zll 1,3,5,7,0,11

4 wilt + 1] = wilt] + arlt + 1)(ylt] — 4)=:]t] 1-12

5 wilt + 1] = wi[t] + art + 1)(y[t] — =[t])=:]¢] 1-12

6 wilt + 1] = wift] + e(r[t + 1] — r[t])(g]t] —)21 3,4

7 wit + 1] = wi[t] + al(rlt + 1] — r[t])(y]t] — =[t])2:[¢) 34

8 wilt + 1] = wilt] + a(r[t + 1] — p[t])(g]t] — L)a[t] 1-12

9 wi[t + 1] = wi[t] + alr|t + 1] — p[e]) (ylt] — #[t])=:[t] 1-12

10 up+u=uﬂq+{$ﬂﬂ"5nmagggﬁzh 1,3,57.0,11

11 lUi[t + 1] = wi[t] + {g’(l . y[t] _ %)zilil’ g;%:ii%:-ll 1,3,5,7,9,11

Where:
w;[0] = 0, vilol=0, yt]e{1,0}, a>0,

#[t] is the probability that y[t] =1, given Z{¢],

if st} + n[t] > 0;
otherwise,

vl = {(1)

where nlt] is a normally distributed random variable of mean 0 and standard deviation o, = .3,

n n

sft] = Z wilt]z[t] and Pl = Z vilt]zi{t).

i==1 i=1

60

The components of the stimulus vector, then, give a measure of how each compo-
nent of the action-association vector affects the action. If a stimulus component is
zero, then changing the corresponding w; will have no affect on the action. If a
stimulus component z; is large, then a modification of w; will have a large influ-
ence on the action selected. This is why the multiplicative z;[¢] term appears in
the new update rules. As a result of this term, each w;[t] is changed in proportion

to the size of the resultant influence on the action selected.

The update rule of each algorithm includes a product of two terms, one depend-
ing on the action selected, either y[t]— 1, y[t]—=[t], 1—y[t]— L, or 1—y[t] —x]t],
and one depending on the presence or absence of a stimulus component, z;[t]. This
product, denoted in later chapters as e;[t], is called the eligsbility (after Klopf, 1972,
1982) of w; because it indicates the extent to which w; is eligible for undergoing

modification should reinforcement be received.

Algorithms 1-3 of this chapter also correspond to the like-numbered algorithms
of Chapter II. These algorithms, however, underwent more radical change in being
converted to an associative-learning form because they are expressed (in Chapter
II) as changes in [t] rather than as changes in w[t]. In their new forms they

directly determine changes in w[t].

Algorithms 10 and 11 do not correspond to any algorithms discussed in Chapter
II. In this and the previous chapter, pairs of algorithms are compared that differ
only in that one uses y[t] — 1 and the other uses y[t] — x[t] in their update
rules. Given the modifications described above of Algorithms 1-3, all of which
use y[t] — m[t], it is possible also to include the corresponding algorithms that use
y[t]— % . Algorithms 10 and 11 correspond to Algorithms 1 and 2 in this way. There
is no need to add an algorithm for the ylt] — % case corresponding to Algorithm 3

because Algorithm 4 already serves this function.

61

Reinforcement Comparison in Associative Learning. Algorithms 6 and
7 are simple reinforcement-comparison algorithms very similar to Algorithms 6
and 7 of Chapter II. These algorithms compare the current reinforcement with
the immediately-preceding reinforcement. Although this technique worked well
on the tasks of Chapter II, there are reasons to doubt its success on associative-
learning tasks. It is much more difficult for an algorithm to compare current with
past reinforcement levels properly on associative tasks than it is on nonassociative
tasks. The problem is that for many associative tasks it is possible to obtain high
reinforcement levels in the presence of one stimulus and only low reinforcement
levels in the presence of another. Tasks 3 and 4, for example, are of this sort. On
such tasks, if different stimuli occur on two successive steps, then the change in
reinforcement may be primarily due to the change in stimulus rather than to the
action selected by the learning algorithm. In such cases the use of r[t + 1] — rl[t]
(as in Algorithms 6 and 7) would be inappropriate and would mislead the learner.
To illustrate this problem while minimizing the complexity of the experiments,

Algorithms 6 and 7 were applied only to Tasks 3 and 4.

To obtain the maximum advantage from a reinforcement-comparison technique
in associative learning, reinforcement received on the current step should be com-
pared with reinforcement received on previous steps on which the same stimulus
occurred. How are past reinforcement levels for different stimuli to be recorded and
kept separate from each other? This problem is particularly difficult if one assumes,
as is done here, that stimuli are not individually recognizable and separable (as in

the independent-associations approach).

One way of solving this problem is to view the sequence of stimuli, and the
reinforcement levels obtained by acting in response to them, as a training sequence
for supervised learning pattern classification. To this end, Algorithms 8 and 9
use a version of the Widrow-Hoff, or Adaline, algorithm (Widrow and Hoff, 1960;
Widrow, 1962): A modifiable parameter vector #[t] = (vi[t], v2[t], ..., vn[t]) is re-

62

quired in addition to w[t]. Whereas w[t] maps a stimulus to an action, ¢[¢] maps
a stimulus to an average of the reinforcement levels obtained when the stimulus
(or similar stimuli) occurred in the past. ¥ is called the reinforcement-association
vector (whereas o is called the action-association vector), and this average of past
reinforcement levels is called the predicted reinforcement and denoted pft] € R. It
is computed from the current stimulus Z[t| in the usual way for a linear-mapping
approach to association:
n
plt] = Y wilt):[t]. (12)
=1
9[t] is updated so that p[t] becomes an average of the appropriate past rein-
forcement levels. The following equation changes #]t] according to the discrepancy
between the predicted reinforcement p[¢] and the corresponding actual reinforce-
ment rft + 1]:
vi[t + 1] = v[t] + B(r[t + 1] — p¢])z:[¢], (13)

for t =0,1,..., ¢t =1,...,n, (0] =0 and B = .1 for all simulations discussed
in this chapter. The discrepancy between expected reinforcement p[t] and actual
reinforcement r[t+1], in addition to being the error in the predicted reinforcement,
is also the quantity needed as a comparison of the current reinforcement level with
past reinforcement levels associated with the current stimulus. Algorithms 8 and
9 use this discrepancy in this way. For example, Algorithm 8 updates its action-

association vector w[t] as follows:
wilt + 1] = wiff] + e (rlt + 1] - plD(8ld] — 5)=ilt

for t = 0,1,... and ¢+ = 1,...,n. When the actual reinforcement r[t + 1] is
greater (less) than the predicted reinforcement p[t], w; is changed so as to make
the action selected more (less) likely as a response to the stimulus. An associa-
tive reinforcement-learning algorithm that remembers and compares reinforcement

levels in this way has previously been investigated by my colleagues and I (Barto,

63

Sutton and Brouwer, 1981). This method is a generalization of that used in Chap-
ter II. For the special case in which the same stimulus is presented on every time
step, and in which that vector has only one component, whose value is 1, (12) and
(13) reduce exactly to (3), and Algorithms 8 and 9 of this chapter reduce exactly
Algorithms 8 and 9 of Chapter II.

Although a reinforcement-comparison algorithm for associative learning is nec-
essarily more complex than those considered so far, such an algorithm could po-
tentially perform much better than non-reinforcement-comparison algorithms. The
results reported in Chapter II suggest that reinforcement-comparison algorithms
learn much more rapidly than non-reinforcement-comparison algorithms on nonas-
sociative learning tasks with unbalanced reinforcement. It seems likely, there-
fore, that reinforcement-comparison algorithms might have a similar advantage in
associative-learning tasks. The results of the experiments of this chapter bear out

this hypothesis.

Results

For each task and algorithm, simulation runs were made for many values of
learning-rate parameter a. For Tasks 1-10, the o values were powers of two
from 2! to 27!!. For Tasks 11 and 12, the a values were powers of two from 2!
to 2715, For each task, algorithm, and «, 100 simulation runs were made each
differing only in the initial seed for the random-number generator. The durations
of the runs varied from task to task as listed in the column of Table 3 labeled
“Steps.” At the end of each run the final parameter vector w[101] was recorded.
From this, the probability #* of the learning system selecting Action 1 on the

next step, had the run continued and stimulus ¢ been presented, was computed as

64

follows:

n = P{yf101] = 1| z[101] = 7} = @(i w,{101]z5/a,),
=1

where P {-|-} denotes a conditional probability. Using this, the known stimulus
presentation frequencies, and the expected values of the reinforcement as a function
of stimulus and action (listed in Table 3), cne can compute the expected value of

the reinforcement on the next step, had the run continued:
E {r[101]} = p'xlr} + p'(1 — #V)rd + p222%r? + p2(1 — 2?)1,

where p* is the probability of stimulus #* being presented, ¢ = 1,2, and r; is
the expected value of the reinforcement given that stimulus s and action j have

occurred. These probabilities and expected values depend on the task as listed in
Table 3.

The expected value of reinforcement on the step following the end of arun is a
good measure of how well the learning algorithm has learned on the run. If it has
learned rapidly and correctly, ¥ will have reached a value for which the expected
value of reinforcement is high. Figures 9-20 are plots of the expected value of
reinforcement at the end of the runs, averaged over the 100 runs with each task,
algorithm and learning-rate parameter value. Each figure presents all the data
from a single task. The figures presenting the data from the binary-reinforcement
tasks include two graphs per figure. The lower graph of these figures presents the
data for that task from Algorithms 1-3 and 10-11 while the upper graph presents
the data from the other algorithms run on the task, plus a re-plot of the data for
Algorithm 1. For each algorithm a line is plotted connecting the performances of

the algorithm at different values of the learning-rate parameter o.

The general pattern to these plots is the same as that in Chapter II. In most
cases the performance of each algorithm on each task is an inverted-U shaped

function of the learning-rate parameter a. Some algorithms, particularly the very

TRSK 1., ALGORITHMS 1,4-5.8-9

.08

£ (R)

.08

.02k

AVERAGE FINAL

.00

! 1 1 I L 1 : I L I L 1 i
211 =10 -8 5-8 95-7 2-6 2-5 -4 5-3 5-2 -1 20 o1
ALPHA

TASK 1, ALGORITHMS 1-3,10-11

1o — - — — - - = — — =

.08

.04

AVERAGE FINAL E (R}

.00

Figure 9. Algorithm Performance on Task
1 of Chapter IIL. Task 1 is a binary-reinforcement
task with no asymmetries. Each point representsthe
average performance over all runs with a particular
algorithm and o value, where performance on a run
is defined as the expected value of primary reinforce-
ment at the end of the run. Points due to the same
algorithm (with different o values) are connected
by lines; the numeric label indicates the associated
algorithm. The horizontal dashed line indicates the
optimal performance level.

65

TASK 2, ALGORITHMS 4-5,8-9

10 - —_—— = = = —

.08+

.04

02

AVERRGE FINAL E (R}

.00

i

] 1 L i i 1 i i i 1
2-11 2710 2-8 -8 -7 -6 -5 -4 -3 5-2 -1 50 5l
ALPHA

1

Figure 10. Algorithm Performance on Task
2 of Chapter III. Task 2 is a continuous-
reinforcement task with no asymmetries. Each point
represents the average performance over all runs
with a particular algorithm and a value, where per-
formance on a run is defined as the expected value of
primary reinforcement at the end of the run. Points
due to the same algorithm (with different « values)
are connected by lines; the numeric label indicates
the associated algorithm. The horizontal dashed line
indicates the optimal performance level.

66

ASK 3, ALGORITHMS 1.,4-8

o — — — - — — e e

.08

04

.02t

AVERAGE FINAL E (R)

.00k

TASK 3, ALGORITHMS 1-3,10-11

10 — — — — — —_— - — — e

04t

AVERAGE FINAL E (R}

[~
)
T

.00

ALPHA

Figure 11. Algorithm Performance on Taesk 3
of Chapter IIl. Task 3 is a binary-reinforcement
task with reinforcement-level asymmetry. Each
point represents the average performance over all
runs with a particular algorithm and o value, where
performance on a run is defined as the expected
value of primary reinforcement at the end of the
run. Points due to the same algorithm (with dif-
ferent a values) are connected by lines; the numeric
Iabel indicates the associated algorithm. The hori-
gontal dashed line indicates the optimal performance
level.

=3

TASK 4, RALGORITHMS 4-9

1o — e e —_ - —

.08
06 |-

.04

AVERAGE FINARL E (R}

.02k

Figure 12. Algorithm Performance on Task
4 of Chapter III. Task 4 is a continuous-
reinforcement task with reinforcement-level asym-
metry. Each point represents the average perfor-
mance over all runs with a particular algorithm and
a value, where performance on a run is defined as
the expected value of primary reinforcement at the
end of the run. Points due to the same algorithm
(with different o values) are connected by lines;
the numeric label indicates the associated algorithm.
The horizontal dashed line indicates the optimal per-
formance level.

68

TASK 5. ALGORITHMS 1,4-5,8-9

tor — — - - — — —

AVERAGE FINAL E (R)

THASK 5, ALGORITHMS 1-3,10-11

10F — — — e —

.08

AVERAGE FINAL E (R)

.00

L N]
2711 2710 29 5=8 -7 58 -5 9-4 -3 -2 -1 0 ot
ALPHA

Figure 13. Algorithm Performance on Task &
of Chapter IIl. Task 5 is a binary-reinforcement
task with reinforcement-spread asymmeiry. Each
point represents the average performance over all
runs with a particular algorithm and « value, where
performance on a run is defined as the expected
value of primary reinforcement at the end of the
run. Points due to the same algorithm (with dif-
ferent o values) are connected by lines; the numeric
label indicates the associated algorithm. The hori-
zontal dashed line indicates the optimal performance
level.

65

TASK 6, ALGORITHMS 4-5,8-9

0rp — = = = — — — — — - — — — —

. 08

04

AVERRGE FINRL E (R}

.00

271l 2710 -9 5-8 -7 -6 25 -4 =3 -2 -1 20 5l
ALPHA

Figure 14. Algorithm Performance on Task
6 of Chapter III. Task 6 is a continuous-
reinforcement task with resnforcement-spread asym-
metry. Each point represents the average perfor-
mance over all runs with a particular algorithm and
a value, where performance on a run is defined as
the expected value of primary reinforcement at the
end of the run. Points due to the same algorithm
(with different o values) are connected by lines;
the numeric label indicates the associated algorithm.
The horizontal dashed line indicates the optimal per-
formance level.

70

.08

.04

AVERAGE FINRL E (R)

(=}
~
T

.00

10 - - — — - — —

.08

AVERAGE FINAL E (R}

Figure 15. Algorithm Performance on Task
7 of Chapter IIl. Task 7 is a binary-reinforcement
task with stimulus-frequency asymmetry. Each point
represents the average performance over all runs
with a particular algorithm and « value, where per-
formance on a run is defined as the expected value of
primary reinforcement at the end of the run. Points
due to the same algorithm (with different a values)
are connected by lines; the numeric label indicates
the associated algorithm. The horizontal dashed line
indicates the optimal performance level.

71

TASK 8, ALGORITHMS 4-5.8-9

L10p — e e e — =58

9

.06

04t

.o02f r///
.00
1 i i 1 i i 1 1 i J

1]
211 =10 -8 -8 -7 -6 -5 -4 -3 -2 o1 50 of
ALPHA

AVERAGE FINAL E (R)

Figure 16. Algorithm Performance on Task
8 of Chapter III. Task 8 is a continuous-
reinforcement task with stsmulus-frequency asymme-
try. Each point represents the average performance
over all runs with a particular algorithm and o
value, where performance on a run is defined as the
expected value of primary reinforcement at the end
of the run. Points due to the same algorithm (with
different o values) are connected by lines; the nu-
meric label indicates the associated algorithm. The
horizontal dashed line indicates the optimal perfor-
mance level.

72

TASK 9, ALGORITHMS 1.4-5,8-9

10p — — —

. 081

£ (R)

AVERAGE FINRAL

E (R)

AVERAGE FINAL

Figure 17. Algorithm Performance on Task
9 of Chapter III. Task 9 is a binary-reinforcement
task with stemulus-sntensity asymmetry. Each point
represents the average performance over all runs
with a particular algorithm and o value, where per-
formance on a run is defined as the expected value of
primary reinforcement at the end of the run. Points
due to the same algorithm (with different o values)
are connected by lines; the numeric label indicates
the associated algorithm. The horizontal dashed line
indicates the optimal performance level.

73

TASK 10, ALGORITHMS 4-5,8-9

coek 9

086+

\X
.02~/ AN
\\‘\‘\o\n
.oof e
] i 1 1 i i 1 1 i 1 i i i

2-11 210 2-8 9-8 -7 -8 5-5 -4 -3 -2 o-1 20 2t
ALPHA

AVERAGE FINAL E (R)

Figure 18. Algorithm Performance on Task
10 of Chapter III. Task 10 is a continuous-
reinforcement task with stimulus-sntensity asymme-
try. Each point represents the average performance
over all runs with a particular algorithm and o«
value, where performance on a run is defined as the
expected value of primary reinforcement at the end
of the run. Points due to the same algorithm (with
different o values) are connected by lines; the nu-
meric label indicates the associated algorithm. The
horizontal dashed line indicates the optimal perfor-
mance level.

74

TASK 11, ALGORITHMS 1,4-5,8-9

.60
.04
=
us
.48+
-
@
z
L]
w
we 42+
w
[an
a
[1%)
;. 36+
.30+
i i] 1 1 1 i i 1 i L 1 i3 }
216 15 514 513 512 011 10 o8 8 57 o6 o5 54 o3 2 oyl b o
ALPHA
TASK 11, ALGORITHMS 1-3.,10-11
60
P
.54
:
ud
.48 .
-
=3 ’ Lo ’,° N
K A | BN e
L4z k N N
25‘ (30 e ¥ \
& ;B e 2 .
o SN e : '
w Ty v % \
> 36 & 78 . .
g 7 S 104 s
. s ;" ‘\u, - N 4
e »
46;‘..‘“ L w -
P R &
S
1 1 i i1 i i 1 i H L i i i L)
216 15 514 518 512 511 10 -8 58 57 58 55 o4 23 52 o1 b ol

ALPHA

Figure 19. Algorithm Performance on
Task 11 of Chapter III. Task 11 is a binary-
reinforcement task with combined asymmetries.
Runs with this task lasted many steps so that per-
formance would near its asymptotic value. Each
point represents the average performance over all
runs with a particular algorithm and o value, where
performance on a run is defined as the expected
value of primary reinforcement at the end of the
run. Points due to the same algorithm (with dif-
ferent o values) are connected by lines; the numeric
label indicates the associated algorithm. The upper
horizontal dashed line indicates the optimal perfor-
mance level, and the lower one indicates the highest
performance level achievable without discriminating
between stimuli.

75

.50

.47

C (R}

.44

AVERAGE FINAL

s L L i L L « i L L L) 1 L
2-15 2718 2*14 2’13 2-12 2"” 2*10 2’9 2?8 2’7 2‘8 2 S 2'1 2-3 2“2 2’7‘ 20 :;
ALPHA

Figure 20. Algorithm Performance on Task
12 of Chapter III. Task 12 is a continuous-
reinforcement task with combined asymmetries.
Runs with this task lasted many steps so that per-
formance would near its asymptotic value. Each
point represents the average performance over all
runs with a particular algorithm and a value, where
performance on a run is defined as the expected
value of primary reinforcement at the end of the
run. Points due to the same algorithm (with dif-
ferent o values) are connected by lines; the numeric
label indicates the associated algorithm. The upper
horizontal dashed line indicates the optimal perfor-
mance level, and the lower one indicates the highest
performance level achievable without discriminating
between stimuli.

76

7

poorly performing algorithms, such as Algorithms 3, 2, and 11, in some cases
appear to continue to improve in performance as o is increased. A closer look
at the data and other experiments with higher values of a (not reported here)
suggest that, rather than consistently improving, these 2lgorithms merely become
more erratic in their performance if « is increased beyond the values used here.
The performance of Algorithms 2, 3, and 11 never approaches the performance

levels of Algorithms 1, 4, 5, 8, or 9.

In a few cases something similar happened with the better performing
algorithms—performance became erratic without becoming plainly poorer at high
a values. In two cases—Algorithm 4 on Task 1, and Algorithm 8 on Task 9 —
the performance at a very high value of o exceeded that at more moderate lev-
els where performance was more consistent. These two data points are probably
over-estimates of the performance of these algorithms on these tasks. Fortunately,
however, the suspect data points are not so different from the others as to influence
the statistical significance of any result. No adjustments were made for the suspect

data points in either Figure 21 or the tests of statistical significance.

As with the data of Chapter II, one good way to interpret these data is to com-
pare the algorithms’ best performances on each task, i.e., their performances with
the a values that resulted in the highest performance levels. Using this measure,
Figure 21 summarizes the data from Tasks 1-10, showing the best performances of

all algorithms on all tasks.

Tests of Statistical Significance. A test of statistical significance was per-
formed on all differences between the best performance levels of all algorithms on
all tasks. Each best performance is an average over 100 runs of the performance of
a particular algorithm on a particular task at a particular a value. To determine

which differences between averages are statistically significant, a one-tailed £-test

SUMMARRY ., QL‘“ORTTH1S 1,4-8

\ﬁ
x
wi
-
@
z
p
[’ \‘
w AN
© ®
e
o
W
«
-
w
w
[1]
00
i 1 i 1 i i I)
1 3 S 7 g 2 4 6 8 10
TASK
SUMMARY, ALGORITHMS 1-3,10-11
10 e — e — —_— —_— —— — p— P —— —_ — — —
g .08
i
. B il e
- -
< . o6F & 1 N
Ll Y
w A
Y
W N
2 . 04p 10_ « v
@ - »
d / \‘
> p ~
a L& N
L - 02F e RS 3 ®
P § , o S
u S 5 g=—11
00+
i 1 1 A i i
3 5 7 g 2 4 [S] 8 10

Figure 21. Summary of Algorithm Perfor-
mance on Tasks 1-10 of Chapter III. Each point
represents the performance level of a particular al-
gorithm on a particular task with the o value at
which performance was best for that algorithm on
that task. Points due to the same algorithm (on
different tasks) are connected by lines. The number
labeling each line indicates the associated algorithm.
The horizontal dashed line indicates the optimal per-
formance level.

78

79

was applied to each pair of averages, as discussed in Chapter II. Table 5 lists by

task all statistically significant differences between the best average performances.

Table 5. Statistical Significance Results of Chapter III.

Task Statistically Significant Performance Orderings of Algorithms
1 4,5,8,9>1>2,3,10,11; 4> 58,9

2 4>8,9; 1>10> 2,11

3 9>8>56>1>7>4>6; 2,3,11>10

4 9>8>5>4,6,7, 7T>6

5 8> 1,4, 8>5 50>1,4>10> 23,11

6 5,8>9>4

7 8,0>1,4>10>2,3,11; 5>4; 5>1

8 5,8,9>4; 8>09;

9 5,8,0>1,4> 10> 2,11

10 B>»9; 5>5; 589>14

11 81,5, 9>5 9>1; 1,580>23,4,10,11; 11> 10
12 8>90>56>4

Where > denotes an ordering significant at the P < .01 level, and > denotes an

ordering significant at the P < .05 level.

80

Discussion

The 12 tasks were chosen to investigate the problems of stimulus discrimina-
tion in the face of an asymmetrical treatment of stimuli. For a particular task
and stimulus, the preferable (correct) action is the one with the highest expected
value of reinforcement, as given in Table 3. On all tasks, the correct action when
stimulus z' is presented differs from that when stimulus #2 is presented. To max-
imize reinforcement, a learning algorithm must discriminate between, and respond
differently to, the two stimuli. For simplicity, all tasks were constructed so that
Action 1 is the best action when stimulus #! is presented, and Action O is the best

action when stimulus #2 is presented.*

For all tasks the two stimulus vectors Z! and Z? (defined by (10) and (11))
are similar and yet distinguishable. %! and #2 are similar by virtue of their
second components, which are both positive, and distinguishable by virtue of their
first and third components, which are positive for one stimulus and zero for the
other. Since similar stimuli must be responded to differently, these tasks all involve

masleading generalization.

When Z! occurs, the first and second weight vector components are modified.
When 72 occurs, the second and third weight vector components are modified.
Since in the first case Action 1 is correct, and in the second, Action 0 is correct,
the first weight vector component w; becomes positive (associated with Action
1), and the third weight vector component ws; becomes negative (associated with
Action 0), but it is unclear what happens to the second weight vector component
wy . Ideally, the countervailing influences on ws cancel out, leaving it near zero.
This result is ideal because, by (7) and (8), it leaves the action in response to #!

to be determined by w; and the action in response to # to be determined by

* The learning algorithms did not “know” which stimulus had which number, so there was
no way they could take advantage of this uniformity.

81

w3 . This result is most likely to occur on tasks that are symmetrical with respect
to the two stimuli. True symmetry guarantees that the countervailing influences
on wy are of equal strength, and thus gives the greatest likelihood that they will

cancel out.

The tasks of this chapter were designed in pairs, 1 with 2, 3 with 4, etc. (each
pair consisting of one binary-reinforcement and one continuous-reinforcement task).
The first pair of tasks, Tasks 1 and 2, were designed to be completely symmetrical
with respect to the two stimuli. The next 4 pairs, 3-4, 5-6, 7-8, and 9-10, were each
designed to treat the two stimuli asymmetrically in one and only one way. Finally,

the tasks of the pair 11-12 combined all 4 forms of asymmetry.

The continuous-reinforcement tasks used in these experiments are significantly
easier than the binary-reinforcement tasks. For this reason, the experiments in-
volving continuous-reinforcement tasks were run for fewer steps than those involv-
ing binary-reinforcement tasks (200 steps as opposed to 1500). If both sorts of
experiments had been run for 1500 steps, performance differences between some
algorithms on the easier tasks would have been lost in a ceiling effect, as many

algorithms would have performed near optimally.

In the following discussion, references to particular performance differences
between algorithms as being either “significant” or “not significant” are referring to
statistical significance at the P < .05 probability criterion, unless otherwise noted.
More information on the significance level of each result, and on the statistical test

used, can be found in the “Results” section.

Tasks 1 and 2: No Asymmetries. Tasks 1 and 2 are completely symmetrical
with respect to the two stimuli. On these tasks, the stimuli are presented with equal
frequency and equal intensity. The expected values of reinforcement associated

with the two stimuli are equal (although which action has the higher expected

82

value switches from one stimulus to the other). As discussed above, this symmetry
makes these tasks the least likely to be influenced by the problems of misleading

generalization between similar stimuli.

Tasks 1 and 2 are closely related to Tasks 3 and 6 of Chapter II. These 4
tasks have similar distributions of expected value of reinforcement as a function of
the action selected. On all 4 of these tasks the expected value of reinforcement is
positive if one action is chosen and negative, by the same amount, if the other action
is chosen. For such tasks the reinforcement distribution is said to be balanced, i.e.,
its expected value as a function of action is distributed symmetrically around the

neutral value zero.

The similarity between Tasks 1 and 2 of this chapter and Tasks 3 and 6 of
Chapter II is born out in similar performances of corresponding algorithms on
corresponding tasks (compare Figures 8 and 21). In Chapter II; Algorithms 4-9
all performed essentially perfectly on the continuous-reinforcement task (Task 6)
and here the closely related Algorithms 4-9 also all performed essentially perfectly
on the corresponding task (Task 2). The binary-reinforcement Task 3 of Chapter
IT corresponds to Task 1 of the present chapter. On both tasks, Algorithm 4
performed best, followed by Algorithms 5, 8, and 9, all of which performed better
that Algorithm 1, which in turn performed better than Algorithms 2 and 3. The
two new algorithms added in this chapter, Algorithms 10 and 11, fell in with the

last group of poorest performing algorithms.

Tasks 3 and 4: Reinforcement-Level Asymmetry. On Tasks 3 and 4, when
stimulus #2 occurs, the expected value of reinforcement is always high, and when
stimulus ! occurs, the expected value of reinforcement is always low. These tasks
differ from Tasks 1 and 2 only in that the expected value of the reinforcement

is unbalanced in this way. This asymmetry in the treatment of stimuli is called

83

reinforcement-level asymmetry. Nonassociative tasks that differ from each other
in a similar way are discussed in Chapter Il as unbalanced-reinforcement tasks.
Ignoring for the moment generalization between stimuli, Tasks 3 and 4 of this

chapter are much like a combination of Tasks 1 and 2, and 4 and 5, respectively,

of Chapter II.

In the experiments of Chapter II, Algorithm 4 performed the best of all al-
gorithms on the balanced-reinforcement tasks (Tasks 3 and 6) and poorly on the
unbalanced-reinforcement tasks (Tasks 1, 2, 4, and 5). Algorithm 4’s performance
in this chapter is similar. The upper graph of Figure 21 shows that whereas Algo-
rithm 4 performed best of all algorithms on the balanced-reinforcement tasks (Tasks
1 and 2) of this chapter, it performed very poorly on the tasks with reinforcement-
level asymmetry (Tasks 3 and 4), which are unbalanced-reinforcement tasks. Al-
gorithm 5’s performance is also similar to its performance in Chapter II. In both
cases, Algorithm 5 performed about as well as Algorithms 8 and 9 on the balanced-
reinforcement tasks and and significantly worse on the unbalanced-reinforcement
tasks. Overall the conclusions of Chapter II regarding reinforcement-comparison
mechanisms are confirmed: these mechanisms, at least as implemented in Algo-
rithms 8 and 9, significantly improve performance on unbalanced-reinforcement

tasks, and do not degrade performance on balanced-reinforcement tasks.

On Tasks 3 and 4 the expected value of reinforcement varies more with
the stimulus presented than with the action selected. This reinforcement-level
asymmetry poses a particular challenge to reinforcement-comparison algorithms.
Reinforcement-comparison algorithms that compare successive reinforcement lev-
els without regard to the stimuli presented had a difficult time with these tasks,
as illustrated by the poor performance of Algorithms 6 and 7 shown in Figure 21.
Algorithms 6 and 7 clearly performed much worse than Algorithm 5, which is not
a reinforcement-comparison algorithm, and much worse than Algorithms 8 and 9,

which are more sophisticated reinforcement-comparison algorithms.

84

The performance of the binary-reinforcement Algorithms 1, 2, and 3 on Tasks
1 and 3 was similar to the performance of the corresponding algorithms of Chapter
II. Algorithms 2 and 3 performed very poorly on both tasks. Algorithm 1 achieved
an intermediate performance level, significantly better than Algorithms 2 and 3,

but significantly worse than Algorithms 5, 8, and 9.

Tasks 6 and 6: Reinforcement-Spread Asymmetry. On Tasks 5 and 6 the
difference in expected value of reinforcement for the two actions is much larger
for one stimulus than it is for the other. For stimulus 7!, the expected value of
reinforcement is .1 higher when the correct action is chosen than when the incorrect
action is chosen. For stimulus #2, the expected value of reinforcement changes by
.3 depending on whether the correct or the incorrect action is selected. These
tasks are asymmetrical in the spread between their expected reinforcement levels

for correct and incorrect actions.

In a task with reinforcement-spread asymmetry it is more important for the
learning system to learn the correct action for one stimulus than for the other. A
learning algorithm generally learns more rapidly when the reinforcement spread
is large than when it is small. Because of this, reinforcement-spread asymmetry
tends to cause the correct action for one stimulus (in this case, stimulus 72) to
be learned much more rapidly than that for the other. When the two stimuli are
similar, the more rapid learning to one stimulus generalizes strongly to the other.
When two different actions must be learned to the two stimuli, generalization from
the more rapidly learning stimulus may overwhelm learning to the other stimulus

and cause the incorrect action to become associated with it.

One gets a sense of which algorithms are susceptible to this difficulty by com-
paring their relative performance rankings on Tasks 5-6 and Tasks 1-2. It is not

meaningful to compare the absolute performance of algorithms between these pairs

85

of tasks. On the one hand, Tasks 5-6 might be expected to be more difficult than
Tasks 1-2 because of reinforcement-spread asymmetry. On the other hand, Tasks
5-6 might be expected to be easier than Tasks 1-2 because, for one stimulus, the
reinforcement spread is larger than in Tasks 1 and 2, which should result in faster
learning. Overall it is not possible to predict with certainty which pair of tasks will

be the more difficult.

The changes in the relative performance rankings of algorithms from Tasks 1-
2 to Tasks 5-6 suggest the following conclusions. First, Algorithm 4 is strongly
affected by the reinforcement-spread asymmetry. Whereas on Tasks 1 and 2 it per-
formed the best of all algorithms, on Tasks 5 and 6 it performed significantly worse
than Algorithms 5, 8, and 9. Second, all the binary-reinforcement algorithms (1,
2, 3, 10, and 11) perform significantly worse than the better performing algorithms
(5, 8, and 9). Algorithm 10 performed significantly better vis-a-vis Algorithms 2,
3, and 11 on Task 5 than it did on Task 1, but its performance was still very poor.

The effect of reinforcement-spread asymmetry on the performance of Algo-
rithms 5, 8, and 9 is less clear. On Tasks 1 and 2 all three algorithms performed
equally well. On Task 5, Algorithm 8 performed better than 5 and 9, but only the
improvement over Algorithm 5 is statistically significant. On Task 6, Algorithms

5 and 8 both performed significantly better than Algorithm 9.

Tasks 7 and 8: Stimulus-Frequency Asymmetry. On Tasks 7 and 8 one
stimulus is presented 3 times as frequently as the other. Learning about the more
frequently presented stimulus generally occurs more rapidly than learning about
the other, simply because there is more experience with it. This asymmetry in
learning rate can lead to an overwhelming of the more slowly forming association
by generalization from the faster one, as discussed above for reinforcement-spread

asymmetry.

86

The effect of stimulus-frequency asymmetry on the performances of the vari-
ous algorithms was very similar to the effect of reinforcement-spread asymmetry.
Algorithm 4 was strongly affected, performing significantly worse than Algorithms
5, 8, and 9, whereas it was the best performer on Tasks 1 and 2. On Task 7, the
binary-reinforcement algorithms (1, 2, 3, 10, and 11) produced strikingly similar
performances to those they produced on Task 5. Algorithm 1 was best, performing
at the same level as Algorithm 4. Algorithm 10 was again significantly better than

Algorithms 2, 3, and 11, but still performed poorly.

The effect of stimulus-frequency asymmetry on Algorithms 5, 8, and 9 is un-
clear. Recall that on Tasks 1 and 2 these three algorithms performed equally well.
On Task 7 their performances fell in the same rank order as they did on Task 5
(8 then 9 then 5), but here none of the differences are statistically significant. On
Task 8, Algorithms 8 and 5 performed better than Algorithm 9, but only Algorithm

8’s performance is significantly better.

Tasks 9 and 10: Stimulus-Intensity Asymmetry. On Tasks 9 and 10 one of
the two stimuli is 3 times as intense as the other (the two stimuli are given in (11)),
whereas in Tasks 1 and 2, the stimuli have the same intensity (see (10)). This is

the only difference between Tasks 9 and 10 and Tasks 1 and 2.

Stimulus-intensity asymmetry also causes learning to occur more rapidly for
one stimulus than for the other. All learning algorithms considered in these ex-
periments use a multiplicative term (z;[t]) that depends on the intensity of the
stimulus presented. Larger changes are thus made in the action-association vector
w on those steps on which the more-intense stimulus vector occurs than on those
steps on which the less-intense stimulus vector occurs. As with stimulus-frequency
asymmetry and reinforcement-spread asymmetry, asymmetry in the rate of learn-

ing creates the danger of the more slowly forming association being overwhelmed

87

by generalization from the faster one.

The results on Tasks 9 and 10 were similar to those on Tasks 3-8. Algorithm
4 was again strongly affected by the asymmetry, performing significantly worse
than Algorithms 5, 8, and 9, whereas it was the best performer on Tasks 1 and
2. Algorithm 1 performed almost exactly the same as Algorithm 4. The other
binary-reinforcement algorithms (2, 3, 10, and 11) performed the worst on these
tasks. Although Algorithms 5, 8, and 9 maintained the same ordering (8 then 5

then 9) there are no significant differences between them.

Tasks 11 and 12: Combined Asymmetries. Tasks 11 and 12 combine all
four of the asymmetries present individually in Tasks 3-10. Reinforcement-level
asymmetry, reinforcement-spread asymmetry, stimulus-frequency asymmetry, and
stimulus-intensity asymmetry are combined in such a way that their effects are
additive rather than subtractive. As discussed above, each of these asymmetries
results in learning to one stimulus proceeding at a more rapid rate than learning
to the other stimulus. In Tasks 11 and 12, the favored stimulus with respect to all

=2

three asymmetries is Z2. Stimulus Z? is presented with greater frequency, with

greater intensity, and has a greater reinforcement spread, than stimulus #1.

The experiments involving Tasks 11 and 12 ran for many more steps (see Table
3) than the experiments involving other tasks. One reason for this is that Tasks 11
and 12, since they combine four asymmetries, were expected to be more difficult
than Tasks 1-10. However, Tasks 11 and 12 contain weaker forms of them than
are present in Tasks 3-10. In addition, the random component of reinforcement
for the continuous-reinforcement task (Task 12) has a smaller standard deviation
(0 = .025 instead of 0 = .1), and the reinforcement spreads for the binary-

reinforcement task (Task 11) are larger. These differences make both tasks easier.

The real motivation behind the design of Tasks 11 and 12 is to investigate the

88

convergence behavior of the algorithms. These tasks were designed not to see how
rapidly learning proceeds, but to test the ability of various algorithms to ultimately
choose the correct actions. This is why the experiments with these tasks were run

so many more steps than the others.

The results on Tasks 11 and 12 are not included in the summary figure, but
are shown in Figures 19 and 20. The experiments appear to have been run long
enough for all algorithms to show the performance levels to which they would have
converged, with the exception of Algorithm 2 on Task 11 and Algorithm 5 on
Task 12. All the other algorithms appear to converge to one of two performance
levels, shown as dashed lines in each graph. The higher of the two performance
levels indicated by dashed lines is the maximum possible performance level on
these tasks. This performance level is achieved if the correct action is chosen with
probability one for both stimuli. Algorithms 1, 5, 8, and 9 appear to converge
to this performance level on Task 11, and Algorithms 8 and 9 appear to converge
to this performance level on Task 12. Task 12 appears not to have been run long
enough for Algorithm 5 to converge. The highest performance level for Algorithm 5
was significantly lower than that of Algorithm 8 and 9. Most likely, this Algorithm
also converges to the optimal performance level on this task, but converges more

slowly than Algorithms 8 and 9.

The lower of the two dashed lines shown in each graph indicates the perfor-
mance level achieved if action O is selected with probability one in response to
both stimuli. This action is the better action in response to one stimulus but
the poorer action in response to the other. Convergence to this performance level
thus indicates a failure to discriminate between the two stimuli. The performances
of Algorithms 3, 4, 10, and 11 appear to converge to this level on Task 11, and

Algorithm 4 also appears to converge to this level on Task 12.

These results on Tasks 11 and 12 do not prove convergence or lack of con-

89

vergence for any algorithm. Algorithms that appear to converge to one of the
performance levels indicated may actually converge to slightly different levels. Al-
gorithms that fail to converge during these experiments, or that appear to converge
to a suboptimal level, may in fact converge to the optimal performance level if suf-
ficiently small & values are used and the experiments are run long enough. The
only way to definitively prove such convergence is by mathematical analysis. These
results do, however, strongly suggest what the results of such an analysis might be

and provide practical indications of how the algorithms are likely to perform.

General Discussion

There are a number of similarities between the results of this chapter’s experi-
ments and those of Chapter II. Here, as there, the algorithms designed purely for
binary-reinforcement tasks (Algorithms 1, 2, 3, 10, and 11), with the exception
of Algorithm 1, performed uniformly poorly across tasks. In the experiments of
both chapters, Algorithm 1 performed better than the other binary-reinforcement
algorithms, but performed clearly worse than Algorithms 5, 8, and 9. In both
chapters, Algorithm 4 varied in its performance across tasks, performing best on
a few, poorly on a few, and significantly worse than the best algorithms on the

others.

As anticipated, the algorithms that simply compare current and immediately
preceding reinforcement levels (Algorithms 6 and 7) performed comparatively much
worse on these associative-learning tasks than on the nonassociative tasks of Chap-
ter II. These algorithms performed much worse than Algorithms 5, 8, and 9 on the

tasks of this chapter.

The best performing algorithms across tasks in this chapter were Algorithms 5,

8, and 9. It is not entirely clear which of these was best. Of the three, Algorithm

90

9 performed significantly better on Tasks 3 and 4, but also performed significantly
worse than Algorithm 8 on Tasks 8 and 10, and significantly worse than both
Algorithms 5 and 8 on Task 6. The only completely clear ordering that can be
made among these three algorithms is that Algorithm 8 performed better than
Algorithm 5. Algorithm 8 performed as well or better than Algorithm 5 on every
task, and significantly better on Tasks 3, 4, 5, and 10. In addition, both Algorithm
8 and Algorithm 9 performed significantly better than Algorithm 5 on Tasks 11
and 12.

Whether Algorithm 8 or Algorithm 9 is the better algorithm apparently de-
pends on the nature of the task. Although Algorithm 8 out-performed Algorithm
9 on all tasks except Tasks 3 and 4, it is possible that “real life” learning tasks
resemble Tasks 3 and 4 more closely that any of the other tasks considered. Each
of these tasks is a special case, and no attempt has been made to characterize
what a real “typical case” might look like. However, the fact that on these tasks
Algorithm 8 makes a serious bid for the title of best performer is significant in light
of the results of Chapter II, in which Algorithm 8 was strictly inferior or equal to
Algorithm 9. Somehow the change from nonassociative to associative tasks makes

Algorithm 8 a better performer vis-a-vis Algorithm 9.

Since Algorithm 5 is strictly inferior to Algorithm 8 in its performance on this
chapter’s tasks, these results corroborate the results of Chapter II with regard to
reinforcement-comparison algorithms; in the experiments of both chapters the best

performing algorithms across tasks are reinforcement-comparison algorithms.

As discussed earlier, and as is illustrated by the poor performance of Algorithms
6 and 7, construction of a satisfactory reinforcement-comparison algorithm for as-
sociative learning is not a trivial task. The difficulties may be part of the reason
researchers have avoided reinforcement-comparison algorithms, even for some types

of nonassociative learning. In this regard, the excellent performance of the more

o1

sophisticated reinforcement-comparison algorithms, Algorithms 8 and 9, is partic-
ularly important. It demonstrates that algorithms can be designed for associative
learning that can benefit from the advantages of a reinforcement-comparison mech-
anism. The advantages of reinforcement comparison can be obtained in associative-

learning tasks as well as in nonassociative-learning tasks.

Perhaps the most important result of the experiments described in this chap-
ter is the poor performance of Algorithm 4. Not only does Algorithm 4 perform
much worse than Algorithms 5, 8, and 9 on all tasks involving any form of stimulus
asymmetry, but the results of Tasks 11 and 12 suggest that this algorithm is un-
able to discriminate stimuli properly. On Tasks 11 and 12 this algorithm appears
to converge to the incorrect choice of action and remain there. Yet Algorithm 4
appears to be the most straightforward implementation of the basic principle of
associative reinforcement learning using the linear-mapping approach. In fact, of
the algorithms considered here, Algorithm 4 is the algorithm most nearly like that
of Farley and Clark (1954), which is one of the few associative reinforcement learn-
ing algorithms using the linear-mapping approach that has been computationally
investigated. This also appears to be essentially the algorithm informally discussed
by Minsky and Selfridge (1961). The failure of this common-sense rule to produce
effective learning in all but the simplest situations suggests that associative re-
inforcement learning involves subleties that were not recognized by early Al and

cybernetic researchers.

CHAPTER IV

DELAYED REINFORCEMENT

The experiments of preceding chapters concern learning tasks in which actions
affect only the reinforcement received on the following time step. Henceforth such
tasks are referred to as smmediate-reinforcement tasks. Tasks in which some of the
effects of an action on reinforcement are delayed by two or more time steps are
called delayed-reinforcement tasks. In a delayed-reinforcement task, r[t+1] may

depend on any of y[t], y[t — 1], y[t-2],

Our interest in delayed reinforcement stems from the fact that difficult temporal
credit-assignment problems are almost always partially due to delayed reinforce-
ment. A major reason for the difficulty in assigning credit for the outcome of
a chess game, for example, is the potentially great delay between critical moves
and the outcome. Any task in which reinforcement is influenced by sequences of
actions involves delayed reinforcement. Further, the whole point of secondary re-
inforcement mechanisms (see Chapter I) is to reduce delays between actions and

reinforcement.

Delayed reinforcement is important enough as an isolated topic with respect to
the overall aims of this dissertation to justify a chapter devoted to it. Accordingly,
the tasks investigated in this chapter are such that they offer no opportunities for
secondary reinforcement. Instead, this chapter deals with more elementary issues:

the effect of delay on learning rate, and the extension of the results and algorithms

92

93

of preceding chapters to the case of delayed reinforcement.

It is the uncertasnty that usually accompanies delayed reinforcement, rather
than the delay itself, that creates a difficult temporal credit-assignment problem.
If reinforcing events are always delayed by a fixed amount known @ priort, then the
design of the learning system can take the delay into account, and credit assignment
need not be more difficult than it is with immediate reinforcement. On the other
hand, if the length of delay is not known e priors, then uncertainty about the causal
relationship between action and reinforcement is created, making temporal credit

assignment genuinely more difficult.

The recency and frequency heuristics studied in this chapter are conventionally
thought of as “general but weak” methods, as opposed to the knowledge-rich “spe-
cific but powerful” methods that are central to much of modern Al. The intention
in studying these heuristics has not been to dispel this conventional assessment,
but to establish and detail it experimentally. The results reported here are not
surprising ones; they are roughly what one might expect. Their importance is
primarily in confirming and demonstrating what would otherwise be presumption,

and in detailing the magnitude and generality of the various phenomena.

Eligibility Traces

One cannot expect to find algorithms that completely eliminate the temporal
credit-assignment problems caused by delayed reinforcement. One can, however,
attempt to find learning algorithms whose performance degrades gracefully as un-
certainty due to delay between action and reinforcement is increased. As is shown
below, the algorithms considered in previous chapters do not learn effectively on de-
layed-reinforcement tasks. How can they be modified to improve their performance

on such tasks?

04

Assume for the moment that there is available a heuristic reinforcement sig-
nal # that already incorporates reinforcement-comparison mechanisms, but whose
evaluations are delayed. Assume that a complete record of all past actions and
stimuli is also available. How is credit for the reinforcement received at the current
time to be allocated to past behavior? Clearly there are many heuristics that could
be used to assign credit differentially to some of that behavior more than the rest.
Here we consider two of the most general heuristics for assigning credit in the face

of delayed reinforcement, those of frequency and recency.

According to the frequency heuristic, one assigns credit to past decisions accord-
ing to how many times they occurred. If one action had been made once in response
to a particular stimulus in the time preceding reinforcement, and another action
had been made twice, then the second action, according to the frequency heuristic,
is twice as likely to have caused the reinforcement and thus deserves twice as much
credit for it. According to the recency heuristic, one assigns credit for current
reinforcement to past actions according to how recently they were made. Credit
assigned should be a monotonically decreasing function of the time between action
and reinforcement, approaching zero as this time approaches infinity. One way of
doing this is to assign credit according to an exponentially decreasing function A¥

of the number k of time steps elapsing between action and reinforcement.

The following learning rule combines the frequency heuristic and an exponen-
tially decaying recency heuristic:

t—1

wilt + 1] = wilt] + a #lt +1)(1— X)) et — K], (14)
k=0
for t >0 and ¢t =1,...,n, where W[t] = (w;[t],..., w,[t]) is the vector of action-

association weights (mapping stimuli to actions), e;[t] is the eligibility of its ith
component (as discussed in Chapter III), « is a positive learning-rate parameter,
and #[t + 1] is heuristic reinforcement. The eligibility e;[t] can be regarded as the

credit that should be assigned to w; for a “unit credit” assigned to the behavior

95

at time ¢. A¥ is the credit that should be assigned, according to an exponential
recency heuristic, to the behavior at time ¢t — k given that a unit reinforcement
is received at time ¢+ 1. The product #[t + 1]Ake;[t — k| therefore is the credit
due to the behavior at ¢ — k that should be assigned to w; given #[t + 1]. The
frequency heuristic is implemented in this rule by summing up the credit due to
the behavior at all past times. The term (1—A) in the learning rule normalizes the
sum. If X is near 1, then the credit assigned to an action decreases slowly as the
time between it and reinforcement increases; if A is near 0, then credit decreases
rapidly. For A =0, (14) reduces to the form used in the learning rules of Chapter
ITI. Henceforth, § =1 - A.

Equation 14 implements frequency and recency heuristics by means of an expo-
nentially decaying backwards-averaging kernel. It is reasonable to regard a kernel
of this general form as appropriate for learning situations in which nothing specific
is known about underlying cause and effect relationships. Alternatively, it might
be justifiable to assign credit according to an inverted-U shaped function of the
time between action and reinforcement as suggested by Klopf (1972, 1982). This
choice could be regarded as reflecting the distribution of the durations of the feed-
back pathways in which the learning system is embedded. In general, one would
expect learning performance to improve to the extent that the shape of this ker-
nel incorporates task-specific knowledge about the temporal relationship between
cause and effect. Ideally, perhaps, the kernel should resemble the cross-correlation
of the action and reinforcement processes. In the research reported here, no at-
tempt has been made to use any knowledge of this type, even though some amount
of such knowledge is likely to be available about specific environments. Nor have
algorithms been considered for adaptively adjusting the form of the kernel (e.g.,
by adjusting A, or by estimating the action/reinforcement cross-correlation), but

such methods have obvious utility.

A major advantage of the exponential decay form of the recency heuristic is

96

that it allows the sum in (14) to be computed iteratively. For any time sequence e;,
let & denote the time sequence resulting from the application of a trace operator

to e;, defined as follows:

t—1
<] = (11— X)) Nee;lt — &,
k=0
for t > 0, €[0] = 0. An algorithm for iteratively computing this trace can be

derived as follows:

B = (1~) Y Meeit —
k=0

t—2 (15)
= (1= Ne[f] + (1= A)) AF+left — 1 — k]
k=0
= (1 — A)e;[t] + A&t — 1],
for ¢ > 0. Although it requires only a single memory variable per component of
w, the above iterative algorithm is equivalent to remembering all past behavior

and then applying frequency and exponential recency heuristics as in (14). The

algorithm given by (15) is a standard discrete-time recursive linear filter.

When e¢; is an eligibility time sequence as defined in Chapter III, we call g
an eligibelity trace. All algorithms of this chapter update @ by (14), which can be

rewritten using &; as:
w;[t + 1] = w;[t] + a 7]t + 1]g;[t]. (16)

When A =0 (6 = 1), & reduces to e;, and (16) reduces to the same form as
used in the algorithms of Chapter III. The term eligibility will be used to refer to
& when it is used as in (16). The even-numbered algorithms of this chapter (4,
8, and 10) define ¢;[t] as (y[t] — %)x,- [t], and the odd-numbered algorithms (5, 9,
and 11) define ¢;[t] as (y[t] — «[t])z;[t] , where y[t] € {0,1} is the action taken
at time ¢, =[t] is the probability that y[t] = 1, and z;[t] is the ith component

97

of the stimulus vector at time t. Otherwise, the algorithms differ only in the
reinforcement-comparison mechanism used in forming #, the subject considered

next. Table 6 summarizes all of this chapter’s algorithms.

The recency and frequency heuristics embodied in eligibility traces make only
weak assumptions about the length and nature of the delay between action and
reinforcement. If more information is known a priors or can be learned, it could
in many cases be built into a more sophisticated eligibility-trace mechanism. Such
methods could contribute to easing the problems introduced by delayed reinforce-
ment, but are beyond the scope of this dissertation. It is likely that such enhance-
ments would be compatible with the heuristic-reinforcement mechanisms that are

the primary focus in this dissertation.

Reinforcement Comparison Under Delayed Reinforcement

The reinforcement-comparison algorithms of preceding chapters can be viewed
as constructing a reinforcement signal # by comparing the primary reinforcement

r with a predicted reinforcement plt]:
flt + 1] = rft + 1] — p[t]. (17)

Any reinforcement signal such as this is called a heuristic resnforcement signal. As
discussed in Chapter III, the predicted reinforcement p[t] is computed from the
stimulus vector Z[t] by means of a resnforcement-association vector [t]:
%
plt] = D wilt]zt]. (18)

e=1

The reinforcement-association vector ¢’ is updated according to a variation of the

Table 6. Learning Algorithms of Chapter IV.

Algorithm Update Rule
45 w;[t + 1] = w;[t] + arlt + l&]i]
8,9 wi[t + 1] = w;[t] + ar]t + 1] - plt])a]t]

vilt + 1] = v;[t] + B(r[t + 1] - plt])2:¢]

10,11 wit + 1] = wi[t] + a(r|t + 1] - plt])e:]

vilt + 1] = v;[t] + B(r[t + 1] — plt]) 2:[¢]

Where:
eilt] = (y[t] — %)zi[t], for even numbered algorithms;
¢ (ylt] — =[t])2:[t], for odd numbered algorithms,

w0]=0, wlo]=0, ylffe{1,0}, «>0, B=.05 O0<q<l,

and #[t] is the probability that y[t|=1, given Z[t].

¥ 0, otherwise,

where glt] is a normally distributed random variable of mean 0 and standard deviation .1, and
L
slt] = wilt]zt].
i=1

plt] = f: TAERUR

i=1

For any time sequence, e.g., 2(t], z[f] is defined by

z[t] = (1 — 8)z[t — 1] + 52t z[0} =0, O0<d<L

99

Widrow-Hoff rule (Widrow and Hoff, 1960):
v [t + 1] = y[t] + B #[¢ + 1]z;[¢], (19)

where v;[0] =0, and B is a positive constant. Since p[t] is an estimate of r[t+1],
#t + 1] = r[t + 1] — p[t] is an error term. This learning rule correlates these errors
with the stimuli that were present immediately before them and adjusts ¢ in such

a way as to reduce the error.

One way to generalize (19) to delayed reinforcement is to correlate the error #
with all preceding stimuli, weighted according to their frequency and their recency

in a manner similar to that discussed above for weighting past eligibilities:

t—1
vilt + 1) = y[t] + B+ 1)(1 — A) D Nexift — K
k=0
= y;[t] + B #[t + 1]Z;[t + 1],

(20)

where A, 0 < A < 1, is an exponential decay rate and Z%[t] is due to z;[t] via the

trace operator discussed above.

Equations (17), (18) and (20) constitute the mechanism used by Algorithms 8
and 9 of this chapter for constructing and updating their heuristic reinforcement
signal. Algorithms 4 and 5, on the other hand, use #[t| = r[t] and so do not require

the computation of predicted reinforcement.

The reinforcement-comparison mechanism of Algorithms 10 and 11 is based on
the idea that, on delayed reinforcement tasks, the prediction of reinforcement at
time ¢+ 1 should depend on all past stimuli rather than on just the stimulus at
time ¢. These algorithms compare primary reinforcement with a trace of the past

predicted reinforcement levels:

#it + 1) = rlt + 1] — plt]. (21)

100

Algorithm 10 uses # as given by (21} both to update the action-association vector

@ by (16) and the reinforcement-association vector #' by (19).

Experiment 1: The Effect of Delay

In this experiment, 7 nonassociative tasks of varying delays are used to illustrate
how severely delayed reinforcement can influence the learning process. Each task is
a continuous-reinforcement task with a balanced reinforcement distribution. When
the correct action (Action 1) is taken, the expected value of reinforcement is +.1,
otherwise it is —.1. In either case, the reinforcement is chosen from a normal

distribution of standard deviation o, = .1.

The 7 tasks differ only in the length of the delay between the time of an action
and the time of delivery of the resultant reinforcement. Delays of 0, 5, 10, 15, 20,
25, and 30 time steps were used, where a delay of 0 means that r[t + 1] is due to
y[t], as in the tasks of preceding chapters, and a delay of 5 means that r[t + 1] is
due to y[t — 5], etc.

A major purpose of this experiment is to compare the difficulty of tasks as a
function of the length of the delay between action and reinforcement. Therefore,
care must be taken regarding the number of steps of each run. If each run ran 15
steps, then runs with a delay of 0 would include 15 reinforcements relevant to the
actions taken on the run, whereas runs with nonzero delays would include fewer.
Runs with delays of 15 or more would include no reinforcements relevant to the
actions taken. To ensure that the same number of relevant reinforcements were
delivered regardless of the delay, each run was extended beyond 15 steps by the
length of the delay. The runs with zero delay ran 15 steps, those with a delay of 5
ran 20 steps, etc. For those runs with a nonzero delay, the reinforcement for some

of the first steps (as many as the length of the delay) were not influenced by any

101

action, and were zero.

Only Algorithms 4 and 5 were used in Experiment 1. As discussed above, these
two algorithms are straightforward extensions of the like-numbered algorithms of
Chapter III. They include exponentially decaying eligibility traces. If § were chosen
to be 1, then Algorithms 4 and 5 of the two chapters would be identical. For each
task, i.e., for each delay value, and for each of these two algorithms, 200 runs were
simulated for each combination of a range of values for the o and § parameters.
The a values used were the powers of two from 27! to 2!?, and the § values

used were the powers of 2 from 2° to 276.

The algorithms listed in Table 6 are all written as if they were associative-
learning algorithms in that they include an =z; factor dependent on the stimulus
in their eligibility factors. In the experiments of this chapter that involve nonasso-
ciative tasks, all vectors (#, ¥, and Z) were taken instead to be scalars, with the
stimulus z[t] always equal to 1. For example, with these changes, the nonassocia-

tive form of the update rule (16) is
wlt + 1] = wit] + a F[t + 1]e[t]
with

elt] = ylt+1]— 2%, for even-numbered algorithms;
y[t + 1] — x[t], otherwise.

At the end of each run the probability of a correct choice on the next step
was computed. The average of this probability over 200 runs is the measure of

performance plotted in the graphs and discussed below.

By looking selectively at different parts of the large array of data generated
by this experiment, various issues regarding the effect of delayed reinforcement on
learning can be highlighted. The first issue is how well the algorithms without
eligibility traces perform on delayed-reinforcement tasks. Recall that when 6 =1

there are no traces; the algorithms are the same as those of the preceding chapters.

102

Figure 22 plots performance versus delay for Algorithms 4 and 5 with § = 1.
In both cases the data are shown for a few representative values for a (a =
21,23,25 27 'and 2°). The data for Algorithm 4 are in the upper graph and the
data for Algorithm 5 are in the lower graph. Note how rapidly performance falls as
delay increases. For any nonzero delay these traceless algorithms performed only

at, or very near, chance level.

With exponentially decaying eligibility traces, the performances of Algorithms
4 and 5 degrade more slowly as delay length increases. Figures 23, 24, and 25
present the same data as in Figure 22, but from simulation runs with lower values
for 6, resulting in longer traces. While Figure 22 presents the performance of
Algorithms 4 and 5 for 5 values of o with § = 1, Figures 23, 24, and 25 plot the
corresponding performances for § = 27!, 274 and 279 respectively. Note that
even with traces, the performances of these algorithms drop sharply as the delay
between action and reinforcement increases. Tracescan make learning possible with

delayed reinforcement, but they cannot prevent it from becoming much slower.

Also note that although traces increase performance on the tasks with delayed
reinforcement, they tended to decrease performance on the immediate reinforce-
ment task. This trade-off is seen most clearly in Figure 26 which shows performance
as a function of delay for several different values of §. These graphs are all due to
a single value of a, a = 2%. Each curve shows the performance of the algorithm,
at this o« value, for the particular value of § that is marked near the curve. The
use of longer traces (smaller §’s) enabled considerable learning to take place even
at long delays. Note that the low-§ versions of each algorithm performed best
when reinforcement was delayed, and the high-§ versions performed best when

reinforcement was immediate.

If the delay length was known a priore, or could be learned, then this trade-off

could be avoided. The highest performance levels, obtained for the immediate-

EXP 1, RALG 4, DELTA=1., SEVERAL HLPHAS

AVERAGE FINAL PRiY=1)
o

EXP DELTA=1, SEVERAL ALPHAS
1.0
.9
n
Z .8
o
[2%
T .7F
=z
z
"
w -6 29 5
o
z s S SR S —
bt s L Bl T R :.\yx._ :'g‘Z//* g
;. 2 Ly ‘Ti:—;m—./” e i\::“‘, P o =
e \.7
2
.4
i 1 i i L
o} 5 10 15 20 25 30
DELAY

Figure 22. Effect of Delayed Reinforcement
on the Performance of Algorithms Without
Eligibility Traces. Each point represents the av-
erage performance of the algorithm over all runs on
a particular task with a particular o value, where
performance on a run is defined as the probability
of selecting the correct action at the end of the run.
Points due to runs with the same a value (on differ-
ent tasks) are connected by lines; the label indicates
the associated o value. The tasks differ from each
other in the length of the delay between action and
resultant reinforcement; the delay lengths are given
along the x-axis in time steps. The horizontal dashed
line indicates the initial, chance performance level.

10

EXP 1, ALG 4, DELTH=.25, SEVERAL RALPHAS

2
Sr &
= N
i N
Z .8fF \\A\
o 9
a 2e A\
f o2\
e r AN
. .
WO ! 27
a T 25 —f e
o N i eiirrt: TR - \7,4\!
J = e e = IR R Eli
e [U — \Qil*g = T i it
Y
L4t
| I L L I L]
0 S 10 15 20 25 30

EXP 1. ALG 5, DELTA=.25,

wy
rm
-

Sshsa\
SR AN
i 7o
= 52 \
= e O\
N N
27F N
z \
4 ‘\\\\\\
w N
L 6 S
o ‘.A,q\?\ AAAAAA ® 21
o SN g
x . e TN ;tx _____ $
w [e SR e R
= 2 - e ,;\,j
* - e
o3
., 2
‘ i i L 1 i i J
0 5 10 15 20 25 30
DELRY

Figure 23. Effect of Delayed Reinforcement
on the Performance of Algorithms 4 and 5
with Short Eligibility Traces. Each point repre-
sents the average performance of the algorithm over
all runs on a particular task with a particular «
value, where performance on a run is defined as the
probability of selecting the correct action at the end
of the run. Points due to runs with the same o
value (on different tasks) are connected by lines; the
label indicates the associated a value. The tasks
differ from each other in the length of the delay be-
tween action and resultant reinforcement; the delay
lengths are given along the x-axis in time steps. The
horizontal dashed line indicates the initial, chance
performance level.

/ERAL ALPHAS

104

EXP 1, ALG 4, DELTAR=.0625, SEVERAL ALPHAS
O r

1)

AVERAGE FINAL PRI(Y

DELARY
EXP 1, ALG 5, DELTA=.0625, SEVERAL ALPHAS

1.0

.9 F
W ~
> N
o F N\ o3
a e N

O\

1 7L 21 ~X,
z N
=z .
o ¢ N T = e 25
S e s
© 29 2 .,»r'\'\'\'\‘\g W
@ e "Q-»‘A\ AAAAAAAAAAAA
235;4*4_:_-____:.__\‘"1“%*&:3
<€

.4 F

i i

Figure 24. Effect of Delayed Reinforcement
on the Performance of Algorithms 4 and
5 with Moderate Length Eligibility Traces.
Each point represents the average performance of
the algorithm over all runs on a particular task with
a particular a value, where performance on a run
is defined as the probability of selecting the correct
action at the end of the run. Points due to runs
with the same o value (‘on different tasks) are con-
nected by lines; the label indicates the associated «
value. The tasks differ from each other in the length
of the delay between action and resultant reinforce-
ment; the delay lengths are given along the x-axis in
time steps. The horizontal dashed line indicates the
initial, chance performance level.

105

EXP

1, ALG 4, DELTA=.015625, SEVERAL ALPHAS
1.0
.9k
W
Z .8k x
§ |26 28
3 - .\‘; \\\
o 7 e SN 23
z e — &
A gt S RS N -
wo o BF e e N B @ S i 3
T DU s 5 S il
@ (L - e]
L 2
e T
a
L4k
1 ! I J |)
0 5 10 15 20 25 30
DELAY
1, ALG 5, DELTA=.015625%, SEVERAL ALPHAS
1.0
9 -
n
N
Z .8F &
> '~\\25
o oS
] s L \\\
E S0 s
= \k e 2 s
w 1 SO S e T~ o7
s 6 .2 e T~ _ I:TJ‘ﬂ””u—- B LTE e
2 s e T
2° ‘
Yose — — & — e S
a
RS
L 1
0 5 10 15 20 25 30
DELAY

Figure 25. Effect of Delayed Reinforcement
on Performance of Algorithms with Long El-
igibility Traces. Each point represents the aver-
age performance of the algorithm over all runs on
a particular task with a particular o value, where
performance on a run is defined as the probability
of selecting the correct action at the end of the run.
Points due to runs with the same a value (on differ-
ent tasks) are connected by lines; the label indicates
the associated a value. The tasks differ from each
other in the length of the delay between action and
resultant reinforcement; the delay lengths are given
along the x-axis in time steps. The horizontal dashed
line indicates the initial, chance performance level.

106

EXP 1, ALG 4, ALPHA=8, ALL DELTAS

1)
©
T T
,'/'

-

. \\‘\ :
\i: ‘‘‘‘‘‘‘‘‘‘‘ . 2. ‘

== R
ST T T xiﬁ;/fff* ST -~ .

. ‘:\.\’;,;_"‘ ;/,,/f_;*;‘

AVERAGE FINAL PR (Y

,.—-4’““”’*/
et 20
]] i i i i
0 5 10 15 20 25 30
DELAY

EXP 1, ALG 5, ALPHA=8, HLL DELTAS
or

3
gt 22
=T\
B N\
§ .8 N
g .7F °® \\\x }
= A\ \\. _____ 24
o W T § oo 8 ie
] 6 r o & ®
= — e . A
g(\{}_/ - \\\B """"" //)‘4 _“_3
Y .5 — — — — —w~ — T T T s
z >
20 -
Lar
1 L 1
0 5 1o s 0 25 30
DELAY
Figure 26. Interaction of Eligibility

Trace Length and Performance on Delayed-
Reinforcement Tasks. Each point represents the
average performance of the algorithm over all runs
on a particular task with a particular eligibility trace
length, where performance on a run is defined as the
probability of selecting the correct action at the end
of the run. o = 8 for all runs whose data is shown
here. Points due to runs with the same trace length
(on different tasks) are connected by lines; the la-
bel indicates the associated value of the trace decay
parameter §. The tasks differ from each other in
the length of the delay between action and resultant
reinforcement; the delay lengths are given along the
x-axis in time steps. The horizontal dashed line in-
dicates the initial, chance performance level.

107

108

reinforcement task without traces, and shown in Figure 22, could then ideally be

obtained for all delay lengths.

Experiment 2: Sooner Is Better

According to the recency heuristic, the sooner a reinforcing event follows an
action the larger its effect in encouraging the action to recur. This heuristic in-
volves a danger of weighting quick reinforcement more heavily than is appropriate.
Experiment 2 was designed to demonstrate this danger for the recency heuristic as

embodied in eligibility traces.

Experiment 2 involved a single continuous-reinforcement task in which primary

reinforcement is defined by
rit+1]=.1y[t]+.2(1 -yt -2]),

for ¢ > 2, where y[t] € {0,1} is the action selected at time ¢. Both Actions 1
and 0 have positive influences on subsequent reinforcement, but whereas Action 0
has a +.1 influence on the immediately following reinforcement, Action 1 has a
+.2 influence on the reinforcement 2 steps later. If these two influences coincide,
then they add, and the resultant reinforcement is +.3. If neither influence applies
to a reinforcement value, then it is 0. There is no random component to the

reinforcement signal on this task.

If Action 1 were selected every time step, a reinforcement of 4.2 would occur
every time step, and if Action O were selected every step, a reinforcement of +.1
would occur every step. Action 1 is clearly the correct action in the long run,
but in the initial stages of learning when Actions 1 and 0 are both being tried
intermittently, Action 0 has some advantage because the reinforcement it causes is

delivered more quickly than that caused by Action 1.

109

Does this asymmetry regarding the speed with which reinforcement is delivered
seriously disrupt either the speed of learning or the ability to select the better action
for some algorithms? To measure the extent of disruption, performance on this task
must be compared with that on a task without the asymmetry. One reasonable
such control task is that with the same reinforcement levels for the two actions,
+.1 and +.2, but with delays both equal to the length of the longer delay in the
asymmetrical task (2 time steps). This control task differs from the asymmetrical
one only in that one delay is lengthened from 0 to 2 steps. The results of Experiment
1 show that lengthening the delay under these conditions normally makes learning
more difficult. Therefore, if an algorithm performs better on the control task than
on the asymmetrical task, then it must be due to the removal of a harmful effect

of the asymmetry.

For both the control task and the asymmetrical task, simulations were run for
all 6 algorithms with each combination of a range of values for the parameters o
and 6. The a values used were the powersof 2 from 25 to 22. The § values used
were the powers of two from 20 to 27¢. For each task, algorithm, and parameter
setting, 500 runs of exactly 200 steps were simulated. At the end of the 200 steps
of each run, the probability x[201] of performing the correct action (Action 1) on
the next step was recorded. This probability was averaged over the 500 runs to
yield a measure of performance on each task for each algorithm at each parameter

setting.

Figure 27 plots the highest average performance level achieved with any of the
values of «a tried for each algorithm, & value, and for both the asymmetrical and
control tasks. The upper group of plots are due to performances on the control
task, and the lower group of plots are due to performances on the asymmetrical
task. The horizontal dashed line indicates the performance level attained if actions

are selected totally at random. This is also the initial performance level.

110

EXP 2, SOONER IS BETTER

Control
S Task

Asymmetrical
Task

BEST AVERAGE FINAL PRI(Y=1}

1 i i i i 1 i
20 2 272 273 o4 275 278
DELTA

Figure 27. Comparison of Algorithm Perfor-
mance with and without Delay Asymmetry.
The higher group of data points are performances
on the control task, and the lower group are perfor-
mances on the asymmetrical task. Each point rep-
resents the average performance level of a particular
algorithm with a particular eligibility trace length (§
value), and with the a value at which performance
was best for that algorithm. Points due to the same
algorithm (with different § values) are connected by
lines; the numeric label indicates the associated al-
gorithm. The horizontal dashed line indicates the
chance performance level. Note that all algorithms
performed worse on the asymmetrical task than they
did on the control task.

All algorithms performed significantly worse on the asymmetrical task than
they did on the control task. The best performance of every algorithm on the
control task is significantly better (P < .01) than its best performance on the
experimental task. In addition, at each of the first four & values, where each
algorithm achieved its best performance, every algorithm performed significantly

better (P < .01) on the control task than on the asymmetrical task. This strik-

111

ingly poor performance by all algorithms on the asymmetrical task illustrates how

debilitating this asymmetry can be.

For 6 =1 and 6§ = % (the two highest § values), every algorithm performed
significantly worse (P < .01) than the chance level. This indicates that algorithms
performed poorly on the asymmetrical task because they actually learned to choose
the wrong action. In these cases better performance would have been attained with

a learning-rate parameter of a = 0.

It is possible to mathematically determine the “critical value” for &, above
which the incorrect action is learned, and below which the correct action is learned.
As discussed earlier, the eligibility of an action decays as AF = (1—6)*, where k is
the number of time steps since the action. Since the effect of reinforcement on an
action is proportional to both the size of the reinforcement and the eligibility of the
action, the effect of a reinforcement of size r delayed by k time steps is r(1 —§)*.
Whether a quick, small reinforcement, or a slow, large reinforcement is the more
effective depends on which results in a larger value for r(1—6)*. The critical value
of &, therefore, is that at which (1 — §)* is equal for the two reinforcements. For

the reinforcement sizes and delays in Experiment 2, this value of § is that at which:
2(1-6)% =.1(1 - §)°.

Solving for § yields § = 1 — 1/1/2 = .293. Since the first two § values used in
Experiment 2 are above this value, and these are the cases in which the incorrect

action was learned, this value is consistent with the simulation results.

The primary result of this experiment is that ell algorithms performed poorly
in the face of different delay lengths for different actions. This experiment also
indicates some statistically significant differences between algorithms. In particu-
lar, the reinforcement-comparison algorithms and the algorithms using eligibility

factors involving y[t] ——% performed better than those without these characteristics.

112

Experiment 3: Comparison of Algorithms on Nonassociative Tasks

Experiment 3 was essentially a repetition of the three continuous-reinforcement,
nonassociative tasks examined in Chapter II, but with delayed reinforcement. The

intent, as in Chapter II, was to compare the performance of the various algorithms.

Experiment 3 involved 3 tasks. On all 3 tasks reinforcement is delayed by &
time steps for both actions. On all tasks Action 1 is the better action. The tasks
are called “high,” “low,” and “middle” tasks, according to their distribution of
reinforcement values; The high and low tasks are unbalanced-reinforcement tasks,
and the middle task is a balanced-reinforcement task. On the high task, selection
of Action 1 results in reinforcement 5 steps later being +.2, whereas selection of
Action O results in it being +.1. The corresponding reinforcement values for the
low task are —.1 and —.2, and for the middle task, +.05 and —.05, for Actions
1 and O respectively. On all tasks reinforcement depends deterministically on the

action chosen.

For all three tasks, simulation runs were performed with all 6 algorithms with
each combination of a range of values for the parameters o and §. The a values
used were the powers of 2 from 272 to 2%. The § values used were the powers of
2 from 2° to 2~7. For each task, algorithm, and parameter setting, 200 runs of
exactly 200 steps each were simulated. At the end of the 200 steps, the probability
7[201] of performing the correct action (Action 1) on the next step was computed.
This probability, averaged over the 200 runs, is the performance measure used for

each combination of algorithm and parameter setting on each task.

Figures 28, 29, and 30 each summarize the data from one task of Experiment
3. Each point in these graphs represents the best performance level of a particular
algorithm at a particular 6 value on a particular task, i.e., the performance for

the a value at which performance was best.

113

EXPERIMENT 3, HIGH THSK

1)

BEST AVERAGE FINAL PRIY

&
."// \\
7k /70 SO 8
o 1 .«
s SO
. e N g S e~
/// - — N S —g
B v, S -~ 4 ‘T\M\'\\ S
o __-" / \ e
O 5
o \
h"”"-‘
e e e e e e R T |

DELTA

Figure 28. Algorithm Performance on the
High Task. Each point represents the best perfor-
mance of a particular algorithm with a particular 6
value. Points due to the same algorithm (with dif-
ferent 6 values) are connected by lines; the numeric
label indicates the associated algorithm. The hori-
zontal dashed line indicates the chance performance
level.

All the reinforcement-comparison algorithms performed better than all the non-
reinforcement-comparison algorithms on the high and low tasks. On the middle
task, Algorithm 5, a non-reinforcement-comparison algorithm, performed better
than reinforcement-comparison Algorithms 8 and 10. On this task, Algorithm 5
and the other two reinforcement-comparison algorithms, Algorithms 9 and 11, all
performed at the optimal level, so that any performance difference between them

was lost in a ceiling effect.

Recall that with § = 1, all algorithms become identical to those developed for

immediate-reinforcement tasks and studied in preceding chapters. The good per-

114

EXPERIMENT 3, LOW TASK

R S S e e S S 1]

— i

— S

" e “11

-

« . 9F

a

-

@

Zo.8F

[

& 8s. _ 10

= . TF RN

e VG 1\\

e \\

[ss /,/ s \\,\

— Y N S e
6 N - L e

g p e \Xy\ “~‘*__.

- l/ A a— ~
Db o e

Figure 29. Algorithm Performance on the Low
Task. Each point represents the best performance
of a particular algorithm with a particular 6 value.
Points due to the same algorithm (with different §
values) are connected by lines; the numeric label
indicates the associated algorithm. The horizontal
dashed line indicates the chance performance level.

formance of the reinforcement-comparison algorithms, together with the fact that
in all cases their best performance was attained at a § value less than 1, provide
evidence that the new reinforcement-comparison algorithms have been generalized

properly for application to delayed-reinforcement tasks.

The performances of the algorithms using y[t] — #x[¢] in their eligibility factors
(Algorithms 5, 9, and 11), as contrasted to those using y[t] — %— (Algorithms 4,
8, and 10), were generally similar to that found in the experiments of Chapter
II. On the low and middle tasks those algorithms using y[t] — 7[t] were, in most
cases, clearly superior. On the high task, the y[t] — % algorithms were sometimes

clearly best. This pattern is similar to that found in Chapter II with immediate-

115

EXPERIMENT 3, MIDDLE TASK

1.0F & - « +95
— A = \
i g)
! 7 10 . N
- g |4 e
g /;/ A \\ \M
\ ’
= ; \)/
= L Vi 7
-8 / v
/ \\ //
S //)
e .7 / v
o /
=z //
o .BF g
o) e
« &
5 - — — — J— — — —— — — — R — J— J— J—
L i I i i 1] 1 J

20 o 272 23 274 275 26 277
DELTA

Figure 30. Algorithm Performance on the
Middle Task. Each point represents the best per-
formance of a particular algorithm with a particular
6 value. Points due to the same algorithm (with dif-
ferent § values) are connected by lines; the numeric
label indicates the associated algorithm. The hori-
zontal dashed line indicates the chance performance
level.

reinforcement tasks. In both cases the combination of a reinforcement-comparison

mechanism and y[t] — «[¢] eligibility tended to improve performance in most cases.

In earlier experiments a test of statistical significance was applied to the dif-
ferences between the best performance levels of each algorithm. Applying such a
test to the data of this experiment would be extremely questionable, and it has
not been done. In this experiment, two parameters were varied, o and é, whereas
earlier experiments varied only one. To select the best performance level in this
experiment would involve a selection of the best from 104 levels, one for each com-

bination of values for o and §. Such a selection process, when carried out on such

116

a scale, and when not taken into account in the statistical test, would make the

outcome of that test practically meaningless.

Experiment 4: Associative-Delay Asymmetry

The experiments of Chapter III measured the influence on performance of four
different kinds of asymmetry in the treatment of stimuli on associative-learning
tasks and attempted to relate performance differences among algorithms to features
of those algorithms. Delayed reinforcement creates the possibility for another type
of asymmetry between stimuli: reinforcement for an action chosen in response
to one stimulus may be delayed more than reinforcement for an action chosen in
response to a second stimulus. Experiment 4 adds this associative-delay asymmetry

to those of the preceding chapter.

Associative-delay asymmetry is not to be confused with the asymmetry inves-
tigated in Experiment 2 of this chapter. The asymmetry in Experiment 2 is an
action asymmetry rather than a stsémulus asymmetry. In Experiment 2’s asymmet-
rical task, the actions are treated differently, whereas in Experiment 4’s task, as in

the tasks of Chapter III, it is the stimuli that are treated asymmetrically.

Like most of the tasks of Chapter III, Experiment 4’s task involved two stimuli
presented at random with equal frequency. The two stimuli are similar and yet

have different optimal actions. The two stimuli are

1 0
=11 and #Z=11
0 1

Actions chosen in response to 72 influence reinforcement received on the next

step (i.e., immediately, no delay), and actions chosen in response to #! influence

117

reinforcement received after a delay of 4 steps. In either case, actions have either a
+.1 influence on subsequent reinforcement or a —.1 influence. In response to #2,
Action 0 is the action with the positive influence; in response to #!, Action 1 is
the action with the positive influence. If influences from two actions in response to
two different stimuli both influence the same reinforcement value, their influences
sum, e.g., if y[t] = O is selected in response to Z[t] = 72, and y[t — 4] = 1 is
selected in response to Z[t — 4] = #!, then r[t + 1] is +.2. If a reinforcement
is not influenced by any previous action, it is zero. In this task reinforcement is

computed deterministically from the actions selected.

Simulations were run with all 6 algorithms with each combination of a range of
values for the parameters o and §. The a values used were the powers of 2 from
275 to 2%, and the § values used were the powers of 2 from 2% to 2~7. For each
algorithm and parameter setting, 200 runs of exactly 150 steps were simulated. At
the end of each run, the final weight vector w[151] was recorded. From this, the
probability of selecting each action in response to each stimulus and the expected
influence on reinforcement of the next action, was computed as described in Chap-
ter III. The expected influence of the next action on subsequent reinforcement is
a good measure of performance on a particular run. This measure was averaged
over the 200 runs to produce a performance measure for each algorithm with each

parameter setting.

Figure 31 summarizes the data from Experiment 4, showing only the per-
formance levels for the o« value associated with maximum performance for each
algorithm and é value. Algorithms 9 and 11 performed best, and were particularly
superior at low 6 values. Apparently, both reinforcement comparison and the use
of an eligibility factor including y[¢| — =[t], as opposed to ylt] — %, are necessary

for maximal performance on this task.

118

EXP 4, ASSOCIATIVE DELAY ASYMMETRY
S10p

LN
B

.08":'/"‘/"—-17”1{' 8\:\;\\\
P N\
BN
\\\\\\\\\

N N
- N

06+

!
[y
4O

04 r

//
/ /
{d

AVERRGE FINAL E(R)

02

.00

Figure 31. Summaeary of Algorithm Per-
formance on a Task with Associative-Delay
Asymmetry. Each point represents the average
performance level of a particular algorithm with a
particular eligibility trace length (§ value), and with
the a value at which performance was best for that
algorithm. Points due to the same algorithm (with
different § values) are connected by lines; the nu-
meric label indicates the associated algorithm. The
horizontal dashed line indicates the chance perfor-
mance level.

Conclusions

Reinforcement-learning tasks with delayed reinforcement are much more diffi-
cult than corresponding tasks with immediate reinforcement because of the uncer-
tainty introduced as to which of the past actions caused each reinforcing event. The
algorithms studied in previous chapters were designed for immediate-reinforcement
tasks and are not effective on delayed-reinforcement tasks. However, by adding

exponentially-decaying eligibility traces, these algorithms can be modified so as to

119

greatly improve their performance on delayed-reinforcement tasks. In selecting the
length of the traces one must accept a trade-off between performance on short-delay
tasks and performance on long-delay tasks. Trace durations appropriate for long
delays result in suboptimal learning rates on tasks with short delays. Whatever
trace durations are used, learning is always slower with longer delays than with
shorter delays. If the delay length were known or could be learned, this trade-off

could be avoided.

For algorithms with eligibility traces based on a recency heuristic, delayed re-
inforcement is less effective than immediate or less-delayed reinforcement. With
such algorithms, a small immediate reinforcement may be more effective in rein-
forcing behavior than a larger delayed reinforcement. Experiment 2 shows that all
algorithms considered here, even those using reinforcement-comparison techniques
and y[t| —x[t], are susceptible to this problem. On nonassociative tasks with equal
delays for both actions, the algorithms introduced in this chapter perform similarly
to the algorithms of Chapter II on immediate-reinforcement tasks. Overall, there
are advantages to both reinforcement-comparison mechanisms and to the use of a

y[t] — m[t] eligibility mechanism.

Finally, delayed reinforcement opens the possibility of a new type of asymmetry
between the treatment of stimuli in associative learning — the delay between action
and reinforcement may be different for actions in response to different stimuli.
Experiment 4 contrasted the ability of the various algorithms to deal with this
asymmetry on a task analogous to those studied in Chapter ITI. As in Chapter III,

reinforcement-comparison and y[t] — =x[t] algorithms performed best.

Although delayed reinforcement is a necessary property of any task with an
opportunity for secondary reinforcement, the tasks of this chapter were carefully
designed to offer no such opportunities. All tasks of this chapter either had no

stimuli or else stimuli that were presented at random. Opportunities for secondary

120

reinforcement to be useful arise only when actions of the learning system affect
subsequent stimuli. These studies of delayed reinforcement without secondary

reinforcement provide a point of departure for the study of secondary reinforcement.

CHAPTER V

SECONDARY-REINFORCEMENT ALGORITHMS

In this chapter several temporal credit-assignment algorithms are discussed
that involve secondary reinforcement, i.e., that associate stimuli with forthcoming
reinforcement and then use the information provided by their occurrence to better
assign temporal credit. Among the algorithms discussed are a version of the algo-
rithm used by Samuel in his checker-playing program (Samuel, 1959), that used by
Witten in his adaptive controller (Witten, 1977), and a new algorithm called the
adaptive heuristic critic (AHC) algorithm. The algorithms and the problems they
solve are related to each other via the theoretical concept of an ideal reinforcement
signal, discussed in the first section below. In the final section of this chapter, a
range of apparently different algorithms are proven to all be equivalent to the AHC

algorithm by a choice of constants and rearrangement of terms.

Although not discussed here, related work has also been done by Holland (in
preparation), Booker (1982), and Hampson and Kibler (1982). Holland’s “bucket
brigade” appears to be closely related to the AHC algorithm, but is used within
a much more complex context. Booker has investigated the use of secondary rein-
forcement algorithms within the context of Holland’s “classifier systems” and “ge-
netic algorithm.” Hampson and Kibler have considered secondary-reinforcement
mechanisms along the lines of Samuel’s work for use in associative reinforcement

learning.

121

122

The Ideal Reinforcement Signal

Reinforcement signals can vary in the quality of the evaluative information they
provide to the learning system. As has been seen in previous chapters, they can be
noisy, delayed, and unbalanced in their distribution of positive and negative values.
One can assume that in most problems the primary reinforcement signal is of low
quality in at least one of these respects. If one considers all the possible ways in
which a reinforcement signal can be of low quality, and then imagines a signal that
is ideal in all those respects, then one has the concept of the ideal reinforcement

signal.

The tdeal resnforcement signal is positive whenever the immediately preceding
action is better than average for the situation in which it was taken, and negative
whenever that action is worse than average. Its magnitude indicates how much
better or worse than average the immediately preceding action is. By the value of
an action, I mean a measure of its expected effect on future values of the primary
reinforcement signal. The ideal reinforcement signal indicates the value of the
selected action relative to the average of the values of all possible actions, each
weighted according to its probability of being chosen in the given situation. Since
these frequencies depend on the current state of the learning system, so does this
average, and consequently the ideal reinforcement signal also depends on the state
of the learning system. In fact, since the ultimate effect of an action on primary
reinforcement is frequently dependent on subsequent actions, the value of an action
in general also depends on the state of the learning system. Since the learning
system changes state as it accumulates experience, the ideal reinforcement signal

also changes.

For example, suppose there is a task with 3 actions, with the vzlues 0, 9, and
10 when taken in a particular situation by a particular learning system. In the

early stages of learning, when the 3 actions are each selected equally often, the

123

ideal reinforcement signal will be positive for the latter two actions, and negative
for the first. As learning progresses, and the probability of selecting the first action
falls to zero, the ideal reinforcement signal will change so as to be negative for the
second action, remaining positive only for the third. One could argue that in order
to satisfy one sense of the word “ideal,” the ideal reinforcement signal should be
a constant function of the actions and should always be positive only for the best
of the actions, in this case only for the third action. Such a reinforcement signal
might cause perfect performance to be attained more quickly, but probably only at
the cost of sacrificing interim performance. The ideal reinforcement signal should

stimulate the maximization of cumulative performance.

For example, consider a chess-playing task. Suppose a position has been
reached from which the learning system can force checkmate by playing move A
followed by move B, but that if it plays A and then overlooks B, it will lose the
game. Suppose further that with the learning system’s current state, the latter
is exactly what will happen if A is chosen. Finally, suppose that if the learning
system chooses some move other than A, then it has a better than even chance of

winning the game.

In one sense A is a good move in this position, since it is the first move in a
sequence of moves that guarantees a win. On the other hand, with the current state
of the learning system, A is a terrible move, because it results in the immediate
loss of a game that might otherwise be won. Here the value of a particular move
is defined in the latter, local sense that would label A a poor move. The idea of
the ideal reinforcement signal is to consider each move in isolation from all other
factors and ask “Other things left as they are, does selecting this move make the

prospects better or worse?”

The ideal reinforcement signal improves over the primary reinforcement signal

in three ways. These are, in decreasing order of importance to the work presented

124

here:

Immediacy — Some effects of the choice of an action on subsequent primary re-
inforcement may be delayed. In the ideal reinforcement signal all delayed effects
would be “brought into the present,” so that they are effective immediately af-
ter the action is taken. Immediate reinforcement is an improvement over delayed

reinforcement because there is no uncertainty as to which action causes it.

Comparison with e reinforcement standard — A given reinforcement level is not
good or bad in itself, but only in comparison with other reinforcement levels that
might have been received had the learning system or the environment behaved
differently. Since the ideal reinforcement signal rates actions that are better or
worse than average as being positive and negative, it provides direct information as
to whether the selected action is a good or a bad selection. The ideal reinforcement
signal removes from the learning system the burden of comparing reinforcements

with a retnforcement standard and for determining what that standard should be.

Increased reliabslity — The ideal reinforcement signal is a relative measure of how
good or how bad the selected action is on the average. Whereas the primary
reinforcement signal might be different each time a particular action is taken in a
particular situation, due to random aspects of the environment, or to variations
in subsequent action selections, the ideal reinforcement signal provides a reliable

measure that takes into account all possible variations and their likelihoods.

The concept of the ideal reinforcement signal is similar to that of the ideal
evaluation function for guiding a state-space search or the search through a game
tree. In either case the ideal is rarely obtainable but can only be approximated. In
either case one looks to heuristics, either learned or provided a priort, to build the
approximation. A heuristic reinforcement signal is a reinforcement signal generated
internally by a reinforcement-learning system, which it uses instead of the primary

reinforcement signal. The idea is that the heuristic reinforcement signal is more

125

similar to the ideal reinforcement signal than is the primary reinforcement signal.
To improve on the primary reinforcement signal, a learning system may use either a
priors knowledge or knowledge gained from its past experience. In the present work
only the latter is considered; it is assumed that all available ¢ priori knowledge has

been built directly into the primary reinforcement signal.

Given the limited information a learning system receives about the state of
its environment, how good a heuristic reinforcement signal is actually possible?
The tdeal realizable reinforcement signal is positive at the first indications from the
environment that higher than average primary reinforcement is forthcoming, and
negative at the first indications that lower than average primary reinforcement is
forthcoming. To the extent that the environment provides such information, the
size of the signal indicates the amount by which the forthcoming reinforcement is
higher or lower than average. It is the ideal realizable reinforcement signal that

one can most fruitfully attempt to emulate by a heuristic reinforcement signal.

In some cases the first indication of forthcoming primary reinforcement is the
primary reinforcement itself. In this case the ideal realizable reinforcement signal is
an improvement over the primary signal only by virtue of providing a performance
standard, and not by improving immediacy or reliability. In other cases, stimuli
provide the first indications of unusually high or low forthcoming reinforcement,

and improvements in immediacy are realizable as well.

Learning algorithms in which neutral stimuli are recognized as cues to forth-
coming primary reinforcement, and are used to create more immediate heuristic
reinforcement, are called secondary reinforcement algorithms. In the following sec-
tions it is shown how secondary reinforcement algorithms can be informally derived

as approximations to the ideal reinforcement signal.

126

The Adaptive Heuristic Critic Algorithm

The adaptive heuristic critic (AHC) algorithm is a heuristic reinforcement or
“critic” algorithm incorporating secondary reinforcement. The AHC algorithm is
closely related to a model of classical conditioning (Sutton and Barto, 1981; Barto
and Sutton, 1982). The development of the AHC algorithm, particularly my early
work in this area (Sutton, 1978), has been influenced by the work of Klopf (1972,
1980).

In the AHC algorithm, a linear-mapping approach is used to associate predic-
tions of forthcoming reinforcement with stimuli. Stimuli are represented as vectors
of n components. Associated with each stimulus component z;, 1 <1 < n, is
a memory variable v; indicating the extent to which the presence of the stim-
ulus component indicates that unusually high or low reinforcement is forthcom-
ing. As in Chapters 3 and 4, the vector #[t] = (v;[t], v2[t],..., va[t]) is called the
reinforcement-assoctation vector. The prediction of resnforcement forthcoming af-
ter time t made by the learning system at time s (i.e., using ¥]s]) is denoted by

p°[t] and defined as:

n
Pl =) vils]zilt]. (22)

i=1
The reinforcement-association vector should be learned such that p°[t] be-
comes a good estimate of forthcoming reinforcement. It follows, therefore, that
a signal that is a good heuristic reinforcement signal would provide an excellent
basis for correcting estimates of p®[t] by changing ¥. The following update rule

accomplishes this:
vilt + 1] = v[t] + A7t + 1]Z:(t], w[0] =0, (23)

for 1 <t <n and t = 0,1,..., where #[t + 1] is the heuristic reinforcement

signal’s value at time ¢+ 1, f§ is a positive constant, and %[t] denotes the value

127

at ¢t of a trace of z;, i.e., a weighted average of the values of z; with the more
recent values weighted more heavily (see Chapter IV, Equation 15). If #[t + 1] is
positive (negative) this equation increases (decreases) the components of ¥ that
contributed to past predictions p®[t], as indicated by their £ components having
been large in the recent past. If the same stimulus sequence is presented again,
this process results in predictions being higher (lower) earlier in the sequence.
The overall result is that the positive (negative) # event is shifted earlier in time,
and that the heuristic reinforcement signal does a better job of giving the earliest

possible indication of changes in forthcoming reinforcement.

The above argument relies on the heuristic reinforcement signal working prop-
erly. The following definition of the heuristic reinforcement signal is that used in
the AHC algorithm:

Flt + 1] = r[t + 1] + v ptft + 1] — p*[E], (24)

where 7, 0 < v <1, is a scalar discount rate parameter. Equations 22, 23, and 24
(with the trace operator denoted by “~” and defined by (15)) constitute the AHC

algorithm in its entirety.

The remainder of this section explores the relationship between the heuristic
reinforcement signal defined by (24) and the concept of the ideal reinforcement
signal. Let r* denote the ideal reinforcement signal. Its value at time ¢+ 1 indi-
cates how much better or worse off the learning system is because of the particular
action selected at time f. Better or worse is defined in terms of the effect of the
action on subsequent primary reinforcement signal values rt + k|, k > 1. The
action y[t| at time ¢ may affect primary reinforcement at any combination of later
times. These separate effects must somehow be combined in r* to give an overall
measure of the action’s effect. Perhaps the simplest approach would be to sum

these effects if they could be determined. This leads one to attempt to define the

128

ideal reinforcement signal as

(0]

i+ =Y | B{rit+ K | yltl} — E{rlt+ K]}, (25)

k=1
where both expectations are also conditional on the structure and state of the
environment and of the learning system. One problem with (25) is that the infinite
sum may not be convergent. Another is that although this definition seems a
natural one, for certain special classes of tasks it is not. In the following section
the class of tsme-blind tasks is considered, for which a different definition of r* is

appropriate.

The sum in (25) may not converge either because it is unbounded (infinite) or
because the sequence of partial sums includes infinite subsequences not all of which
converge to the same limit. Figure 32a shows the state-transition structure of an
environment in which the former occurs, and Figure 32b shows an environment
in which the latter occurs, for the action selected in leaving the state labeled A.
These cases are problematic for the definition in (25) but seem not to be problem-
atic on an intuitive basis. The reinforcement given to the action leaving State A is
unimportant because the state is never reentered. In many cases these definitional
problems can be eliminated by weakening the requirement of convergence of (25)
to that of summability. In general it may be necessary to make a slightly different
definition of r* depending on the class of tasks or learning systems being consid-
ered. For the purposes of the rest of this section, it is assumed that the sum in

(25) is convergent.

The sequence formed by E {r[t + k] | y[t|}—E {r[t + k]} for successive values of
k is called the difference sequence. Each element of this sequence is the difference
between the expected value of reinforcement at some later time before and after the
selection of y[t]. In a typical case y[t] might influence subsequent reinforcement
and the state of the environment for a while, but for large values of k the two

expectation would be equal, and the elements of the difference sequence zero. In

129

Figure 32. State-Transition Structure of two Environments
that are Problematic for Definitions of the Ideal Reinforce-
ment Signal. Each circle represents a state of the environment.
The state labeled “A” is the initial state. Arc labels indicate the
expected value of the primary reinforcement signal should that state
transition occur. Which state transition occurs (which arc is followed)
depends deterministically on the action selected by the learning sys-
tem. Where only one arc leaves a state all actions result in the same
state transition.

such a case the sum of all elements of the sequence is finite, and its value is the

value of 7*.

One possible approach to approximating r* is to maintain a memory variable
whose value is the current estimate of the sum of the difference sequence. A major
drawback to this approach is that these differences are never directly observable.
Each is the difference between two expected values of r[t + k], both for some time
t + k, but conditional on different circumstances. The actual values of r provide
an estimate of the expected value for the circumstances that actually occur, but
the other circumstances remain hypothetical. A second drawback to this approach
is that an estimate of the sum of a difference sequence would be needed for every
combination of action and environmental state in which the action might be taken,

which adds up to a great many memory variables to update and store.

Another approach, used in the AHC algorithm, is to estimate the sum of

the difference sequence by constructing separate estimates of the sum of the

130

E {r[t + k] | y[t]} terms and the sum of the E {r[t + k|} terms, and then to sub-
tract the two estimates. The logic of this approach can be illustrated by rewriting

(25) as a difference of two sums:

o0 co
rlt+1 =Y E{rlt+k |ylt]} - > E{rlt +k]}. (26)

k=1 k=1
In this approach, one attempts to estimate both terms of (26) from observed values
of r, and then subtract the two estimates to estimate r*. Unfortunately, (25) and
(26) are not equivalent. Although (25) is typically (and by assumption) finite, the
two sums of (26) are typically both infinite (divergent). Making finite estimates of

these two and then subtracting them yields a meaningless result.

The AHC algorithm’s solution to this problem relies on the fact that the ele-
ments of the difference sequence tend to be nonzero primarily only if they appear
early in the sequence, or, stated in different terms, that for large k& the expected

value of r[t + k] tends to depend very little on y[t]. If it is assumed that
E{r[t + k] | y[t]} = E {r[t + K},

for all k greater than M , then (25) can be rewritten as

M
P+ 1] = E[E{r[t k| ylt]} - E{r]t + k}}
ﬁzl M
= SO E{rlt+ K | ylt]} - L B {rle + k). (27)
k=1 k=1

The advantage of (27) is that, unlike (26), both of its sums are finite and can thus

be estimated.

The AHC algorithm actually works a bit differently, but the idea is the same.
Rather than having an abrupt cutoff at M time steps, successive elements of the

difference sequence are weighted in an exponentially decreasing manner. This

131

avoids problems with “horizon effects,” and allows arbitrarily late elements of the
difference sequence to contribute fo the estimate of r*, albeit possibly greatly

discounted. The AHC algorithm is based on estimating

Pt n) ! [E{r[t k]| ylt]} - E{r]t + k]}]

k=1

=D PTIE{rlt K] |yt - Y _AFTE{rlt+ K]}, (28)
k=1 k=1

where 0 < 7 < 1. These sums converge as long as E {r[t + k|} is bounded.

v is called the discount rate. The use of a discount rate effectively assigns
greater value to earlier primary reinforcement than later primary reinforcement.
It is as if instead of maximizing the sum of future reinforcements, one maximizes
the sum of future reinforcements weighted in an exponentially decreasing fashion

according to the time delay until their reception:

[>e]

> AFLE {r[t + K]} (29)

k=1

By adjusting 7, one controls the extent to which the learning system is concerned
with long-term versus short-term goals. It is common in studying Markovian de-
cision processes to introduce such a discount rate by taking the maximization of
(29) directly as the goal of learning rather than as an approximation (e.g., Derman,
1970; Mine and Osaki, 1970).

The expected values discussed thus far are all implicitly conditional on the
structure and state of the environment and the learning system. In the following it
is necessary to forego this notational convenience in the case of the states. Denoting

the state of the environment at time ¢ as g[t] and the complete state of the learning

132

system at time ¢ as w[t] *, (28) can be rewritten as:

Pl 1] s Y A TIE (rlt+ K] | ylt] alt], wit]} - D v E {r[t + K] | gt], w]t])}.
k=1 k=1
(30)

At time ¢ + 1, r[t + 1] will be available for use as an estimate of
E {r[t + 1] | y[t], q[t], w[t]} . Using this approximation, and taking this term outside
the first sum in (30) yields

Pt s rlt+ 1+) FE {rft + k]| ylt], qlt], wit]}
k=2

=Y AFTLE {r[t + K] | q[t], wit])}.
k=1

Since rft+ k|, for k > 2, does not depend on y[t] directly, but only through ylt]’s
effect on gt + 1], the first expected value in the above expression can be rewritten

to be conditional only on g[t + 1]:

rt+ 1 s rt+ 1]+ f:"fk“lE{r[t + k] | q[t + 1], w|t]}
k=2

=Y A TE{r[t + K] | qlt], wt]},

k=1

(31)

or, making the change of variable kK — k+ 1 in the first sum:

rlt+1] s rft+ 1]+ 7%7"“1E{r[t + 1+ k]| g[t + 1], w[t]}
k=1

=Y LB {rlt + K] | qlt], wlt]}.
k=1

* Note that in this context w|f] denotes the complete state of the learning system. In the
case of the AHC algorithm, this includes both the action-association vector & and the
reinforcement-association vector 7.

133

As mentioned above, the AHC algorithm directly constructs estimates of the
two sums in these equations. However, both sums involve expectations that are con-
ditional on the state of the environment, which is known only imperfectly through
the cues provided by stimuli. The best a realizable heuristic-reinforcement algo-
rithm can do is make approximations based on these cues. Denoting by z[t] the
stimulus received at time ¢, which provides information about the state of the
environment g[¢], the best a realizable heuristic reinforcement signal can do is

approximate:

rt+ 1] rft +1] + 7i7k*1E{r[t + 1+ k]| z[t + 1], w[t]}
k=1

* (32)
=Y AFTLE{r]t + K] | zlt), wit]}.
k=1

p°[t] , defined by (22), is the AHC algorithm’s estimate at time s of forthcom-

ing discounted reinforcement:
[o o]
Pt ™ YA TIE{r]t + K] | <ft], w]t]}. (33)
k=1

In order to avoid instabilities due to secondary reinforcement being able to create
more secondary reinforcement, special care must be taken to separate the time s at
which the estimate is made from the time ¢ about which the estimate is made. Since
w may change at each time step, the expected value in (33) may change at each
time step. Since the learning system’s estimate p®[t] is based on the statistics of
past observations, it will always be slightly out-of-date. For a statistical approach
to work, the effect of changes in w on the expected values in (33) must be small,
at least over short time periods. If changes in w over small time periods, such as
those between ¢ and ¢+ 1, are ignored, then, using the estimate (33), (32) can be
approximated by

rlt+ 1] s e[t + 1] + ypt[t + 1] - P'lE],

134

which is the expression used in the AHC algorithm for its heuristic reinforcement

signal #[t + 1] (cf. (24)).

The AHC algorithm uses the linear-mapping approach given by (22) to con-
struct its estimates p®[t], and uses # as an error term to update its estimates by
(23). The logic of viewing # as giving the error in estimating forthcoming rein-
forcement (i.e., in p*[t]) is best seen from (31) and (33). If (33) is exact for both
p![t + 1] and p'[t], then (31) is zero. If it is non-zero, it indicates that the earlier

prediction may be too large or small and should be adjusted accordingly.

Time-Blind Tasks

Further understanding of the AHC algorithm and of the informal derivation
presented above can be gained by performing a similar analysis for other classes
of tasks. This and the following two sections perform such an analysis for slightly
different classes of tasks. In many cases the steps of a derivation are nearly identical

to that of preceding derivations, in which case most of the justification is omitted.

This section presents an informal derivation of a heuristic reinforcement algo-
rithm that approximates an ideal reinforcement signal for the class of “time-blind
tasks,” which includes most board games. For this class of tasks, the analysis yields
an algorithm closely related to the “learning-by-generalization” algorithm used by

Samuel in his checker-playing program (Samuel, 1959, 1967).

In many tasks, most prominently in games such as chess or checkers, the en-
vironmental interaction can be naturally divided into episodes, where the perfor-
mance during each episode is dependent only on the behavior during the episode,
and where the boundaries between episodes are clearly demarcated. In this disser-

tation such tasks are called episodic tasks. In a game such as chess or backgammon,

135

for example, the episodes are games. In the pole-balancing task considered later
in this chapter, each attempt to balance the pole, from its initial position to its
falling over, is an episode. Any task in which the environment repeatedly returns
to a start state, and in which the learning system is given unambiguous notice of

its return, can be considered an episodic task.

Whether or not a task is episodic can be very important for purposes of tempo-
ral credit assignment. At the end of each episode the learning system is guaranteed
that there will be no further delayed effects of any of the actions taken during the
episode. Normally this is not possible; the learning system can never “close the
books” on the credit to be assigned to any of its past behavior, for there may
always be some further consequences. It is the possibility of such arbitrarily long
delayed effects in other cases that complicates the definition and approximation of

the ideal reinforcement signal.

Time-blind tasks are a particular kind of episodic task in which the goal of
learning is defined in terms of performance per episode rather than in terms of
performance per time step. In a time-blind task, the goal of learning is completely
“blind” to the duration of episodes. Most games are time-blind tasks; in chess or
checkers, for example, there is, at least in theory, no concern about the length of
each game, but only about its eventual outcome. No additional points are awarded

for winning quickly or losing slowly.

The simple environment whose state-transition structure is shown in Figure 33
illustrates the difference between time-blind and non-time-blind tasks. The state
marked A is the initial state of each episode. According to a non-time-blind goal of
learning, the right path from state A is preferable, since it results in a reinforcement
per time step of 3, as opposed to 2 for the left path. According to a time-blind
goal, on the other hand, the left path from state A is preferable, since it results in

a total reinforcement per episode of 2 + 2 = 4, as opposed to 3 for the right path.

136

Figure 33. An Environment that is very Different as a Time-
Blind and as a Non-Time-Blind Task. Each circle represents a
state of the environment. The state labeled “A” is the initial state.
Arc labels indicate the expected value of the primary reinforcement
signal should that state transition occur. Which state transition oc-
curs (which arc is followed) depends deterministically on the action
selected by the learning system. Where only one arc leaves a state all
actions result in the same transition.

The goal of learning is different in time-blind and non-time-blind tasks.

In many time-blind tasks each possible outcome of an episode can be assigned
a definite value, e.g., +1, —1, and 0, for the win, loss, and draw of a chess game.
This framework can be made slightly more general by allowing reinforcement to
be delivered throughout the episode, where the goal of learning is to maximize the
expected value of the sum of the reinforcement received during the episode (this is

the framework just used above to analyze the environment shown in Figure 33):

m

E{>"rla},
t=1
where r[t| denotes the reinforcement received on the ¢th time step of the episode,
and m denotes the length in time steps of the episode. This expectation is im-
plicitly conditional on the task, the learning system, and the state of the learning
system. Tasks in which the outcome of the episode is known only at its end are
easily handled within this framework by letting the reinforcement be zero for all

transitions except the final one.

137

Although it applies to time-blind tasks in general, the following analysis is
framed in the language of a board game. That is, episodes are called games, the
actions of the learning system are called moves, and the states of the environment

are called board positions.

In a game that has already gone on for { — 1 moves and has reached position
g[t], the desirability or value of the selected move y[t] is defined as the expected

value of the sum of the reinforcement received during the rest of the game:
m
E{ Y rlr] | ylth altl wlt)}, (34)
r=t+1

where w[t] denotes the state of the learning system and m denotes the number of

moves in the game.

The average of the values of the actions (moves) that could have been taken,

each weighted by its likelihood of being selected, is:
> Pl =yl althwit)} B{ Y rlr] | v,qlt) witl}-
y r=t+1

This iz mathematically equivalent to the expected value of the outcome of the

game, given g[t] and w[t], but without specifying any action:
m
E{ Y lr] | alt), witl}- (35)
r=f+1

This expression is called the value of the position gt} .

Using (34) and (35) an exact expression for the ideal reinforcement signal for
this class of tasks can be written:
m m
rlt+1)=E{ Y rlr] | vith altl wlt)} — E{ 3 vl | altl, wit)}
r=t+1 r=t+1
The following develops an approximation to r* by following steps analogous to

those used in the preceding section in approximating (28). Since the logic of each

138

step is the same in both cases, their justification is not repeated here in its entirety.
The value of the move y[t] (the first expected value in the above equation) can
be approximated by the value of the position g[t + 1] that results after making it,

plus the reinforcement received traversing from gq[t] to ¢t + 1]:

rlt+1] & rft+ 1)+ B i rl7] [q[t+11,w[t]} - E{ i rl7] lq{t],w[t]}.

r=t+2 r=t+1

Assuming w(t] does not change rapidly (i.e., from move to move), its time index
can be ignored and the latter two terms can be rewritten as the change from one

move to the next of a single expression:
rlt+ 1 mrlt+ 1+ EB{ Y rlr] [alt+1},w} ~E{ Y rlr]] qlt], w}.
r=0+2 r=t+1

Since the stimulus z is known to the learning system, but not the state g the best

that can be done is to approximate

rlt+ 1] e+ 1) + B Zm: rl7] ! zlt + 1], 0} — B zm: rl7] | zltl,w}. (36)
r=t+2 r=t+1

p°[t] is the learning system’s estimate at time s of the value of the board

position at time £:

p°lt] ~ B f: vl | alt], wit)} - (37)

r=t+1
For the case of ¢ = m (the end of a trial) this expectation need not be estimated

because it must be zero. For all other cases estimates must be formed and associ-
ated with the stimuli in some way, e.g., by (22) and (23). Finally, using (37), (36)

can be approximated by

i+ 1] s ft+ 1] =rlt + 1]+ pfft + 1] — P[] (38)

The algorithm given by (22), (23), and (38) is clearly closely related to the AHC

algorithm. The primary difference between the two is the presence of the discount

139

rate parameter v in the AHC algorithm. The algorithm given by (22), (23),
and (38) is a special case of the AHC algorithm and is designated the Simplified
Samuel’s algorsthm, or SS algorithm, because of its similarity to that used by
Samuel in his checker-playing program (Samuel, 1959, 1967). This similarity is

discussed further in a later section of this chapter.

Time-until-Failure Tasks

Experiment 4 of Chapter VI concerns the tagk of controlling a system so as to
keep a pole balanced as long as possible subject to certain other constraints. When
the pole falls, or one of the other constraints is not satisfied, a failure is said to
occur, the system is reset to an initial position, and a new attempt to balance the
pole begins. Tasks such as this, in which all episodes end in failure and in which
the object is to delay failure as long as possible, are called time-until-faslure tasks.

The ideal reinforcement signal for such tasks is
r'lt+ 1] = E{m | y[t],q[t], w[t]} — E {m | q[t], w[t]},

where m is the ultimate duration of the current episode, y|t] is the action selected,
g[t] the state of the environment, and w[t] the state of the learning system, on
the tth time step of the episode. The ideal reinforcement signal can be rewritten

in terms of the expected value of the time remaining in the current episode as:

rt+1] = E{m—t]|yt],qlt], w[t]} - E{m -t qlt], w[t]}.

Following the same steps as for the preceding informal derivations, and omitting
details discussed more fully earlier, r* for time-until-failure tasks can be estimated

as follows:

r't+1]s E{m—t|q[t+1],w[t]} — E{m —t] qt], w[t]}.

140

Dropping the time index on w and considering expectations conditional on stimuli

rather than states yields:
rt+ s E{m—t|z[t+1},w}— E{m—t]zlt],w}.
Rewriting in terms of a single expression yields:
rt+ 11+ E{m—(t+1) | z[t+1),w} - E{m—t]| z[t], w}.

To form a heuristic reinforcement signal, £ {m —t | z[t], w} at time ¢ is estimated

by p'[t], yielding
rlt+ 1) s flt+ 1] =1+ p'[t + 1] — p*[E].

For t = m, p°[t] (for s = ¢,¢ + 1) must be O and need not be estimated. For
other cases, if a linear mapping approach to association is desired, p®[t| can be

computed and updated by (22) and (23).

Time-until-Success Tasks

A time-untsl-success task is one such as that of exiting a maze, in which the
goal is to complete each episode (i.e., trip through the maze) as quickly as possi-
ble. Time-until-success and time-until-failure tasks are closely related, as are their
heuristic reinforcement algorithms. The ideal reinforcement signal for a time-until-

success task is
r*[t +1] = E{-m| y[t],qlt], w[t]} — E {—m | q[t], w[t]},

where m is the duration of the current episode, y[t] is the action selected, gt]
the state of the environment, and w[t] the state of the learning system, on the ¢th

time step of the episode.

141

r* can be approximated following the by-now-familiar pattern:
Pt +1] & E{~(m—1) | ylt], 2lt], w} — E{~(m —t) | lt], w}
-1+ E{-m+t+1|z[t+1),w} - E{-m+t]|z[t],w}
p FlE+ 1] = -1+ pift + 1] - pi[t],

where p°[t] (for s =t,t 4+ 1) is an estimate at time s of the negative of the time

remaining till success:

plt] m B {-m -+t | olt], w}.

p°[m] is known to be 0. Otherwise, if a linear mapping approach is desired, p°[t]

can be computed and updated by (22) and (23).

Samuel’s “Learning-by-Generalization” Algorithm

This section explores further the relationship between the temporal credit-
assignment component of Samuel’s checker-playing program (Samuel, 1959, 1967)

and the SS algorithm given by (22), (23), and (38).

Samuel’s checker-player uses what would now be considered a standard alpha-
beta minimax search (e.g., see Barr and Feigenbaum, 1981) to select moves. As
a function of experience, the “static” evaluation function used to evaluate termi-
nal board configurations in the search tree is modified. For each board position,
a backed-up score is computed by considering possible sequences of moves and
propagating backward the evaluations of terminal board positions. The difference
between the backed-up score for the current position and the static evaluation of
the board position on the preceding move is called delta.* Delta’s role in Samuel’s

tree search is analogous to that of heuristic reinforcement # in a reinforcement-

* In some versions of Samuel’s program, a rudimentary tree search was also used for the
evaluation of the preceding board position used in computing delta.

142

learning process. When delta is positive, the board position has become better
than originally appeared to be the case; when delta is negative, the board position
has become worse. In either case, the static evaluation function must be changed
so that it does a better job anticipating forthcoming evaluations. Samuel called

this process “learning-by-generalization.”

In Samuel’s checker-player,delta is partly due to the change in the board posi-
tion from the previous position to the current one and partly due to an anticipation
of future board positions. The latter is possible in checkersbecause there is a strong
model of the environment—one knows the current position, the effects on it of one’s
possible actions, and the likely responses of one’s opponent. Assuming that no such
strong model is available, as has been done in this dissertation, a contribution to
delta due to anticipated board positions is not possible. Delta then becomes simply
the difference between the static evaluations of the current and preceding board

positions.

Samuel’s static evaluation function is a sum of terms, each a product of a
numerical measure of a feature of the board position and a coefficient indicating
the desirability of that feature in terms of its correlation with changes in subsequent
evaluations. As a function of experience, the coefficients of the terms are modified,
and occasionally new features are added and old ones removed. Here I consider
only Samuel’s algorithm for modifying the coefficient values. One term, the piece-
advantage term, does not have a modifiable coefficient. This term measures the
number of checkers the program has relative to the number its opponent has, giving
a higher weight to kings, and including refinements so that it is considered better

to trade pieces when one is ahead but not when one is behind.

Let F[t] denote the value of the piece-advantage term, including its non-
modifiable coefficient. Let z;[t] denote the numerical measure for the sth feature

of the board position, and let v;[t] denote the corresponding modifiable coefficient.

143

Samuel’s static evaluation of the board position occurring at time £ can then be

written as

Flt] + vi[t]z1[t] + vo[t]z2[t] + - - - + valt]za[t]-

Let 6[t] denote the value of Samuel’s delta at move ¢. For the case in which delta

has no anticipatory portion,
L2 13
St+1)=Flt+1]+ Y wltlzlt+ 1] - Fit] - Y vlt]=:[t].
=1 t=1

Note that both sums use the coefficient values at the same time ¢. Samuel found
this necessary to prevent instability. The above equation can be rewritten, using

the p'[t] notation defined by (22) to denote the sums, as
§[t+ 1] = Flt+ 1] — F[t] + p*[t + 1] — p*[t].

In Samuel’s algorithm, changes in the piece-advantage term play the same role as
the primary reinforcement signal, i.e., F[t+ 1] — F|t] is analogous to rt]. &[t+ 1]

itself is analogous to #[t + 1].

In Samuel’s words, the idea behind his algorithms is that:

...we are attempting to make the score, calculated for the current board po-
sition, look like that calculated for the terminal board position of the chain of
moves which most probably will occur during actual play. [Samuel, 1959, p. 219]

If this quote is taken literally, it says that the evaluation at time ¢ should be equal

to the expected value of the evaluation at any later time ¢ + k:
Flt] + p'lt] = E{Flt + K + o+t + K]}
or

Pl - B {p**[t+ K|} = E{Flt + K]} - FIt

144

t+k

=E{ Z r[f]}

r=t+1
(using r[t] = F[t + 1] — Ft])

m

= E{ Z r[*r]} -—E{ z'": r{'r]}, (39)

r=t+1 r=t+k+1
where m denotes the number of moves in the gama. From (39) it is clear that if
(37) holds, then the algorithm accomplishes the result Samuel intends. In other
words, Samuel’s intent and the intent of the derivation based on the concept of the

ideal reinforcement signal for time-blind tasks are the same.

How are the coefficients v; to be updated so as to implement this intent? In
Samuel’s words:
If delta is positive it is reasonable to assume that the initial board evaluation
was in error and terms which contributed positively should have been given
more weight, while those that contributed negatively should have been given less
weight. A converse statement can be made for the case where delta is negative.
Presumably, in this case, either the initial board evaluation was incorrect, or a
wrong choice of moves was made, and greater weight should be given to terms

making negative contributions, with less weight to positive terms. [Samuel, 1959,
p. 219]

This is exactly what (23) does, where # plays the role of delta. However, the
sentence that immediately follows the above quotation is:

These changes are brought about in an involved manner which will now be de-
scribed.

Samuel does not implement the algorithm he describes in a direct manner as in (23),
but goes through a much more complicated procedure apparently with the aim of
arriving at the same end. This procedure involves keeping records that estimate
the correlation between the sign of delta and the sign of each v;z;, normalizing
the correlation values so that the largest is a fixed size, taking their ratios, and
setting the coefficients to the integral power of 2 whose exponent is closest to the

corresponding ratio. In addition, if delta or an evaluation is below an arbitrary

145

minimum value, it is set to zero, and delta is doubled or quadrupled if its value
is due to a change in the piece-advantage term or if that change is particularly
large, respectively. In most versions of the checker-player, the coefficient update

algorithm involved still further complexities.

Samuel is not explicit about his rationale for making the desired changes in the
coefficients in such an involved manner. Perhaps a major reason was the need for
a very computation-time-efficient algorithm. If coefficients are powers of two, the
evaluation function can be computed much more rapidly on a digital computer than
if they are allowed to take on arbitrary values. It is not plain how the algorithm
given by (23) could have been implemented so as to keep the coefficients at integral

powers of 2.

Witten’s Adaptive Controller

Witten (1977) describes an adaptive controller for discrete time Markov en-
vironments which uses a collection of learning automata and a temporal credit-
assignment algorithm nearly identical to the AHC algorithm. Witten assumes that
the environment has discrete states, and that the learning system always knows
the current state of the environment. This allows the use of an independent-
associations approach to association: For each state ¢+ (1 < ¢ < n) of the environ-
ment there is a dedicated memory variable, denoted here as v;, whose value is the

learning system’s estimate of future discounted reinforcement (as in (29)).

According to Witten’s algorithm, and in terms of his own equations, if the

environment moves from state j to state k, then v; is updated by

Uj"“(l“ﬂ}vj"l’ﬂg' 36(0:1);

where ¢ is a weighted average of the environment’s reward g and the controller’s

146

new estimate of future reward:

d =(1—-17)g+ v,

where v € (0,1) is the discount factor. Witten’s g is analogous to primary re-
inforcement r. Combining the above two equations, using r for ¢, and adding
explicit references to time, where ¢ and ¢+ 1 are the times at which the environ-

ment is in states 7 and k, yields

ojlt+1] = (1 = B)ojlt] + B (1 — W)rlt + 1] + yoft])

If Z[t] is used to denote the n-vector all of whose components are zero except
for the #th one, which is 1, where the environment is in state ¢ at time ¢, and
p°[t] is defined by (22), then p'[t] = v;t], p*[t + 1] = v[t], and Witten’s update

equation can be rewritten as
vilt + 1] = v;[t] + B ((1 — y)rlt + 1] + 't + 1] - P'[E]) .

This change in notation converts Witten’s algorithm from the independent-
associations approach to a degenerate case of the linear-mapping approach. The
above equation is only applied to the v; corresponding to the state j of the en-
vironment at time ¢. Alternatively, z[t] can be used to make this selection, by

applying the following equation to all v;, 1 <1 <0:

wlt+1] = vlt] + B ((1 - rlt + 1]+ ' [l - Pt + 1)) milt] Vi

There are two apparent differences between this equation and the combination
of (23) and (24), as in the AHC algorithm. One is that (23) uses a trace Z[¢]
where the above equation uses z[t] (Note that for the case of A =0, Z[t] = z[¢],
so this is not a major difference). The second apparent difference is the presence

of the (1 —) multiplier of r[t+ 1] in the above equation, and its absence in (24).

147

It is shown in the following section that this, and in fact a much wider range of
apparent differences between algorithms, can be eliminated by changing parameter

values. The above equation is equivalent to a combination of (23) and (24).

One is tempted to conclude that Witten’s algorithm is identical to the AHC
algorithm. However, although Witten’s algorithm updates the reinforcement-
association vector ¥ in essentially the same way as does the AHC algorithm,
it defines # in terms of ¥ differently. In Witten’s notation, his algorithm uses

g for #. In the notation used elsewhere in this dissertation, it uses
Ft+ 1] =1 —yrlt + 1]+t + 1]. (40)

The complete adaptive controller that Witten describes consists of the heuristic-
reinforcement algorithm described above and a bank of learning au-

tomata, with this # as the interface between them.

In Witten’s algorithm, # (¢') represents an estimate of the sum of forthcom-
ing (discounted) reinforcement. This is in contrast with the AHC and Samuel’s
algorithm, in which # is supposed to estimate the difference between forthcoming
reinforcement before and after the learning system has committed to a particular
action selection. Witten’s algorithm includes a secondary-reinforcement mecha-

nism, but not a reinforcement-comparison mechanism.

Equivalent Expressions for the AHC Algorithm

There are many algorithms that involve some of the same ideas of the AHC
algorithm, including that of comparing new and old estimates of forthcoming rein-
forcement, yet they appear to treat these ideas in slightly different ways. Here are
two examples:

#lt +1] = r[t + 1] = p'[t] + p(p*[t + 1] — P'[¢])

148

and

#le+ 1) = vt + 1) + p(p[t + 1] — P*[¢]).

where p is a positive constant and p°®[t] is defined by (22) and (23) in both cases.
In other words, both algorithms are similar to the AHC algorithms except that they
substitute for its key equation (24) one of the above two equations. In actuality,
these two algorithms are both special cases of the AHC algorithm. The following
theorem shows that these and a wide class of other algorithms are equivalent fo

the AHC for particular choices of the parameters of the AHC algorithm, i.e., of o,
B, and 7.

Theorem. Forany sequences of real numbers z;[t], %[t], 1 <i < n, and r[t+1],
t=0,1,2,..., for #[t + 1] defined by (22), (23), and (24) (the AHC algorithm),

there exists parameters o, 8, and 7, such that
afft+1]=adPt+1, V>0

where #[t + 1] is defined by 2 similar “primed” set of equations:
]
Pl =D vjiltl,
j=1

vi[t + 1) = ol[t] + B[t + 1)5[t], vi[0] =0,

and

Plt+1]=arft+1]+bp"[t+1] —cp'[,

for any constants o , f', a, b, ¢, with f' >0, and a,c #0.
Proof: We have that

odPlt+1=0o (arft+1]+bp"t+1] —cp[t]).

149

Choosing a =a'a and y=

GIQ"

P+ 1] =a (r[t +1]+v=pft+1] - Zpe)

=a (r[t + 1]+ 72 —vj[t]z;[t + 1] - i: z ;-[t]zj[t}) .

j=1 J—l
Since

afft+1] =« (r{t + 1] + '721{,[15 lz;[t+ 1] — Evj[t]xj[t])

=1 7=1
the theorem will be proven if it is shown that § can be chosen such that v;[t] =

Sullt],v¢ >0, Vi, 1 <4 < n. This is shown by induction, using g =cpg'.
v%[0] = &ug[o] =0, Vi, 1<i<n.

Combining (22), (23), and (24) gives

wlt+1] =yl +8 (r[t +1]+) vltlzlt +1) - Z v_,-[t}z:j[t}) z;[t]

J=1

By the inductive assumption and the choices of # and «,

3

= -—v’[t] +ecp (Z u’[t lzjlt+1] - zv; | t]) LAUR

i=1
Rearranging terms,

= Z [ofle] + ' (e rlt + 1] + bp"[t + 1) — c p"[t]) Z:lt]
= Z[oftlt] + B'7[t + 1)z:(]]

[/
[~
== ;U:[t + 1}.

Q.E.D.

150

Conclusions

The ideal reinforcement signal is that which provides the highest quality evalu-
ation of a learning system’s behavior. Temporal credit-assignment algorithms can
be viewed as attempts to approximate the ideal reinforcement signal. This theoret-
ical construct assists in the understanding of existing temporal credit-assignment
algorithms and the creation of new ones. It is possible to establish relationships
between the ideal reinforcement signal and temporal credit-assignment algorithms
that approximate it. In this chapter the ideal reinforcement signal has been used
as the basis for an informal derivation of the AHC temporal credit-assignment al-
gorithm. In such derivations there are several choice points from which different

paths lead to different algorithms.

The AHC algorithm is closely related to the “learning-by-generalization” al-
gorithm used in Samuel’s checker-playing program (Samuel, 1959). If Samuel’s
algorithm is simplified in several ways, including the removal of all features spe-
cialized for the game of checkers, for tasks in which off-line search is performed, and
for efficient implementation on a small computer, the only difference between what
remains and the AHC algorithm is that the latter includes an additional parameter,
the discount rate parameter. If the AHC algorithm’s discount rate parameter
is 1, it is identical to the simplified version of Samuel’s algorithm. Theoretical
analysis in terms of the ideal reinforcement signal suggests that while a non-unit
discount rate parameter is not needed for the special class of time-blind tasks,
which includes but is largely limited to game-playing tasks, it may be necessary

for other tasks.

CHAPTER VI

EXPERIMENTS INVOLVING SECONDARY REINFORCEMENT

The experiments described in preceding chapters concern learning tasks in
which stimuli are generated by an autonomous process unaffected by the behavior
of the learning system. Henceforth such tasks are called autonomous-stsmuls tasks.
Tasks in which actions selected by the learning system are allowed to influence its
subsequent stimuli are called nonautonomous-stsmuls tasks. Removing the restric-
tion to autonomous stimuli makes a surprisingly large difference in the effectiveness
of some learning algorithms. The best-performing algorithms in the experiments
of preceding chapters with autonomous-stimuli tasks are shown in this chapter to

be among the worst-performing on nonautonomous-stimuli tasks.

Nonautonomous-stimuli tasks were avoided in preceding chapters because they
provide opportunity for employing secondary reinforcement, that is, for using
information provided by the occurrence of stimuli to perform temporal credit-
assignment (see Chapter I). As long as stimuli are generated autonomously, they
provide no information relevant to the evaluation of the learning system’s behavior.
In preceding chapters it was useful to exclude secondary reinforcement in order to
investigate other issues in as simple a context as possible. Armed with the knowl-
edge gained from studying these more restricted classes of tasks, in this chapter we

consider tasks involving secondary reinforcement.

The first section of this chapter presents a series of simulations illustrating the

151

152

behavior of the AHC algorithm (see Chapter V) when repetitively presented with
specific temporal patterns of stimuli and primary reinforcement. Following sections
describe experiments with nonautonomous-stimuli tasks, three of which involve
abstract finite-state environments, and one which involves a realistic pole-balancing
environment. The secondary-reinforcement algorithms discussed in Chapter V
and a variety of algorithms that do not implement secondary reinforcement are

compared in performance on each task.

Illustrations of the Behavior of the AHC Algorithm

In this section the behavior of the AHC algorithm is illustrated by repeatedly
presenting it with specific sequences of stimuli and primary reinforcement. Since
the behavior of the AHC algorithm depends only on this input, all of which is
autonomously generated, a full learning system need not be simulated. In these
simulations, those parts of a full learning system that use the heuristic reinforce-
ment signal produced by the AHC algorithm, which select actions and update the
stimulus-action map, are omitted. In addition, since the operation of the algo-
rithm is deterministic, multiple runs and tests of statistical significance are also

unnecessary.

These simulations illustrate the behavior and operation of the AHC algorithm
rather demonstrate its capabilities. In most cases, the AHC algorithm’s discount-
rate parameter 7 is 1, so the behavior illustrated is also that of the SS algorithm
(see Chapter V). In a few cases the behavior of the AHC algorithm is contrasted
with that of a reinforcement-comparison algorithm; the intent in these is not to
demonstrate a superior ability of the AHC algorithm, but only to illustrate by

comparison certain problems with the reinforcement-comparison algorithm.

Figure 34 shows the behavior of the AHC algorithm (defined by (22), (23),

153

(24), and (15)) and of a reinforcement-comparison (RC) algorithm (defined by (17),
(18), (20), and (15)) when repetitively presented with a brief stimulus followed by
a brief period of primary reinforcement. Time trajectories of the input variables
are shown in the upper part of the figure, and synchronized plots of # for the two
algorithms on subsequent trials (in increments of 10) are shown below. A trial here
is defined as a single complete presentation of the input sequence shown at the top
of the figure. The first plot of # is due to a fictitious “Trial 0” in which the input
sequence is presented to the algorithm and # is measured, but during which no

learning occurs. This plot thus represents the initial behavior of each algorithm.

This simulation compares the behavior of the AHC and RC algorithms in one of
the simplest cases in which stimuli provide information about forthcoming primary
reinforcement. The stimulus is a “vector” of a single component. It is nonzero for
only one time step, and is immediately followed by positive primary reinforcement,
also lasting one time step. During an input event the corresponding input variable
(z;[t] or r[t]) takes on the value 1; otherwise it is 0. The temporal relationships
in this simulation have been chosen to illustrate in as pure and simple a form
as possible both 1) the basic idea of a secondary-reinforcement algorithm, and
2) that the RC algorithm fails to capture this idea and thereby ends up being

counterproductive.

The behavior of the AHC algorithm shown in Figure 34 is the ideal behavior for
a realizable temporal credit-assignment algorithm in this situation. This ideal be-
havior includes characteristics of both secondary-reinforcement and reinforcement-
comparison mechanisms. Reinforcement always follows the stimulus, so credit
should be assigned (# should be positive) at the time of occurrence of the stimu-
lus. This behavior—using a stimulus predictive of reinforcement to assign credit
earlier—is the hallmark of a secondary-reinforcement algorithm. Since reinforce-
ment is always preceded by the stimulus, no credit should be assigned (# should

be 0) at the time of reinforcement, because the reinforcement has already been pre-

AHC RC
r i]
i ﬂL
X It i
r 3 h
b |
0 s g1
10 / /i
20 A!{\\ /ﬂ’-
A
30
A)
Iy
f
i\
;‘\l
]
{
50 i

Figure 34. Behavior of the AHC and RC Algo-
rithms when Presented with a Brief Stimulus
Followed by Primary Reinforcement. Behavior
on the left is due to the AHC algorithm, and behavior
on the right is due to the RC algorithm. The upper
traces show the input sequence repetitively presented
to each algorithm. Below are synchronized plots of
the behavior of #[t + 1] on subsequent trials.

154

dicted. This second behavior is a consequence of the use of the difference between

actual and predicted reinforcement to assign credit (to determine #). It is char-

acteristic of a reinforcement-comparison algorithm. The AHC algorithm produces

both behaviors discussed above, illustrating that it implements both secondary-

reinforcement and reinforcement-comparison mechanisms. The RC algorithm, on

155

the other hand, implements only a reinforcement-comparison mechanism, and thus
produces only the first behavior: It eliminates the original reinforcement without

creating earlier reinforcement (see Figure 34).

The behavior shown in Figure 34 is produced using the parameter values g = .5
and 4 = 1. The trace decay parameter A used in computing %; via (15) is such
that the time constant 7 of the trace’s exponential decay is 10 time steps. The

corresponding value for A is

A=1-—¢Vr,

In this and all following illustrative simulations the trace variables of the algorithms
(the %;) are set to zero between trials to simulate the effect of very long inter-trial

intervals.

Figure 35 shows the behavior of the AHC algorithm when presented with a
temporal sequence of four clearly distinguishable stimuli followed by a brief period
of primary reinforcement. Time trajectories of the input variables are shown twice
in the upper part of the figure, and synchronized plots of #[t + 1] and p*[t + 1]
on successive trials from Trial 1 to Trial 10 appear below. This experiment used
parameter values f=.6, v = 1, and 7 = 5. The four stimuli are each 10 time
steps in duration, and the reinforcement lasts 1 time step. The simulation does
not quite reach its asymptotic state during the 10 trials shown here. Eventually, #
is positive only at the onset of the most earliest stimulus, and pt[t + 1] is positive

and unchanging over the time interval during which stimuli are present.

Notice how the times of positive # gradually move earlier in the input sequence.
The stimuli occurring temporally closest to reinforcement become associated with
reinforcement first, and they then act as the basis for association of earlier stimuli.
The behavior of p follows a similar pattern: p is first positive only just before
reinforcement, then gradually becomes positive earlier to the extent allowed by the

stimuli.

156

AHC
; I |
” .]
< - -

2
Xg L -

N 1

-

2 A A [

3 o T
— A‘i

— AN N - , | I

AN N A / \—

10 /\ / _

Pigure 35. Behavior of the AHC Algorithm
when Presented with a Temporal Sequence of
Stimuli Followed by Primary Reinforcement.
The upper traces show the input sequence repetitively
presented to the AHC algorithm. Below are synchro-
nized plots of the behavior of #[t + 1] and p‘[t + 1] on
successive trials.

Note that each positive # event, except for that at the time of reinforcement,
matches in size and timing a corresponding increment in p. The size of the # event
at the time of reinforcement is determined by the difference between the original
effect of r on #, shown in the Trial | plot, and the final decrement in p. In the last

few trials shown, these exactly cancel out. These observations are readily related

157

to the equation defining # (Equation 24):

Flt + 1] = r[t + 1] + vt + 1] - p*[t].

During the time when reinforcement is not present, r is zero, leaving # determined
only by the last two terms, which are roughly the change in p from one time step
to the next. When reinforcement is present, its direct effect on # adds to a negative
effect due to the decrement in p, leaving # determined by the difference in size of

these two effects.

For comparison, Figure 36 shows the result of a simulation identical to the
preceding one, except using the RC algorithm. With this algorithm an # event,
if predictable, causes an # event of the opposite sign to precede it. The result, in
this case, is that # and p exhibit oscillatory behavior. It seems unlikely that this

behavior has any use in terms of temporal credit assignment.

Figure 37 summarizes the behavior of the AHC algorithm when presented with
a stimulus and a brief period of primary reinforcement in 6 temporal configurations.
The 6 input sequences are shown in the upper part of each segment of the figure.
The lower part shows plots of the initial and near asymptotic behavior of # when
the AHC algorithm is repetitively presented with the input sequence. In all cases
the values of relevant parameter are § = .02, 7 = 10, and 7 = 1. The near

asymptotic behavior shown is actually the behavior on the 1000th trial.

In the simulations whose results are shown in Figures 37a and 37b, the offset
of the stimulus precedes reinforcement by 20 and 10 time steps respectively. In
both cases the stimulus becomes associated with reinforcement such that its onset
causes # to become positive (indicating credit) and its offset causes # to become
negative (indicating blame). In effect, the stimulus has come to be seen as a
harbinger of high forthcoming reinforcement: Its onset is viewed as a good sign

and its offset as a bad one. As a consequence, the occurrence and maintenance

158

RC

;] 1
X, 1 —
X, 1 .

. 1 [

M —

P ;A_jﬁ\j_// | T _/f“\——

Figure 36. Behavior of the RC Algorithm when
Presented with a Temporal Sequence of Stimuli
Followed by Primary Reinforcement. The upper
traces show the input sequence repetitively presented to
the RC algorithm. Below are synchronized plots of the
behavior of #[t + 1] and p*[t + 1] on successive trials.

of the stimulus would become desired and sought by the learning system. Note
that the asymptotic association between the stimulus and reinforcement is stronger
for the case shown in Figure 37b, in which the stimulus occurs in closer temporal
proximity to reinforcement. Although these simulations alone are not enough to
demonstrate it, association in fact falls off in an exponential fashion as the interval
between stimulus offset and reinforcement onset increases, with the time constant

of the exponential fall equal to 7. The level of association is maximal when this

159

-
o
e
e

b e
r il n__
] i | {
X i | S—
A
2o \ A

Figure 37. Behavior of the AHC Algorithm
when Presented with a Stimulus and Primary
Reinforcement in a Variety of Temporal Con-
figurations. The upper traces of each segment of
the figure show the input sequence repetitively pre-
sented to the algorithm. Below are synchronized
p[lots o}f the initial and near asymptotic behavior of
Flt+1).

time interval is zero, as in Figure 37c. In this case the negative effect on # due to
the end of the stimulus coincides with and exactly cancels out the positive effect

on # due to primary reinforcement.

160

If the offset of the stimulus occurs after the onset of reinforcement, as in the
simulations shown in Figures 37d, 37e, and 37f, the asymptotic level of association
of the stimulus with reinforcement decreases. If the onset of the stimulus occurs
at the same time as (as shown in Figure 37f), or later than, the time of primary

reinforcement, then no association is made.

Figure 38 summarizes the behavior of the AHC algorithm when presented with
two stimuli and a brief period of primary reinforcement in 6 temporal configura-
tions. As in Figure 37, the upper part of each segment of Figure 38 shows the 6
input sequences, and the lower part shows the initial and near asymptotic behav-
ior of # when the indicated input sequence is repetitively presented to the AHC
algorithm. In all 6 simulations the first stimulus, z;, lasts 10 time steps and ends
when reinforcement begins. The second stimulus, z3, varies in its timing and du-
ration over the 6 simulations, generally occurring later in subsequent experiments.
The parameters values used are the same as those used in the preceding set of

simulations.

In the simulation whose result is shown in Figure 38a, the first stimulus occurs
just prior to reinforcement and becomes fully associated with reinforcement. The
second stimulus, which precedes the first stimulus by 20 time steps, becomes as-
sociated with reinforcement to a lesser extent. This extent is approximately the
same as that of the stimulus in Figure 37b, which precedes resnforcement by 20
time steps. In other words, the onset of z;, the later stimulus, in Figure 38a is
acting to create earlier associations just as primary reinforcement does in Figure
37b. The same phenomenon is seen in Figure 38b. Here z2 ends when z; begins,
and it becomes fully associated with reinforcement, just as the stimulus z that
ends when reinforcement begins in Figure 37c becomes fully associated. Figure 38c

is also related to Figure 37e is this way.

Figures 38d, 38e, and 38f illustrate competition between stimuli for association

161

a
. 1 d 1
X, 1 I
Xs 1 1
o A A

r AY;
b e
; N 1
X, i | {
X, 5 ‘ 1

c f
. I I
X, 1 1
Xy S B
o A A
— A A

Figure 38. Behavior of the AHC Algorithm
when Presented with two Stimuli and Pri-
mary Reinforcement in a Variety of Temporal
Configurations. The upper traces of each segment
of the figure show the input sequence repetitively
presented to the algorithm. Below are synchronized
pfots o]f the initial and near asymptotic behavior of
Flt+1].

with reinforcement. In Figure 38d the two stimuli are identically timed and each

acquires a half strength association with reinforcement.* Note that the behavior of

* Unlike the other observations made in this section, this is not deducible from the plots
shown, but has been determined by direct inspection of the reinforcement-association vector.

162

here is the same as if only one stimulus had preceded reinforcement (as in Figure
37c). The association with reinforcement is shared equally between the two stimuli.
For the cases shown in Figures 38e and 38f, on the other hand, no sharing occurs. In
these two cases one of the two stimuli becomes fully associated with reinforcement
and the other remains completely unassociated. This result is striking because
the unassociated stimulus would have acquired substantial association if it had
occurred alone. In these two cases one stimulus absorbs all the available association,
including what would have gone, in its absence, to the other stimulus. For the case
shown in Figure 38e, the stimulus that begins earlier is the one that becomes fully
associated. For the case shown in Figure 38f, the stimulus that ends just as primary
reinforcement begins is the one that becomes fully associated. In both cases the
behavior exhibited moves the time at which # becomes positive as early as possible

given the stimulus pattern, while minimizing other fluctuations in #.

All preceding illustrations of the AHC algorithm’s behavior have used the value
1 for the discount rate parameter y. With 7 =1, the AHC algorithm is equivalent
to the SS algorithm (see Chapter V). The simulation whose result is shown in Figure
39 illustrates how the AHC algorithm’s behavior changes when 7 is chosen less
than 1. Figure 39 shows the initial and asymptotic behavior of #[t + 1], and the
asymptotic behavior of pt[t+ 1], for a simulation identical to that shown in Figure
35, with the exception that here 4 = .98 instead of 7y = 1. The largest positive #
event in the asymptotic behavior with both 7 =1 and v = .98 is at the onset of
the earliest stimulus (see Figures 35 and 39). However, with 4 = 1 there remain
positive # events at the onset of each of the following stimuli, whereas with v =1,

at the asymptote is zero at all times other than the onset of the first stimulus.

For the AHC algorithm with v < 1, stimuli that occur in closer temporal
proximity to reinforcement are more highly valued. The arrival of each successive

stimulus indicates that the forthcoming reinforcement is a little nearer, causing #

163

p* / §

Figure 39. Behavior of the AHC Algo-
rithm with 7= .98 when Presented with a
Sequence of Stimuli Followed by Primary
Reinforcement. The upper traces show the in-
put sequence repetitively presented to the AHC
algorithm. Below are plots of the initial and near
asymptotic behavior of #[¢t + 1], and the near

asymptotic behavior of pf.

to be positive and credit to be assigned. With v < 1, the prediction p of rein-
forcement must increase from step to step in order o be sustained. This is why, in
Figure 39, p af asymptote continues to increase during the input sequence. To sus-
tain a given level of prediction it must be followed either by primary reinforcement
or by a new higher level of prediction. If 7 = 1, on the other hand, a prediction
can be sustained indefinitely at a constant level. This qualitative consequence of

the small quantitative change from v=1 to 7 < 1 may be the cause of the large

164

changes in performance that were observed when this change is made in some of

the experiments discussed later in this chapter.

Sutton and Barto’s Classical Conditioning Model

Sutton and Barto presented an adaptive element analog of classical conditioning
that is closely related to the AHC algorithm (Sutton and Barto, 1981; Barto and
Sutton, 1982). They presented many simulations where the results, properly inter-
preted, apply to the AHC algorithm as well. This section details the relationship
between the two algorithms and shows how to interpret the earlier results obtained
with the classical conditioning model as further illustrations of the behavior of the

AHC algorithm.

There are two differences between the notation used here and that used in
earlier papers to describe the classical conditioning model. The first difference
involves the time at which stimuli are said to occur. What is denoted in earlier
papers concerning the classical conditioning model as z;[t — 1] is denoted here as
z;[t] . The second difference involves the timing of the trace variables. What are
denoted in earlier papers describing the classical conditioning model by [t — 1]
and %[t — 1] are here denoted by §[t] and Z[t] (defined by (15)). Making these
changes in notation, the main equation defining the classical conditioning model

can be written as

vt +1] = o] + B (y[t] — gt — 1)) z:[¢], (41)
where .
ylt] =) vilt]zlt +1]. (42)
=0

All published simulation experiments with the classical conditioning model used

165

a degenerate form of the trace §[¢ — 1] that is equivalent to y[t — 1]. Assuming

this case, (41) and (42) can be combined and rewritten as

wlt + 1= wl] + 8 [D vjltlale + 11— 3 vjlt — 1zl | zifel.

7=0 7=0

In the classical conditioning model, input pathway zy corresponds to the un-
conditioned stimulus (UCS) pathway. The corresponding weight, vy , is not modifi-
able. This input plays a role similar fo that of the piece-advantage term in Samuel’s
checker-playing program (see Chapter V) and to that of primary reinforcement in a
reinforcement learning task. The change in zp from time step to time step is what
corresponds most directly to primary reinforcement in the classical conditioning
model: r[t+ 1] = vozo[t + 1] — vozo[t] . Making this substitution allows us to write

the classical conditioning model as

7

vt + 1] = vt + B | rlt+ 11+) vjltlz,lt + 1] - Zvjt—l]z]t] 1.
i=1 j=1

Converting to the p°[t] notation defined by (22) yields
wlt +1) = oit] + B (rlt + 1] + p'ft + 1] — p1[8]) 218 (43)

The algorithm given by (43) is equivalent to the classical conditioning model studied
by Sutton and Barto. It is also almost identical to the AHC algorithm with v =
1, ie., to the SS algorithm (cf. (23) and (24)). The only difference is that the
classical conditioning algorithm uses p!~1[t] in its subtractive p term while the
AHC algorithm uses pt[t], i.e., the classical conditioning algorithm uses @]t — 1]
here while the AHC algorithm uses ¢]t]. Since ¥ is expected to change very little
from one time step to the next, this difference should have little practical effect
under normal conditions. The results obtained with the classical conditioned model

should also hold without significant change for the AHC algorithm with v =1,

166

where the change in the UCS signal (zo) from time step to time step should be

viewed as the primary reinforcement signal (as described above).

The classical conditioning model, the simplified version of Samuel’s algorithm,
and the AHC algorithm with 4y = 1 are all nearly identical. It is intriguing
that such disparate goals as making a high-performance checker-playing program,
accurately modeling certain classical conditioning data, and approximating formal-

izations of an ideal reinforcement signal can yield such similar algorithms.

Experiment 1: Reinforcement Anticipation

The state-transition structure of the environment used in Experiment 1 is
shown in Figure 40. The environment has 4 states, labeled 1 through 4, orga-
nized in a loop. Primary reinforcement is zero at all times except when the loop
is completed and the environment returns to its initial state. At each time step
the environment either remains in the same state or moves one state farther along
the loop. The probability with which these two alternatives occur depends on the
action selected. If Action 1 is selected, the environment moves to its next state
with probability .6 and remains in its current state with probability .4. These
two probabilities are reversed if Action 0 is selected. (Action 1 corresponds to the
right-side actions in Figure 40.) Since reinforcement is maximized by progressing
around the loop as rapidly as possible, Action 1 is the better (correct) action from

all states.

The stimulus representation of states on this task is such that no state is similar
to any other. Corresponding to the ¢ th state is a stimulus vector # all of whose

components are zeros except for the tth, which is 1 (e.g., 7% = (0,1,0,0)).

Table 7 lists the 10 algorithms applied to the task. Algorithms 4, 5, 8, and 9 are

167

Figure 40. State-Transition Structure of the En-
vironment used in Experiment 1 of Chapter VI.
Each circle represents a state of the environment. State
transitions are probabilistically dependent on the ac-
tion selected by the learning system. The labels on the
arc branches indicate the probability with which that
transition occurs given that the arc’s action is selected.
Left arcs correspond to Action 0, right arcs to Action
1. The expected value of the reinforcement signal is 0
for all state transitions except that from the top state
back to the start state.

identical to the like-numbered algorithms of Chapter IV. Algorithms 12 and 13 use
the AHC algorithm. Algorithm 12 uses an eligibility factor based on ylt] — %, and
Algorithm 13 uses an eligibility factor based on y[t] — #[t]. Similarly, Algorithms
14 and 15 use the SS algorithm (defined by (22), (23), and (38)), and Algorithms
16 and 17 use Witten’s algorithm (defined by (22), (23), and (40). All algorithms

168

Table 7. Learning Algorithms of Chapter VI.

Number Update Rule
45 w; [t + 1] = w; [t] + ar{t + l]é.'[t]
8,9 wit + 1] = wi[t] + a(r|t + 1] - p[t])aE]

vilt + 1) = vi[t] + B(r[t + 1] - p'[e])2: 1]
12,13 wi[t + 1] = wilt] + a(r[t + 1] + 40|t + 1] — ptft))at]
vilt + 1) = v [t] + B(r[t + 1] + vpt[t + 1] — pt[t])2:[¢]
14,15 wit + 1] = wi[t] + a(r[t + 1] + p*[t + 1] — p*[t])&it]
vi[t + 1] = v;[t] + B(rlt + 1] + p'[t + 1] — p*[e])2:]]
16,17 wilt + 1] = wi[t] + «((1 = ¥)rft + 1] + 4ptt + 1))

vi[t + 1] = v;[t] + B((1 — ~)r[t + 1] + vpt[t + 1])2;]¢]

Where:

eilt] = (ylt] — 1/2);t], for even numbered algorithms;
! (ylt] — =[t])=:[t], for odd numbered algorithms.

wil0]=0 u[0]=0 yft]e{,0} a>0 B=05 O0<y<l1

_ J 1, if s[t] + glt] > 0;
vl = {0, otherwise.

where 5[] is a normally distributed random variable of mean 0 and standard deviation o, = .1,

and
n
slt] = Z w;[t]z;[t]
i=1
xz[t] is the probability that y[t]=1, given Z|f]

13

Pl =) wilslzl plo] =[2]

i=1
For any time sequence 2{f], 2[t] is defined by

) =(1-68)z[t — 1] +62[t] z[0]=0 O0<d<1

169

were run at a range of values for the a parameter, and at fixed values for the other
parameters. The a values used were the powers of 2 from 278 to 272. The other

parameter values used were f=.1, § =.5, and v=.95.

100 separate simulation runs were made with each algorithm, each run differing
only in the initial seed of the random number generator. Runs were terminated
after 300 complete trips had been made around the 4-state loop. At the end of
each run the final probability of taking each action in each state was computed and
recorded, as discussed in previous chapters. As a measure of performance on the
run, the expected value of the time it would take to complete one circuit around the
loop, with the final probabilities found by the algorithm, was computed as follows,
where p; denotes the final probability of taking Action 0 when the environment is
in state i:

4
§ A4+ 2p;
Using this performance measure, the algorithms that performed best are those with

the lowest score.

The expected circuit times were averaged over the 100 runs with each algorithm
at each a value to yield the data shown in Figure 41. This figure plots the average
performance levels due to each algorithm at each o value. The upper dashed
line indicates the initial, chance performance level achieved when both actions are
selected with equal probability from all states. The lower dashed line indicates the
optimal performance level, that achieved when Action 1 is selected with probability

1 from all states.

The AHC algorithms (12 and 13) and the SS algorithms (14 and 15) performed
best on this task. The AHC algorithms performed slightly but significantly better
than the SS algorithms, and the algorithms with eligibility terms based on y[t]—|[t]
(13 and 15) performed slightly but significantly better than those with eligibility
terms based on yft] —- % (12 and 14). Algorithms 4 and 5, the algorithms based on

170

EXPERIMENT 1, ALL HLGORITHMS

TIME

EXPECTED CIRCUIT

Figure 41. Algorithm Performance on Experiment
1 of Chapter VI. Low values correspond to better per-
formances on this graph. Each point represents the average
performance over all runs with a particular algorithm and o
value, where performance on a run is defined as the expected
value of the time it would take to complete a full trip around
the environment shown in Figure 40. Points due to the same
algorithm (with different « values) are connected by lines;
the numeric label indicates the associated algorithm. The
lower dashed line marks the optimal performance level, and
the upper dashed line marks the chance performance level.

pure averaging without a heuristic-reinforcement component, performed next best,

followed by Algorithms 8 and 9, and then by Algorithms 16 and 17.

Algorithm 5, with an eligibility term based on ylt] — #[t], performed signifi-
cantly better than Algorithm 4, which is identical except that its eligibility term
is based on y[t] —- -% For Algorithms 4 and 5 this task is a series of noisy delayed-
reinforcement tasks, one corresponding to each state of the environment. The noise

is due both to the environment making state transitions non-deterministically and

171

to the variation in the actions selected from later states. These algorithms learned
slowly because delayed-reinforcement tasks, particularly noisy ones, are very diffi-

cult, as was seen in Experiment 1 of Chapter IV.

Based on the illustrative simulations presented earlier in this chapter, it is easy
to understand why the RC algorithms (8 and 9) performed so poorly on this task,
and why Algorithms 12-15 performed so well. Stimuli indicating the environment’s
state, particularly those indicating later states in the loop, can be used to predict
the final reinforcement received on completing the loop. As we saw in the earlier
simulations, the RC algorithm uses predictive information to “cancel out” nonzero
reinforcement, eliminating its ability to reinforce. Algorithms 8 and 9 performed
poorly because the RC algorithm eliminated the reinforcement they need in order
to learn. The AHC and SS algorithms, on the other hand, work on this task
much like they do in the simulation whose result is shown in Figure 35: Stimuli
become associated with reinforcement according to their temporal proximity to
it. As a consequence, # becomes positive each time a new state in the loop is
reached. Because Algorithms 12-15 received this immediate rather than delayed

reinforcement, they performed much better than the other algorithms.

The performance of Algorithms 16 and 17, based on Witten’s temporal credit-
assignment algorithm, was scarcely above the chance level. Whereas the perfor-
mance of most algorithms was an inverted-U shaped function of «, with the opti-
mal a clearly within the tested range, for Algorithms 16 and 17 it seems possible
that performance might have been better at higher o values. However, additional
simulation runs with higher a values, not reported in Figure 41, have ruled out this
possibility. The performance of these algorithms becomes more erratic at higher
a values, but not better. The poor performance of these algorithms that include
a secondary-reinforcement mechanism but that do not include a reinforcement-
comparison mechanism suggests that these two features should be combined, as

they are in Algorithms 12-15, in order to take effective advantage of secondary

172

reinforcement on this task.

Many of the algorithms using y[t] — «[t] in their eligibility factors performed
slightly better than the corresponding algorithms using ylt] — % The ylt] — %
algorithms also performed best at lower o values than those at which y[t] — [¢]
algorithms performed best. Probably, y[t] — % algorithms perform worse because
they settle too rapidly on the action choice that looks good early on and then never

try the other. The following two experiments shed more light on this issue.

Experiment 2: An “Easy” Action Sequence

On delayed-reinforcement tasks, long eligibility traces are essential for algo-
rithms (such as Algorithms 4, 5, 8, and 9) that do not attempt to anticipate the
delivery of reinforcement via secondary reinforcement. The need to perform a se-
quence of actions to get reward is a common way for delayed reinforcement to arise.
The task used in Experiment 2 is one of the simplest of such cases, and one which
one might think would be very easy. The experiment illustrates a serious problem
for some of the less sophisticated algorithms that can occur when reinforcement is

delayed and eligibility traces are long.

The task in this experiment is like that of Experiment 1 except that it is much
easier. The environment is diagrammed in Figure 42. The 4 states are arranged in
a loop, with positive reinforcement available only on the completion of a full circuit
around the loop. This environment differs from that of Experiment 1 in that its
behavior is a deterministic function of the learning system’s action. An action of 1
always results in the environment moving ahead by one state in the loop of states,

and an action of 0 always results in the environment remaining in the same state.

Asin the environment of Experiment 1, all states are completely distinguishable

173

Figure 42. State-Transition Structure of the
Environment used in Experiment 2 of Chap-
ter VI. This simple environment causes surprising
difficulties for some algorithms. FEach circle repre-
sents a state of the environment. Arc labels indicate
the expected value of primary reinforcement should
that state transition occur. Which state transition
occurs (which arc is followed) depends deterministi-
cally on the action selected by the learning system.
All states are completely dissimilar.

and dissimilar. Corresponding to the ¢ th state is a stimulus vector #* all of whose

components are zero except for the 1th, which is 1 (e.g., #* = (0,1,0,0)).

All of this chapter’s algorithms were applied to this task, each with a range of
values for a, and at fixed values for the other parameters. The o values used were
the powersof 2 from 278 to 22. For the purposes of this experiment, the eligibility
traces used in updating @ needed to be long, but the traces used in updating ¢

did not. To accommodate two different traces, two different trace parameters, &,

174

and §,, were used. 0§, was chosen near zero (.1) so as to make the eligibility
traces correspondingly long. The other parameter values were 6, = .5, g = .3,

and v=.95.

160 separate simulation runs were made with each algorithm, each run differing
only in the initial seed for the random number generator. Runs were terminated
after 100 complete trips had been made around the 4-state loop, or if more than
5000 steps passed without completing a trip. At the end of each run the final
probability of taking each action in each state was computed and recorded, as
discussed in previous chapters. The expected value of the time to complete one
circuit around the loop, with the final probabilities found by the algorithm, was

also computed at this time.

The expected circuit times were averaged over the 100 runs with each algorithm
and o value. The inverse of the average expected circuit time was used as a
measure of performance of each algorithm at each a value. Figure 43 plots these
performance levels, with those due to the same algorithm at different values of o
connected by lines. The lower dashed line indicates the initial, chance performance
level achieved if both actions are selected with equal probability from all states. The
upper dashed line indicates the optimal performance level achieved if the correct

action (1) is selected with probability 1 from all states.

Performances varied widely on this task, both among algorithms and among
different o values with the same algorithm. Algorithms 4, 14, and 16 performed
near or slightly above the chance level for very low o values and at the zero level
for higher o values. Algorithms 5, 13, and 15, on the other hand, performed near
optimally at several a values, although they too performed at the zero level for
the highest o values. Note that the zero performance level is significantly worse
than the chance performance level. In these cases the algorithm learned to always

(or nearly always) make the wrong choice of action from one of the 4 states, leaving

175

EXPERIMENT 2, EASY ACTION SEQUENCE

.25

STEP

PER

AVERAGE FINAL E (R)

RLPHA

Figure 43. Algorithm Performance on Experiment
2 of Chapter VI. Each point represents the average per-
formance over all runs with a particular algorithm and o
value, where performance on a run is defined as the expected
value of primary reinforcement per time step at the end of
the run. Points due to the same algorithm ﬁwith different
a values) are connected by lines; the numeric label indicates
the associated algorithm. The upper dashed line marks the
optimal performance level, and the lower dashed line marks
the chance performance level.

the learning system trapped in that state.

This task seems like a straightforward and even easy case in which a sequence
of actions leads to reinforcement. Why do all algorithms “get stuck” at sufficiently
high o values, and, more importantly, why do so many algorithms, e.g., Algorithms
4, 14, and 16, perform so poorly at all o values on this task? At root, the reason
for the difficulty involves the long eligibility traces used and the resultant conflict

between recency and frequency credit-assignment heuristics.

176

Early in a run the incorrect action is probably selected by chance several times
from one of the states before the correct action is selected. When reinforcement
is finally received, the incorrect action, even though it delayed the delivery of re-
inforcement, may well be assigned more credit than the correct one. The correct
action was selected in closer temporal proximity to reinforcement than the incor-
rect action, but the incorrect action was selected more often. With long eligibility
traces, the frequency heuristic may easily outweigh the recency heuristic and assign
greater credit to the incorrect action. As a result, on the next trip around the loop,
the learning system is more likely to choose the incorrect action, increasing the like-
lihood that it is selected multiple times before the correct action is finally selected.
This in turn accentuates the tendency to assign credit incorrectly. The learning
algorithm becomes caught in a vicious circle: Each time it manages to get past
its “stuck state,” its tendency to get stuck becomes stronger. The learning system

ends up forever choosing the incorrect action and never receiving reinforcement.

Algorithms are least susceptible to this problem at low a values. The vicious
circle is entered only after an algorithm gets a significant start towards selecting

the wrong action; if learning is slow enough this is unlikely to happen.

The results shown in Figure 43 indicate that the even-numbered algorithms,
those using y[t] — -;— in their eligibility factors, are much more susceptible to this
problem than the odd-numbered algorithms, which use y[t] — x[t]. In the case of
the latter algorithms, when one action is more likely to be chosen than the other,
its eligibility is discounted proportionally. This discounting exactly counteracts
the extra credit the action tends to receive due to its greater frequency, and thus

avoids the vicious circle.

Although the difference in eligibility terms explains most of the performance
variations among algorithms on this task, there remain some clear effects due to the

form of heuristic reinforcement used. The use of the AHC algorithm significantly

177

improves performance; Algorithm 12 performed much better than Algorithm 4, and
Algorithm 13 performed slightly better over a wider range of a values than did
Algorithm 5. The SS algorithms (14 and 15) performed nearly identically to the
algorithms with no heuristic reinforcement mechanism (4 and 5), and worse than
the AHC algorithms (12 and 13). The two algorithms using Witten’s algorithm
(16 and 17) never exceeded the chance performance level at any « value. Finally,
the pure reinforcement-comparison algorithms (8 and 9) performed only slightly

better than chance.

The difficulties that some algorithms have on this task are due to their long
eligibility traces. Although the AHC algorithms perform better than those algo-
rithms without a reinforcement-anticipation mechanism in this experiment, a more
important advantage of such secondary-reinforcement algorithms in this regard is
that they greatly reduce the need for such long traces. Algorithms 4 and 5 must
have traces sufficiently long to span the full time from action to primary reinforce-
ment. If reinforcement can be anticipated and moved temporally closer to the

actions that cause it, then eligibility traces can be much shorter.

Experiment 3: Misleading Generalizations

Chapters III and IV examined several forms of misleading generalization and
the ability of various algorithms to overcome them. Experiment 4 of Chapter
IV, in particular, involved a case of misleading generalizations accentuated by
different lengths of delays between action and reinforcement for two similar stimuli.
Experiment 3 of this chapter concerns a similar situation, brought about when a

sequence of actions is required in order to obtain reinforcement.

In tasks which require a correct sequence of actions, it is common for the

correct action to be different at different points in the sequence. If any pair of such

178

points involves similar stimuli, then a particularly difficult problem of misleading
generalization may arise. Figure 44 diagrams the environment used in Experiment
3; it is one of the simplest cases in which this problem may occur. In this task,
a sequence of two actions is required for positive reinforcement. The two actions
are different, and the corresponding stimulus vectors are similar according to the
linear mapping metric of similarity (positive inner product). Upon completion of
the correct action sequence, the environment returns to its initial state. From
the first state, Action O is correct, since it leads on to the second state, whereas
Action 1 leaves the environment in the first. Either action results in a primary
reinforcement signal value of zero. From the second state, Action 1 is correct, since
it results in primary reinforcement of +1 and the environment returning to the first
state, whereas Action O results in zero primary reinforcement and the environment
remaining in the second state. The stimulus vectors for the two states #! and 72
are the same as those used in earlier misleading generalization experiments; they

are also shown in Figure 44.

All algorithms listed in Table 7 were applied to this task, each with a range
of values for a, and at fixed values for the other parameters. The o values used
were the powers of 2 from 2710 to 2!. For the purposes of this experiment, the
eligibility traces used in updating @ needed to be short, but the traces used in
updating ¢ did not. Accordingly, 6, = .9 and 6§, = .5. The other parameter

values were f = .3, and 7= .95.

100 separate simulation runs were made with each algorithm, each run differing
only in the initial seed of the random number generator. Runs were terminated
after 50 complete trips had been made from the first state and back via the second
state, or if more than 2000 steps passed without completing a trip. At the end
of each run the final probability of taking each action in each state was computed
and recorded, as discussed in previous chapters. The expected value of the time to

correctly complete a trip, with the final probabilities found by the algorithm, was

179

Figure 44. State-Transition Structure
of the Environment used in Experiment
3 of Chapter VI. Each circle represents a
state of the environment. Arc labels indicate
the expected value of primary reinforcement
should that state tramsition occur. Which
state transition occurs (which arc is followed)
depends deterministically on the action se-
lected by the learning system. Left arcs cor-
respond to Action 0, right arcs to Action
1. The similar stimulus vectors presented in
each state are also shown.

also computed at this time.

The expected circuit times were averaged over the 100 runs with each algorithm
and o value. The inverse of the average expected circuit time was used as a
measure of performance of each algorithm at each o value. Figure 45 plots these
performance levels, with those due to the same algorithm at different values of «
connected by lines. The lower dashed line indicates the initial, chance performance
level achieved if both actions are selected with equal probability from both states.

The upper dashed line indicates the optimal performance level achieved if the

180

EXP. 3, MISLEADING GENERALIZATIONS

T e o
| arnn
td
—
o
L4
=
Ll
a
& 3
Lid
25+ V‘ |
‘J s
a | \
= oF | ‘
H l‘r
. | \. \
Lt \ | \ o \
a 1 h \
i \ 8 \\g \) \ |
> \
e A \\ J \
0r b - %ﬁ*‘*—ﬁ
1 I i L : 1 i l I j I ‘
2-10 9-8 53-8 5-7 5-6 5-5 9-4 95-3 95-2 5-| . 2

Figure 45. Algorithm Performance on Experiment
3 of Chapter VI. Each point represents the average per-
formance over all runs with a particular algorithm and «
value, where performance on a run is defined as the ex-
pected value of primary reinforcement per time step at the
end of the run. Points due to the same algorithm (with dif-
ferent o values) are connected by lines; the numeric label
indicates the associated algorithm. The upper dashed line
marks the optimal performance level, and the lower dashed
line marks the chance performance level.

correct action is selected with probability 1 from both states.

The results were similar to those of the preceding experiment. Performance
varied widely, both among algorithms and among different o values with the same
algorithm. All algorithms except one performed at the zero level with the highest o
value. At lower values, the even-numbered algorithms performed very poorly, with
the exception of Algorithm 12. Most of the odd-numbered algorithms performed

near optimally over a range of a values.

181

An algorithm performing at the zero level on this task is performing much worse
than the chance level. In all of these cases the learning system learned to make the
incorrect action from the first state with a very high probability. This caused it to
get stuck at that state and never complete a full trip. The reason for this is clear:
Different actions are correct in each state, yet the stimuli are similar. The learning
in both states generalizes inappropriately to the other. The learning in the second
state proceeds more rapidly than that in the first because reinforcement is less
delayed there. For some algorithms, the learning from the second state proceeds
go rapidly that its generalization to the first overwhelms the learning taking place
there and causes the learning system to always select the incorrect action. For

these algorithms, the more learning takes place, the worse they perform.

As in the preceding experiment, the algorithms using y[t]— % in their eligibility
factors (the even-numbered algorithms) are much more susceptible to the problem
than those using y[t] — x[t] (the odd-numbered algorithms). Algorithm 4, for
example, never significantly exceeded the chance performance level at any a value,
while Algorithm 5, identical except for this difference in eligibility factors, attained
near optimal performance at several a values. The best performing algorithms
were 12, 13, 15, and 5. Apparently, the AHC algorithm and the SS algorithm
improve performance on this task, because Algorithms 12 and 14 performed better
than Algorithm 4, and Algorithms 13 and 15 performed near optimally over a wider
range of a values than did Algorithm 5. Algorithm 12, in particular, performed
best of all algorithms, yet it differs from Algorithm 4, which performed worst of
all algorithms, only in that it uses the AHC algorithm.

The pure reinforcement-comparison algorithms (8 and 9) performed very poorly
on this task, often falling below and never significantly exceeding the chance level.
Of the algorithms using Witten’s algorithm, the performance of Algorithm 16 often
fell below and never significantly exceeded the chance level, and the performance

of Algorithm 17 significantly exceeded the chance level only for a narrow range of

182

o values.

Experiment 4: Pole-Balancing*

The pole-balancing task is the most complex and realistic task on which the
AHC algorithm has been tested. Figure 46 shows a schematic representation of
the pole-balancing task. The rigid pole is hinged to a cart, which is free to move
within the bounds of a 1-dimensional track. The pole is free to move only in the
vertical plane of the cart and track. The learning system applies either a “left” or

“right” force of fixed magnitude to the cart at each time step.
The cart-pole system has four state variables:
z: the position of the cart on the track,
6 : the angle of the pole with the vertical,
z: the cart velocity, and
§: the rate of change of the angle.

The pole begins upright (@ = 0) and stationary (§ = 0), and the cart begins in
the center of the track (z = 0) and stationary (£ = 0). If the pole falls over more
than 12 degrees from vertical, or if the cart hits either edge of the track, a failure
is said to occur. The object of the task is to prevent such failures for as long as
possible. When a failure occurs, the cart-pole system is reset to its initial position,
and a new attempt to balance the pole begins. A complete balancing attempt,

from initial position to failure, is called a ¢rial.

* Some of the results presented in this section have also been published by Barto, Sutton,
and Anderson (in press). The simulations described in this section were programmed by
Chuck Anderson.

183

/
!
i
|
|

g
l ‘ l
X —-»l
Figure 46. The Cart-Pole System to be Controlled
in Experiment 4 of Chapter V1. The rigid pole is hinged
to the cart, which is free to move within the bounds of the
1-dimensional track. The learning system attempts to keep

the pole balanced and the cart within bounds by applying a
force of fixed magnitude to the cart. (Figure by A. Barto)

No initial knowledge of the dynamics of the cart-pole system is assumed.
The learning system initially knows only that it is to avoid failure. The credit-
assignment problem in this task is a very difficult one. Since the actions that cause
a failure may be taken many time steps before that failure actually occurs, this is a
delayed-reinforcement task. Since failure is almost certain from some states of the
cart-pole system, and nearly impossible (at least in the short run) from others, this
is also an unbalanced-reinforcement task involving reinforcement-level asymmetry

(see Chapter III).

The primary reinforcement signal r for this task is zero at all times except on
failure. If the action selected at time ¢ causes @[t + 1] or z[t + 1] to go outside

its allowed range, then r[t + 1] is —1. The failure is said to occur at time ¢+ 1,

184

and the length of the trial is said to be ¢ steps.

In addition to the reinforcement signal, the learning system also receives stimuli
from the environment providing information about the current state of the cart-
pole system. The stimulus representation is the same as that used by Michie and
Chambers in their “Boxes” system (Michie and Chambers, 1968a,b) to solve this
pole-balancing task. The 4-dimensional state space is divided into disjoint regions
by quantizing the four state variables. Michie and Chambers distinguished 3 grades
of cart position, 6 of pole angle, 3 of cart velocity, and 3 of pole angular velocity.
The same number of quantizations are used here, but with different quantization

thresholds than those used by Michie and Chambers:
z: £0.8,4+2.4m,
6: 0,1, £6, +12degrees,
£: +0.5, toom/sec,
f: £50, +oodeg/sec.

This yields 3 X 3 x 6 x 3 = 162 regions corresponding to all combinations of the
intervals. These values and units were chosen so as to produce what seemed like
a physically realistic control problem, given the parameterization of the cart-pole
simulation (Michie and Chambers did not publish the parameters of their cart-pole

simulation).

At any time t the state of the cart-pole system is in exactly one of the 162
regions. Stimuli are considered to be 162-component vectors, all components of
which were zero except for that corresponding to the region of the state space
containing the current state of the cart-pole system. The Boxes learning system
was designed specifically for this task and requires such an independent-associations
approach. This approach is used here, even though the other algorithms do not

require it, so that performance on this task can be compared with that attained

185

by the Boxes learning system. The Boxes learning system is not described here;
the interested reader is referred to Michie and Chambers’s papers (Michie and

Chambers, 1968a,b).

The cart-pole system was simulated so as to match as closely as possible the
behavior of a real physical system, including non-linearities and friction. The

discrete-time equations and all parameter values used in the simulation are given

in Table 8.

Some modifications were made to the learning algorithms to let them take
advantage of the episodic nature of the task. At the beginning of each trial, all
eligibility traces were set to zero, so that actions taken on the preceding trial
were not assigned credit for the outcome of the new trial. For those algorithms
maintaining a reinforcement-association vector ¢, the traces used to update it
were also set to zero after failures. Finally, # in the AHC algorithm was computed
slightly differently at the beginning and end of each trial. At the beginning of each

trial, the first # value was given by
#1] = r[1] + 4p°[1],

i.e., the subtractive p term that would otherwise be due to the preceding trial is
omitted. Similarly, in the last # value of a trial, the additive p term that would

otherwise be due to the next trial was left off:
Flt+ 1] =t + 1] - p[H],

where the failure occurred at £+ 1. These modifications were also made to the SS

(~ = 1) algorithm applied to this task.

Computational expense prevented an exhaustive search of the parameter space
of the algorithms on this task. A long series of preliminary runs were made with

various parameter values for Algorithms 4, 5, 8, 9, 12, 13, 14, and 15 of this chapter

186

Table 8. Details of Cart-Pole Simulation.

olt +1] = zlt] + ralt] &t + 1) =] + 75[1]

_ Flf]+myl [éz[z] sin 6[t] — 6[¢] cose{t]] — pesgn(3(t])

Et] =
me +m,
o[t + 1) = 0[t] + 70[t) 6]t + 1] = 6[t] + 74[t]
i gsin 0[t] + cosd[t] [—Flt!—mpté’gin :;I:H;zcsgn(élzl)] _ gmgilzs]
= 4 mp os’0|t|
l['a’ . mi+m,,]
where:
(2) { +1, ifz>0;
sgn(z) =
& -1, ifz<0.
g = —9.8 meters/second 2, acceleration due to gravity,

m. = 1.0 kilograms, mass of cart,

mp = 0.1 kilograms, mass of pole,

! = 0.5 meters, half pole length,

e = 0.0005, coefficient of friction of cart on track,

#p = 0.000002, coefficient of friction of pole on cart,

F[t] = £10.0 newtons, force applied to cart’s center of mass at time £,

7 =time in seconds corresponding to one simulation time step.

187

and the Boxes algorithm. It was found that the Boxes algorithm performed best on
this task with its parameters set near the values used by Michie and Chambers. It
was found that the even-numbered algorithm of each pair of algorithms performed
better than the odd-numbered algorithm, and that it did so at very large values
for the learning-rate parameter a in comparison to oy. At such large o values,
behavior is almost always nearly deterministic, so that y[t] — x[t] is almost always
zero, which may explain the poor performance of the odd-numbered algorithms.
No parameter values were found enabling Algorithms 4, 5, 8, or 9 to perform
anywhere near as well as the Boxes algorithm. However, it proved relatively easy
to find parameter values at which Algorithm 12 performed much better than the

Boxes algorithm.

Figures 47, 48, and 49 show the results of an experiment in which Algorithms
12, 14, and the Boxes algorithm were applied to this task. The plots of Figures 47
and 48 are averages of performance over the 10 runs that produced the individual
graphs shown in Figure 49. Figure 47 is plotted on a logarithmic scale, Figure
48 on a linear scale. In both figures, a single point is plotted for each bin of 5
trials giving the number of time steps until failure averaged over those 5 trials. 8
of the runs with Algorithm 12, and 2 of the runs with the Boxes algorithm, were
terminated after 500,000 time steps before all 100 trials took place (those whose
plots terminate short of 100 trials in Figure 49). The simulation was terminated
before failure on the last trials of these runs. To produce the averages for all 100
trials shown in Figures 47 and 48, special provision was made for the so-interrupted
runs. If the duration of the trial underway when the run was interrupted was less
than the duration of the immediately preceding (and therefore complete) trial,
then fictitious remaining trials were assigned the duration of that preceding trial.
Otherwise, fictitious remaining trials were assigned the duration of the last trial
when it was interrupted. This was done to prevent any short interrupted trials

from producing deceptively low averages.

188

POLE BALANCING, ALGS 12, 14 AND BOXES

AVERAGES OF 10 RUNS
100000

12 =
(28] L
[0
oD
—
= 10000+
- EN
‘ ,/Boxes

| e /
:f '3 \——4\\/
= 1000F
w3 ./ ® ® : oo
a . o
L w“:/’*’/ N 14
» o et :

100 /\
"
— &

10F

i i 1 1]
1 25 50 75 100

TRIALS (BINS 0OF 5]

Figure 47. Average Performance of 3 Best Algorithms
on Pole-Balancing Task, Logarithmic Scale. Each line
shows the average performance over 10 runs of a particular
algorithm over 100 trials; the label indicates the associated
algorithm. Performance has been smoothed by averaging over
bins of 5 trials.

The Boxes algorithm was run with the parameter settings published by Michie
and Chambers (1968a). Algorithm 12 was run with a parameter setting which had
shown good performance in the preliminary runs. These values were a = 1000,
7=.95, f=.5, 0y=.01, 6, =.1,and §, =.2. Algorithm 14 was run with the

same parameter settings as Algorithm 12.

Algorithm 12 achieved much longer runs than did the Boxes algorithm. Figure
49 shows that Algorithm 12 tended to solve the problem before it had experienced
100 failures, whereas the Boxes algorithm tended not to. The preliminary study
showed that all other algorithms perform worse than Algorithm 14 did on this task.

189

POLE BALANCING, ALGS 12 14 AND BOXES
AVERAGES OF 10 RUNS

12 °

g000¢0

T

60000

T

40000

T

20000

TIME STEPS UNTIL FAILURE

7000

TRIALS (BINS OF 5)

Figure 48. Average Performance of 3 Best Algorithms
on Pole-Balancing Task, Linear Scale. Each line shows
the average performance over 10 runs of a particular algorithm
over 100 trials; the label indicates the associated algorithm.
Performance has been smoothed by averaging over bins of 5
trials.

Summary

In experiments with simple abstract tasks and with a more complex and real-
istic pole-balancing task, it has been demonstrated that the AHC algorithm can
improve performance. The capabilities of the AHC algorithm have been gauged by
comparing its performance with that of the Boxes system (Michie and Chambers,
1968a,b), a learning algorithm designed specifically for the pole-balancing task and
which does not involve secondary reinforcement. Although the Boxes algorithm

performed well on this task, much better than the simplified version of Samuel’s

POLE BRLANCING, INDIVIDURL RUNS, ALG (2

100000
i
S 10000f
-
-
a
[
1
Hooo00k
=
=z
p
(52}
a
= rook
[oa3
[
=
-
-
1ok
1 i i 1 H
1 25 50 75 100
TRIALS (BINS OF S)
POLE BALANCING. INDIVIDUAL RUNS. BOXES
100000
L
S 10000k
-4
-
a
[T
-
Soro00k
=
4
o
(%2}
a
= 100
w
wt
=
-
-
1ok
1 1 i 1]
1 25 50 75 100
TRIALS (BINS OF 5)
POLE BALANCING, INDIVIDUAL RUNS. RLG 14
100000
1)
S 10000k
-t
L
a
(oS /A
S 1000k ond
L 7
oD /
»n — S b
e
2100k
v
[T
=
P
-
1ok
i i i

i 25 50 75 100
TRIALS (BINS OF 5)

Figure 49. Individual Runs of 3 Best Algo-
rithms on Pole-Balancing Task. From top to
bottom, these graphs show the individual runs with
Algorithm 12, the Boxes algorithm, and Algorithm
14. Each line shows the performance during one
run of a particular algorithm. Performance has been
smoothed by averaging over bins of 5 trials.

190

191

algorithm, the AHC algorithm performed much better still.

The AHC algorithm has also been compared with pure reinforcement-
comparison algorithms, with algorithms lacking heuristic-reinforcement mecha-
nisms, and with an algorithm due to Witten. Witten’s algorithm is very closely
related to the AHC algorithm, but does not compare reinforcement levels. The
poor performance of Witten’s algorithm highlights the need for reinforcement-
comparison mechanisms, and the poor performance of the pure reinforcement-
comparison mechanisms highlights the need to combine them with secondary rein-

forcement.

The experiments of this chapter have also revealed some major weaknesses of
simple algorithms with eligibility factors based on y[t] — -,i; The use of the AHC
algorithm seems to greatly ease these problems, at least in the tasks studied here.
This observation may turn out to be critical given that the y[t] — % form of this
algorithm (as well as of the other algorithms) performed much better than the
y[t] — w[t] form on one of the tasks (the pole-balancing task).

CHAPTER VII

CLOSING

The problems of temporal credit assignment have been investigated within
the domain of simple reinforcement-learning tasks. After systematic experimenta-
tion with a set of algorithms over a wide range of specific tasks, progress can be
claimed in three areas 1) a number of temporal credit-assignment issues have been
isolated and elucidated, including those of unbalanced reinforcement, misleading
generalizations, delayed reinforcement, and secondary reinforcement, 2) it has been
demonstrated that substantial performance improvements are possible through the
use of sophisticated temporal credit-assignment algorithms, and 3) a new temporal
credit-assignment algorithm, the AHC algorithm, has been presented and shown

to perform better than previously considered algorithms on a variety of tasks.

Reinforcement Comparison

Reinforcement-comparison mechanisms have played a prominent role in this
study. In Chapter II it was found that a learning algorithm’s performance could
be significantly improved through the use of mechanisms that remember past rein-
forcement levels and compare them with current reinforcement. The possibility of

obtaining the same advantages in more complex tasks has been a major factor mo-

192

193

tivating the search for more sophisticated temporal credit-assignment algorithms

throughout the rest of this dissertation.

The utility of reinforcement-comparison mechanisms on nonassociative
reinforcement-learning tasks in which the action space is continuous is well recog-
nized; all algorithms considered in the literature for these {asks are reinforcement-
comparison algorithms. Most research with discrete-action tasks, on the other
hand, has excluded reinforcement-comparison algorithms from consideration.
In Chapter II, some simple but novel reinforcement-comparison algorithms for
discrete-action nonassociative tasks are presented. The experiments of this chap-
ter show that reinforcement-comparison mechanisms significantly improve learning
rate on unbalanced-reinforcement tasks, i.e., tasks in which the distribution of posi-
tive and negative reinforcement values is not balanced. Overall, the new algorithms
perform better than all others considered, including several from the learning au-

tomata theory literature.

To the best of my knowledge, reinforcement-comparison mechanisms have not
previously been proposed for associative learning, except for the degenerate case in
which no stimuli are similar. In Chapter III several novel reinforcement-comparison
algorithms for associative reinforcement learning are presented. In a series of exper-
iments involving similar stimuli and misleading generalizations, the new algorithms
are shown to perform better overall than a variety of other algorithms. These exper-
iments suggest that reinforcement-comparison mechanisms can ease the problems

of misleading generalization as well as those of unbalanced reinforcement.

Delayed reinforcement creates such a difficult temporal credit-assignment prob-
lem by itself that further difficulties due to unbalanced reinforcement and mis-
leading generalizations are sometimes overlooked. Accordingly, the advantages
of reinforcement-comparison algorithms in delayed-reinforcement tasks are some-

times overlooked as well. Chapter IV’s experiments with delayed-reinforcement

194

tasks show that reinforcement-comparison mechanisms can make significant per-

formance improvements on delayed-reinforcement tasks.

Chapter VI concerns nonautonomous-stimuli tasks, i.e., tasks in which the
learning system’s behavior affects its subsequent non-reinforcing stimuli. Although
reinforcement-comparison mechanisms substantially increase learning rate on the
tasks considered in Chapter II-IV, on the more-general tasks of Chapter VI they ac-
tually hinder learning when used alone. On the tasks of this chapter, the algorithms
with both reinforcement-comparison and secondary-reinforcement mechanisms per-
form best, yet the algorithms with esther mechanism alone perform worse than
those with neither. Although these two aspects of a temporal credit-assignment
algorithm—reinforcement comparison and secondary reinforcement—can be teased
apart and studied in isolation, their fortunes are intertwined. Apparently, the
advantages that reinforcement-comparison mechanisms provide on autonomous-
stimuli tasks can be obtained on more general tasks only by the concurrent use of

secondary-reinforcement mechanisms.

Ideal Reinforcement Signal

The ideal reinforcement signal is the signal that provides evaluation of a learn-
ing system’s behavior of the highest quality possible. In Chapter V, temporal
credit-assignment algorithms are analyzed as attempts to approximate the ideal
reinforcement signal. This theoretical construct assists the understanding of ex-
isting temporal credit-assignment algorithms and the creation of new algorithms.
For example, from the concept of the ideal reinforcement signal it can be seen that
a temporal credit-assignment algorithm should involve both comparison of evalua-
tions and anticipation of delayed evaluations, i.e., both reinforcement-comparison

and secondary-reinforcement mechanisms.

195

Chapter V presents several informal derivations of temporal credit-assignment
algorithms as approximations to the ideal reinforcement signal. From one set of
assumptions about the goal of learning, the AHC algorithm is derived, and from
a slightly different set of assumptions, a simplified version of the temporal-credit
assignment algorithm used in Samuel’s checker-playing program (Samuel, 1959,
1967) is derived.

The AHC Algorithm and Samuel’s Checker-Playing Program

One reason for the success of Samuel’s celebrated checker-playing program
(Samuel, 1959, 1967) is its “learning-by-generalization® mechanism for temporal
credit assignment. Despite wide recognition of the merits of the approach, there
has been little follow-up since Samuel’s original work. If Samuel’s algorithm is
simplified in several ways, including the removal of all features specialized for the
game of checkers, for tasks in which off-line search is performed, and for efficient
implementation on a small computer, the resulting algorithm differs from the AHC
algorithm only by the absence of one parameter, called the discount-rate parame-
ter. In this sense the AHC algorithm can be viewed as a generalization of Samuel’s

algorithm.

Theoretical analysis in terms of the ideal reinforcement signal suggests that al-
though the discount-rate parameter may not be needed for the special class of time-
blind tasks (which includes checker playing), it may be necessary for others. Ex-
periments with simple abstract tasks and with a physically-realistic pole-balancing
task support this conclusion by showing improved performance attributable to the
use of the discount-rate parameter. On the pole-balancing task the AHC algorithm
performs markedly better than both Samuel’s algorithm and an algorithm specifi-

cally designed for this task by Michie and Chambers (1968a,b) which does not use

196

secondary reinforcement. Samuel’s algorithm, on the other hand, performs worse

than Michie and Chambers’s algorithm.

Limitations and Future Work

The investigation of temporal credit assignment begun here is far from com-
plete. Although many tasks and algorithms have been considered, they do not
begin to exhaust the space of possibilities. Chapters IV and VI in particular inves-
tigate only a small subset of possible delayed-reinforcement and nonautonomous-
stimuli tasks. Some of the possibilities not treated are mentioned at the end of

each chapter.

As a study of credit assignment in reinforcement learning, this dissertation is
limited by the lack of attention it gives to structural credit assignment. Great care
has been taken here to separate the temporal and structural credit-assignment
problems, and to concentrate as fully as possible on the former. Dividing the
credit-assignment problem in this way has permitted its temporal aspects to be
investigated more thoroughly than would otherwise have been possible, but this
division has also resulted in virtually nothing being learned about structural as-
pects of the credit-assignment problem. All temporal credit-assignment algorithms
considered here can be viewed as attempts to approximate the ideal reinforcement
signal, yet even the ideal reinforcement signal is useless for structural credif as-

signment.

Possible future work concerning the structural credit-assignment problem in-
cludes comparatively simple extensions, such as going beyond linear maps to con-
sider nonlinear maps of fixed structure, or going beyond binary-action tasks to
consider n-action tasks or tasks with continuous action spaces. More novel would

be algorithms that determine which stimuli and actions are most likely to be respon-

197

sible for outcomes, and which then assign these greater structural credit. Finally,
and potentially most importantly, credit-assignment methods need to be found that

can direct the structural modification of representations and decision processes.

The structural credit-assignment problem should be a fruitful area for future
work. Dividing the credit-assignment problem into temporal and structural sub-
problems has aided this investigation of the temporal subproblem, and may aid
investigations of the structural subproblem in the future. To the extent that the
two subproblems are truly separable, it should be possible to combine, without

modification, separately developed solutions to each.

Applications

The temporal credit-assignment algorithms discussed in this dissertation have
a wide range of potential applications. As long as performance is not limited en-
tirely by structural credit-assignment factors, these algorithms may be usefully
applied to almost any task involving evaluative feedback. If a task involves delayed
evaluations that can be anticipated, misleading generalizations, or different levels
of attainable evaluations at different times (unbalanced reinforcement), then it in-
volves temporal credit-assignment problems that can be eased by these algorithms.
Such applications arise frequently but do not exclusively occur in reinforcement-

learning tasks.

Reinforcement learning has many applications in control problems, e.g., setting
fuel mixtures or other controls for engines, turbines, manufacturing processes or
communication networks. Reinforcement learning is applicable, while traditional
control-theory approaches are not, wherever performance can be measured but
information indicating correct behavior cannot. This is often the case when a good

model of the system to be controlled is not available or is more expensive to acquire

198

than the cost of the time spent in learning. Mendel and McLaren (1970) briefly
discuss several applications for reinforcement learning control systems along these

lines.

Incomplete knowledge of the sort that makes reinforcement learning applicable
is common in the control problems that arise in robotics. Although detailed models
of the robots themselves can be constructed, these generally rely on a restricted
class of motions and control strategies, e.g., nonballistic motion. Even so, much
of the robot’s environment, such as the position of objects to be manipulated, is
rarely known with complete reliability. Extensive contingency planning, or trial-
and-error with human supervision and intervention, is generally required before a
robot can be relied upon to successfully perform even simple tasks. In many cases
the process might be considerably expedited if goals could be specified in addition

to motions, leaving it it to a learning system to handle exceptional cases.

Associative reinforcement learning could also be used to aid heuristic search.
The efficiency of heuristic search is highly dependent on the heuristics used to select
promising alternatives for further search. An associative reinforcement-learning
system could be used to make these selections based on features of the source
node. For example, suppose the search tree of a board game is to be searched.
A learning algorithm could suggest moves to explore from each node, based on
their characteristics and on the board position, and have its suggestions evaluated
according to search success along the selected paths. Heuristics learned in this way
might greatly reduce search time. And a temporal credit-assignment mechanism,
such as the AHC algorithm, would almost certainly greatly aid such a “learning

heuristic search.”

Temporal credit-assignment algorithms also have potential applications that do
not involve reinforcement learning. For example, the AHC algorithm could be used

to aid identification of faulty components in complex knowledge-based systems.

199

The AHC algorithm could help identify those steps in a sequences of processing

steps in which faults occur, thus reducing the number of possible culprits.

Finally, and more speculatively, the AHC algorithm could be used to antici-
pate changes in economic indicators such as the Dow Jones average. The AHC
algorithm’s ability to improve immediacy, to bring forthcoming changes into the
present, is just the sort of capability required. In addition, the AHC algorithm’s
linear-mapping approach allows it to combine many factors (albeit linearly) to

make an overall prediction, which would clearly be required for this application.

Reinforcement Learning

It is sometimes thought that reinforcement learning was thoroughly investi-
gated in the 1950’s and 1960’s, and that only small incremental improvements
in performance could be attained by further work in this area. This disserta-
tion’s experiments suggest the opposite. Large differences in the capabilities of
reinforcement-learning algorithms have been observed repeatedly in these experi-
ments. Some algorithms learn much more slowly than others, some do not work
at all outside of a limited range of tasks, and some fail spectacularly on simple
tasks with special properties. Associative reinforcement learning involves subtle

difficulties that have not been elucidated by earlier research.

200

REFERENCES

Anderson, C. W. Feature generation and selection by a layered network of rein-
forcement learning elements: Some initial experiments. COINS Technical Report

82-12, University of Massachusetts, Amherst, 1982.

Anderson, J.A., Silverstein, J.W., Ritz, S.A. & Jones, R.S. Distinctive features,
categorical perception, and probability learning: Some applications of a neural
model. Psychological Review, 1977, 85, 413-451.

Atkinson, R.C., Bower, G.H. & Crothers, E.J. An Introduction to Mathematical
Learning Theory. New York: Wiley, 1965.

Atkinson, R.C. & Estes, W.K. Stimulus sampling theory. In R.D. Luce, R.R. Bush
& E. Galanter, Eds. Handbook of mathematical psychology, Vol. II. New York:
Wiley, 1963.

Barr, A,. & Feigenbaum, E.A., Eds. The Handbook of Artificial Intelligence. Los
Altos, CA: Kaufman, Inc, 1981.

Barto, A.G., Ed. Simulation experiments with goal-seeking elements, in press.

Barto, A. R., Anderson, C. W. & Sutton, R. S. Synthesis of nonlinear control
surfaces by a layered associative search network. Biological Cybernetics, 1982, 43
175-185.

Barto, A. G. & Sutton, R. S. Goal seeking components for adaptive intelligence: An
initial assessment. Air Force Wright Aeronautical Laboratories/Avionscs Laboratory

Technscal Report AFWAL-TR-81-1070, Wright-Patterson AFB, Ohio, 1981.

Barto, A. G. & Sutton, R. S. Simulation of anticipatory responses in classical

201

conditioning by a neuron-like adaptive element. Behavtoral Brain Research, 1982,
4 221-235.

Barto, A. G. & Sutton. R. S. Landmark learning: An illustration of associative

search. Broliological Cybernetics, 1981, 42, 1-8.

Barto, A. G., Sutton, R. S. & Brouwer, P. S. Associative search network: A
reinforcement learning associative memory. Biological Cybernetics, 1981, 40, 201-

211.

Barto, A.G., Sutton R.S. & Anderson, C.W. Neuronlike elements that can solve dif-
ficult learning control problems. IEEE Trans. on Systems, Man, and Cybernetics,

in press.

Booker, L.B. Intelligent behavior as an adaptation to the task environment.
Univ. of Michigan Ph.D. dissertation, 1982.

Bradt, R. N, Johnson, S. M. & Karlin, S. On sequential designs for maximizing
the sum of n observations. Ann. Math. Stat., 1956, 27, 1060-1074.

Buchanan, B.G., Smith, D.H., White, W.C., Gritter, R.J., Feigenbaum, E.A.,
Lederberg, J. & Djerassi, C. Automatic rule formation in mass spectroscopy by
means of the Meta-DENDRAL program. J. Am. Chem. Soc., 1976, 98.

Buchanan, B.G., Mitchell, T.M. & Smith, R.G. Models of learning systems. In
Encyclopedia of Computer Science and Technology, edited by J. Belzer. New York:
Marcel Dekker, Inc., 1978.

Bush, R. R. & Estes, W. K., Eds. Studies in Mathematical Learning Theory.
Stanford: Stanford University Press, 1959.

Bush, R. R. & Mosteller, F. Stochastic Models for Learning. New York: Wiley,
1955.

202

Carbonell, J.G. Learning by analogy: Formulating and generalizing plans from
past experience. In Machine Learning, edited by R.S. Michalski, J.G. Carbonell &
T.M. Mitchell. Palo Alto, CA: Tioga Pub. Co., 1982.

Carterette, T. S. An application of stimulus sampling theory to summated gener-

alization. Journal of Ezperimental Psychology, 1961, 62, 448—455.

Cover, T. M. & Hellman, M. E. The two-armed bandit problem with time-invariant
finite memory. IEEE Transactions on Information Theory, 1970, 16, 185-195.

Derman, C. Finite State Markovian Deciston Processes. New York: Academic

Press, 1970.

Dietterich, T.G., London, B., Clarkson, K. & Dromey, G. Learning and inductive
inference. Chapter XIV of the Handbook of Artificial Intelligence, Vol III, edited
by Paul R. Cohen & Edward A. Feigenbaum. Los Altos, CA: William Kaufman,
Inc., 1982. (Also Stanford Computer Science Dept. Tech. Rep. STAN-CS-82-913.)

Dietterich, T.G. & Michalski, R.S. Inductive learning of structural descriptions:
Evaluation criteria and comparative review of selected methods. Artifictal Intelli-

gence, 1981, 16, 257-294.

Duda, R.O. & Hart, P.E. Pattern Classification and Scene Analysis. New York:
Wiley, 1973.

Estes, W.K. Toward a statistical theory of learning. Psychololgical Review, 1950,
57, 94-107.

Estes, W.K. The statistical approach to learning theory. In S. Koch, Ed., Psychol-
ogy: A Study of a Science, Vol. 2. New York: McGraw-Hill, 1959a.

Estes, W.K. Compocnent ard pattern models with Markovian interpretations. In
R. R. Bush & W. K. Estes, Eds., Studies sn Mathematical Learning Theory. Stan-

ford: Stanford University Press, 1959b.

Farley, B. G. & Clark, W. A. Simulation of self-organizing systems by digital
computer. L.LR.E. Transactions on Inf. Theory, 1954, 4, 76-84.

Feldman, J. A. A connectionist model! of visual memory. In Hinton, G. & Anderson,
J., Eds., Parallel Models of Associative Memory. Hillsdale, NJ: Erlbaum, 1981.

Feldman, J.A. Dynamic connections in neural networks. Biological Cybernetics,

1082, 46, 27-39.

Fogel, L.J., Owens, A.J. & Walsh, M.J. Artificial Intelligence Through Simulated
Evolution. New York: Wiley, 1966.

Friedberg, R.M. A learning machine, part 1. IBM Journal of Research and Devel-
opment, January, 1958, 2, 2-13.

Friedberg, R.M., Dunham, B. & North, J.H. A learning machine, part II. IBM
Journal of Research and Development, June, 1959, 3, 282-287.

Friedman, M. P., Trabasso, T. & Mosberg, L. Tests of 2 mixed model for paired-
associates learning with overlapping stimuli. Journal of Mathematical Psychology,

1067, 4, 316-334.

Hampson, S. & Kibler, D. A boolean complete neural model of adaptive behavior.
UC Irvine, Dept. of Information and Computer Science Technical Report #190,
Nov., 1082.

Holland, J.H. Adaptation in Natural and Artifictal Systems. Ann Arbor, MI:
Univ. of Michigan Press, 1975.

Holland, J.H. Adaptive knowledge acquisition. In preparation.

Howland, B., Minsky, M.L. & Selfridge, O.G. Hill-climbing: Some remarks on

204

multiple simultaneous optimization. Group Report 54-15, Lincoln Laboratory,

Massachusetts Institute of Technology, Lexington, MA, 1960.

Jarvis, R.A. Adaptive global search in a time-variant environment using a prob-
abalistic automaton with pattern recognition supervision. IEEE Transactions on

Systems Science and Cybernetics, 1970, Vol. SSC-6, No. 3.

Jarvis, R.A. Optimization strategies in adaptive control: A selective survey. IEEE

Transactions on Systems, Man, and Cybernetics, 1975 Vol. SMC-5, No. 1.

A. H. Klopf. Brain function and adaptive systems- A heterostatic theory. Asr
Force Cambridge Research Laboratories Research Report, AFCRL-72-0164, Bed-
ford, MA., 1972 (A summary appears in Proceedings International Conference on
Systems, Man, Cybernetics). IEEE Systems, Man, and Cybernetics Society, 1074,

Dallas, Texas.

Klopf, A. H. The hedontstic neuron: A theory of memory, learning, and intelli-
gence. Washington, D.C.: Hemisphere, 1982.

La Berge, D. L. Generalization gradients in a discrimination situation. Journal of
Ezperimental Psychology, 1961, 62, 88-94.

Lakshmivarahan, S. Learning Algorithms and Applications. Springer-Verlag, 1981.

Langley, P. & Simon, H.A. The central role of learning in cognition. In: Cognstive
Skills and thesr Acquisition, edited by J.R. Anderson. Hillsdale, NJ: Lawrence
Erlbaum Associates, 1981.

Lenat, D.B. AM: An artificial intelligence approach to discovery in mathematics
as heuristic search. Rep. No. STAN-CS-76-570, Computer Science Dept., Stanford
University, 1976. (Doctoral dissertation. Reprinted in Knowledge-based Systems sn
Artificsal Intelligence, edited by R. Davis & D.B. Lenat. New York: McGraw-Hil,

205
1980.)

Lenat, D. B., Hayes-Roth, F., Klahr, P. Cognitive economy. Stanford Heuristic
Programming Project HPP-79-15 (working paper), 1979.

Lovejoy, E. Attention tn Discrimination Learning. San Francisco: Holden-Day,

1968.

Luce, R. D., Bush, R. R & Galanter, E., Eds. Handbook of Mathematical Psychol-
ogy, Vols. I and II. New York: Wiley, 1963.

Luce, R. D., Bush, R. R. & Galanter, E., Eds. Handbook of Mathematical Psychol-
ogy, Vol. III. New York: Wiley, 1965.

Marrs, P. & Poppelbaum, E. J. Stochastic and determsnsstic averaging processors.

London: The Institute of Electrical Engineers, 1981.

Mason, L.G. An optimal S-model learning algorithm for S-model learning environ-

ments. IEEE Trans. on Automatic Control, 1973, 493-496.

McMurtry, G.J. Adaptive optimization procedures. In: Adaptive, Learning and
Pattern Recognition Systems: Theory and Applications, edited by Mendel, J.M. &
Fu, K.S., pp. 243-286. New York: Academic Press, 1970.

Mendel, J.M. A survey of learning control systems. ISA Transactions, 1966, 5,
297-303.

Mendel, J. M. & McLaren, R. W. Reinforcement learning control and pattern
recognition systems. In: Adaptive, Learning and Pattern Recognition Systems:
Theory and Applications, edited by J.M. Mendel & K.S. Fu, pp. 287-318. New
York: Academic Press, 1970.

Michie, D. & Chambers, R. A. BOXES: An experiment in adaptive control. In

206

Dale, E. & Michie, D., Eds., Machine Intelligence 2. Edinburgh: Oliver and Boyd,
19G8a, 137-152.

Michie, D. & Chambers, R. A. ‘Boxes’ as a model of pattern-formation. In
Waddington, C.H., Ed., Towards a Theoretical Biology; 1, Prolegomena. Edin-
burgh: Edinburgh University Press, 1968b, 206-215.

Mine, H. & Osaki, S. Markovian Decision Processes. New York: American Elsevier

Publishing Company, Inc., 1970.

Minsky, M. L. Theory of neural-analog reinforcement systems and its application

to the brain-model problem. Princeton Univ. Ph.D. Dissertation, 1954.

Minsky, M. L. Steps toward artificial intelligence. Proceedings IRE, 1961, 49, 8-30.
(Reprinted in Feigenbaum, E. A. & Feldman, J., Eds., Computers and Thought.
New York: McGraw-Hill, 1963, 406-450.)

Minsky, M.L. K-lines: A theory of memory. Cognitive Science, 1980, 4, No. 2,
117-133.

Minsky, M. L. & Papert, S. Perceptrons: An introduction to computational geom-
etry. Cambridge, MA: MIT Press, 1969.

Minsky, M.L. & Selfridge, O.G. Learning in random nets. In: Information Theory:
Fourth London Symposium, edited by C. Cherry. London: Butterworths, 1961.

Mitchell, T.M. Version spaces: An approach to concept learning. Doctoral disser-
tation, Stanford University, Stanford, CA, 1978.

Mitchell, T.M., Utgoff, P.E., Nudel, B. & Banerji, R.B. Learning problem-solving
heuristics through practice. IJCAIL 1981, 7, 127-134. (see also Mitchell et.al.,
1973)

207

Mitchell, T.M., Utgoff, P.E. & Banerji, R.B. Learning problem-sclving heuristics by
experimentation. In: Machine Learning, edited by R.S. Michalski, T.M. Mitchell
& J. Carbonell. Palo Alto, CA: Tioga, 1983.

Narendra, K.S. & Thathachar, M.A L. Learning automata—a survey. IEEE Trans-
actions on Systems, Man, end Cybernetics, 1974, 4, 323-334.

Newell, A. The chess machine. In Proceedings of the 1955 Western Joint Com-
puter Conference, 1955, session on Learning Machines, pp. 101-108, W.H. Ware,

chairman.
Nilsson, N.J. Learning Machines. New York: McGraw-Hill, 1965.

Poggio, T. 1975. On optimal nonlinear associative recall. Biol. Cybernetics, 1975,
19, 201-209.

Raibert, M. H. A model for sensorimotor control and learning. Btological Cyber-

netics, 1978, 29, 29-36.

Reilly, D. L., Cooper, L. N. & Elbaum, C. A neural model for category learning.
Biological Cybernetscs, 1982, 45, 35-41.

Restle, F. A theory of discrimination learning. Psychological Review, 1955, 62,
11-19.

Rissland, E.L. & Soloway, E.M. Constrained example generation: A testbed for
studying issues in learning. Proceedings of the Seventh International Joint Confer-
ence on Artificsal Intelligence, 1981, p. 162.

Rosenblatt, F. The perceptron: A perceiving and recognizing automaton.
Rep. No. 85-460-1, Project PARA, Cornell Aeronautical Laboratory, Buffalo, NV,
1957.

208

Rosenblatt, F. Principles of Neurodynamics. New York: Spartan Books, 1962.

Samuel, A.L. Some studies in machine learning using the game of checkers. IBM
Journal on Research and Development, 1959, 3, 210-229. (Reprinted in Computers
and Thought, edited by E. A. Feigenbaum & J. Feldman, pp. 71-105. New VYork:
McGraw-Hill, 1963.)

Samuel, A.L. Some studies in machine learning using the game of checkers. II-

Recent progress. IBM Journal of Research and Development, 1967, 11, 601-617.
Schank, R.C. Dynamsc Memory. 1983

Selfridge, O.G. Pattern recognition and learning. yIn: Proceedings of the 8d Lon-
don Symposium on Information Theory, edited by C. Cherry, p. 345. London:
Butterworth; also New York: Academic, 1956.

Selfridge, O. G. Pandemonium: A paradigm for learning. Proceedings of the Sympo-
ssum on the Mechanisation of Thought Processes. Teddington, England: National
Physical Laboratory, H.M. Stationary Office, London, 2 vols., 1959.

Smith, S.F. A learning system based on genetic adaptive algorithms. Doctoral
dissertation, University of Pittsburg, Pittsburg, Penn., 1880

Soloway, E. Learning = interpretation + generalization: A case study in knowledge-
directed learning. Rep. No. COINS-TR-78-13, Computer and Information Sciences
Dept., University of Massachusetts, Amherst, 1978. (Doctoral dissertation.)

Spinelli, D.N. OCCAM: A computer model for a content addressable memory in
the central nervous system. In: The Biology of Memory, Pribram, K., Broadbent,
D., eds. New York: Academic Press, 1970.

Sussman, G.J. A computational model of skill aquisition. AI Tech. Rep. 297, Al
Laboratory, Massachusetts Institute of Technology, 1973. (Doctoral dissertation,

209
see also Sussman, 1975)

Sussman, G.J. A Computes Model of Skill Aquisstion. New York: American Else-
vier, 1975.

Sutherland, N.S. & Mackintosh, N.J. Mechantsms of antmal discrimination learn-

tng. New York: Academic Press, 1971.

Sutton, R.S. A unified theory of expectation in classical and instrumental condi-

tioning. Stanford undergraduate thesis, 1978.

Sutton, R.S. & Barto, A.G. Toward a modern theory of adaptive networks: Ex-
pectation and prediction. Psychological Review, 1981, 88, 135-171.

Tsetlin, M.L.. On the behavior of finite automata in random media. Automat.
Telemekh., Oct., 1961, 22, 1345-1354.

Tsetlin, M.L. Automaton Theory and Modelling of Biological Systems. New York:
Academic Press, 1973.

Waterman, D.A. Generalization learning techniques for automating the learning of

heuristics. Artificsal Intelligence, 1970, 1, 121-170.

Widrow, B. Generalization and information storage in networks of adaline “neu-
rons”. In Yovits, M., Jacobi, G. & Goldstein, G., Eds., Self-organizing systems.
Spartan Books, 1962.

Widrow B. & Hoff, M. E. Adaptive switching circuits. 1960 WESCON Convention
Record Part 1V, 1960, 96-104.

Witten, I.H. An adaptive optimal controller for discrete-time markov environments.

Information and Control, 1977, 34, 286-295.

Winston, P.H. Learning structural descriptions from examples. Rep. No. 231,

210

Al Laboratory, Massachusetts Institute of Technology, 1970. (Reprinted in The
Psychology of Computer Vision, edited by P.H. Winston, pp. 167-209. New York:
McGraw-Hill, 1975.)

Zeaman, D. & House, B.J. The role of attention in retardate discrimination learn-
ing. In Ellis, N.R., Ed., Handbook of Mental Deficiency. New York: McGraw-Hill,
1963.

