

Reinforcement Learning

Richard S. Sutton

January 28, 1999

Reinforcement learning is an approach to artificial intelligence that em-
phasizes learning by the individual from its interaction with its environment.
This contrasts with classical approaches to artificial intelligence and machine
learning, which have downplayed learning from interaction, focusing instead
on learning from a knowledgeable teacher, or on reasoning from a complete
model of the environment. Modern reinforcement learning research is highly
interdisciplinary; it includes researchers specializing in operations research,
genetic algorithms, neural networks, psychology, and control engineering.

Reinforcement learning is learning what to do—how to map situations to
actions—so as to maximize a scalar reward signal. The learner is not told
which action to take, as in most forms of machine learning, but instead must
discover which actions yield the most reward by trying them. In the most
interesting and challenging cases, actions may affect not only the immediate
reward, but also the next situation, and through that all subsequent rewards.
These two characteristics—trial-and-error search and delayed reward—are
the two most important distinguishing features of reinforcement learning.

One of the challenges that arises in reinforcement learning and not in
other kinds of learning is the tradeoff between exploration and exploitation.
To obtain a lot of reward, a reinforcement learning agent must prefer actions
that it has tried in the past and found to be effective in producing reward.
But to discover which actions these are it has to select actions that it has not
tried before. The agent has to exploit what it already knows in order to obtain
reward, but it also has to explore in order to make better action selections
in the future. The dilemma is that neither exploitation nor exploration can
be pursued exclusively without failing at the task.

Modern reinforcement learning research uses the formal framework of

2

Agent

Environment

action
atst

reward
rt

rt+1
st+1

state

Figure 1: The Reinforcement Learning Framework

Markov decision processes (MDPs). In this framework, the agent and en-
vironment interact in a sequence of discrete time steps, t = 0, 1, 2, 3, . . . On
each step, the agent perceives the environment to be in a state, st, and selects
an action, at. In response, the environment makes a stochastic transition to
a new state, st+1, and stochastically emits a numerical reward, rt+1 ∈ <.
(See Figure 1.) The agent seeks to maximize the reward it receives in the
long run. For example, the most common objective is to choose each action
at so as to maximize the expected discounted return:

E
{
rt+1 + γrt+2 + γ2rt+3 + · · ·

}
where γ is a discount-rate parameter, 0 ≤ γ ≤ 1, akin to an interest rate in
economics. This framework is intended to capture in a simple way essential
features of the problem of learning from interaction and thus of the overall
problem of artificial intelligence. It includes sensation and action, cause and
effect, and an explicit goal involving affecting the environment. There is un-
certainty both in the environment (because it is stochastic) and about the
environment (because the environment’s transition probabilities may not be
fully known). Simple extensions of this problem include incomplete percep-
tion of the state of the environment and computational limitations. Most
theoretical results about reinforcement learning apply to the special case in
which the state and action spaces are finite, in which case the process is
called a finite MDP.

Reinforcement learning methods attempt to improve the agent’s decision-
making policy over time. Formally, a policy is a mapping from states to
actions, or to probability distributions over actions. The policy is stored in
a relatively explicit fashion so that appropriate responses can be generated

3

quickly in response to unexpected states. The policy is thus what is some-
times called a “universal plan” in artificial intelligence, a “control law” in
control theory, or a set of “stimulus-response associations” in psychology.
We can define the value of being in a state s under policy π as the expected
discounted return starting in that state and following policy π. The function
mapping all states to their values is called the state-value function for the
policy:

V π(s) = Eπ
{
rt+1 + γrt+2 + γ2rt+3 + · · · | st = s

}
.

The values of states defines a natural ordering on policies. Policy π is said to
be better than or equal to policy π′ if and only if V π(s) ≥ V π′(s) for all states
s. For finite MDPs there are always one or more policies that are better than
or equal to all others. These are the optimal policies, all of which share the
same value function.

The simplest reinforcement learning algorithms apply directly to the
agent’s experience interacting with the environment, changing the policy in
real time. For example, tabular 1-step Q-learning, one of the simplest rein-
forcement learning algorithms, uses the experience of each state transition to
update one element of a table. This table, denoted Q, has an entry, Q(s, a),
for each pair of state, s, and action, a. Upon the transition st ; st+1, having
taken action at and received reward rt+1, this algorithm performs the update

Q(st, at)← Q(st, at) + α
[
rt+1 + γmax

a
Q(st+1, a)−Q(st, at)

]
where α is a positive step-size parameter. Under appropriate conditions
(ensuring sufficient exploration and reduction of α over time), this process
converges such that the greedy policy with respect to Q is optimal. The
greedy policy is to select in each state, s, the action, a, for which Q(s, a)
is largest. Thus, this algorithm provides a way of finding an optimal policy
purely from experience, with no model of the environment’s dynamics.

The algorithm described above is only the simplest of reinforcement learn-
ing methods. More sophisticated methods implement Q not as a table, but
as a trainable parameterized function such as an artificial neural network.
This enables generalization between states, which can greatly reduce learn-
ing time and memory requirements. Another common extension, eligibility
traces, allows credit for a good state transition to spread more quickly to the
states that preceded it, again resulting in faster learning. Continuous-time

4

reinforcement learning problems require eligibility traces just as continuous-
state or continuous-action problems require parameterized function approx-
imators.

Reinforcement learning is also a promising approach to planning and
problem solving. In this case, a model of the environment is used to simulate
extensive interaction between it and the agent. This simulated experience is
then processed by reinforcement learning methods just as if it had actually
occurred. The result is a sort of “anytime planning,” in which the agent’s
policy gradually improves over time and computational effort. Reinforce-
ment planning methods appear most suited to problems that are too large
or stochastic to be solved by conventional methods such as heuristic search
or dynamic programming. This approach has already proved very effective
in applications, having produced the best of all known methods for playing
backgammon, dispatching elevators, assigning cellular-radio channels, and
scheduling space-shuttle payload processing.

Further Readings

Sutton, R. S. and Barto, A. G. (1998) Reinforcement Learning: An Ixxxn-
troduction. Cambridge, MA: MIT Press.

Kaelbling, L. P., Littman, M. L., and Moore, A. W. (1996). Reinforcement
learning: A survey. Journal of Artificial Intelligence Research, 4:237–285.

Bertsekas, D. P., and Tsitsiklis, J. N. (1996). Neuro-Dynamic Programming.
Athena Scientific, Belmont, MA.

Sutton, R. S. (ed.). (1992). Special issue of Machine Learning on reinforce-
ment learning, 8(3/4).

Kaelbling, L. P. (ed.). (1996). Special issue of Machine Learning on rein-
forcement learning, 22(1-3).

Watkins, C. J. C. H., and Dayan, P. (1992). Q-learning. Machine Learning,
8:279–292.

5

