2401.17401v1 [cs.LG] 30 Jan 2024

arxXiv

Step-size Optimization for Continual Learning

Thomas Degris*, Khurram Javed', Arsalan Sharifnassab’, Yuxin Liu, Rich Sutton’

fDepartment of Computing Science
University of Alberta
*DeepMind, London kjaved@ualberta.ca
degris@deepmind.com sharifna@ualberta.ca
yliul7@ualberta.ca
rsutton@ualberta.ca

Abstract

In continual learning, a learner has to keep learning from the data over its whole
life time. A key issue is to decide what knowledge to keep and what knowledge
to let go. In a neural network, this can be implemented by using a step-size
vector to scale how much gradient samples change network weights. Common
algorithms, like RMSProp and Adam, use heuristics, specifically normalization,
to adapt this step-size vector. In this paper, we show that those heuristics ignore
the effect of their adaptation on the overall objective function, for example by
moving the step-size vector away from better step-size vectors. On the other hand,
stochastic meta-gradient descent algorithms, like IDBD (Sutton, 1992), explicitly
optimize the step-size vector with respect to the overall objective function. On
simple problems, we show that IDBD is able to consistently improve step-size
vectors, where RMSProp and Adam do not. We explain the differences between
the two approaches and their respective limitations. We conclude by suggesting
that combining both approaches could be a promising future direction to improve
the performance of neural networks in continual learning.

1 The Role of Step-size in Continual Learning

Continual learning is a setting where learning needs to always adapt to the latest data to learn new
things or track moving targets. Continual learning contrasts with other problem settings where the
goal is to converge to some fixed point. A key problem in continual learning is to able to learn from
data what needs to be maintained, for example to avoid catastrophic forgetting (French, 1999), and
what needs to be updated to continue to track the objective function, for example because of limited
capacity (Sutton et al., 2007).

A Stochastic Gradient Descent (SGD) method updates a set of weights w, by incrementally accumu-

lating the product of a step-size' scalar parameter 77 and a sample gradient estimate V.J; (w;) given an
objective function J; (w):

Wil < W — ﬁVJt('LUt)

We name this method Classic SGD in the rest of this paper. In Classic SGD, the step-size parameter 7
is a key parameter to determine how much the weights of the learner are updated given the latest
sample. For example, in a non-continual learning setting, this step-size parameter is often scheduled
to converge to 0, forcing the changes to the parameters to be smaller over time until further adaptation

'We prefer to use step-size to learning-rate because we think it is more accurate. Indeed, a step-size parameter
does not indicate the rate at which a system learns. A large step-size may or may not be correlated with a high
rate of learning.

RMSProp IDBD

Mean
¢! squared

Initial
step-sizes error

6—0.3

Optimal
step-sizes

Figure 1: With conventional step-size normalization methods like RMSProp, the step-sizes do not go
towards the optimal step-sizes.

becomes impossible. Using the same scalar step-size for all the weights is limited because it does not
differentiate across dimensions.

Other conventional step-size adaptation methods include RMSProp (Hinton et al., 2012) and
Adam (Kingma and Ba, 2015). RMSProp and Adam both normalize the gradients before updating the
weights. Additionally, Adam also uses momentum to smooth the gradients. In practice, the weight
update is composed of a component wise product of two parts: first, a step-size vector o1 slowly

changed and the gradient estimate V.J; (w:):

Wiy — Wy — oy - VI (wy) ()

Both RMSProp and Adam adapt the step-size vector o using a heuristic, normalising with an
estimate of the gradient magnitude, irrespective of the effect of such changes on the objective
function. To illustrate this, we used a simplification of a problem introduced in Sutton (1992), that is,
a non-stationary 2-dimensional linear regression problem. On the first dimension, the optimal weight
wy is equals to 0 and constant. On the second dimension, the optimal weight wy is non-stationary.
Every 20 steps, wo flips between -1 and 1 with a probability of 0.5. Features for both dimensions are
independently sampled from a constant normal distribution. One would expect that a good method to
optimize a step-size vector («v, ag) would learn a low step-size o for the first dimension to ignore
noise, and learn a higher step-size ao to track the flipping weight.

Figure 1 shows the loss landscape as the average squared error computed by running for
1,000,000 steps using linear regression as the objective function J;(w;), given the step-size vector
at a point (a1, ag), and using the update of Equation 1. Thus, Figure 1 is a representation of the
step-size space with respect to the loss, and not the weight space as commonly depicted. In other
words, each point represents how well regression is able to track the target given the fixed step-size
vector at that point. Weights are initialized to 0. We can see that the pair of optimal step-sizes is
a1 = 0 and as ~ 0.33, as indicated by the diamond at the bottom of the plots.

Figure 1-left shows the trajectory of the step-size vector c; in Equation 1 when updated by RMSProp
using three different values for the step-size parameter. On this problem, we observe that RMSProp
was not able to learn the best step-size vector to decrease the overall loss. Perhaps more surprisingly,
in the two lower trajectories, the step-size vector ends up at a worse position from the optimal
step-size vector compared to where it started from. Also note how RMSProp mostly moves both
step-sizes a; and ay similarly, on a diagonal, and is not really able to distinguish between the different
properties—a constant weight and a flipping weight—of the two dimensions. Although not shown in
the figure, Adam behaves similarly to RMSProp on this problem.

Figure 1-right shows the trajectory of the step-size vector when updated by the Incremental-Delta-
Bar-Delta (IDBD) algorithm (Sutton, 1992). IDBD is an online stochastic meta-gradient descent
algorithm explicitly optimizing the step-size vector with respect to an objective function. More
specifically, the IDBD algorithm learns a step-size vector by accumulating online estimates of the
gradient of the objective function with respect to the step-sizes (IDBD is presented in detail later).

Unlike RMSProp, IDBD is able to consistently update the step-size vector in the direction that is
closer to the optimal point at the bottom of the landscape. Note that IDBD, RMSProp, and Adam all
share the same compute and memory complexity.

We now explain this result in more details, highlighting the difference between step-size normalization
algorithms (RMSProp, Adam) and step-size optimization algorithms (IDBD).

2 Setting

We consider an online learning setting where the learner observes a possibly non-stationary sequence
J1, Ja, ... of loss functions. The learner starts with some initial weight vector w; at time ¢t = 1. At
time ¢ = 1,2, ..., upon observing a new loss function J;(-), the learner incurs a sample of the loss
Ji(w;) and then updates its weight vector w; to w;1 via some learning algorithm. The goal of the
learner is to minimize the average lifetime loss.

Given a gradient sample VJ;(w;), a learner can use different algorithms to update its weight
vector w;. Perhaps the simplest method is the Classic SGD algorithm introduced in Section 1 and
presented below. Gradient samples V J;(w;) are multiplied by a fixed scalar step-size parameter 7
before being added to the current weight vector w;.

Classic Stochastic Gradient Descent (Classic SGD)

Parameter:
7: step-size parameter for the weight update
Initialise weights w;
fort=1,2,...do
‘ Wiyl < W — T]VJt('wt)
end

Hinton et al. (2012) proposed the SGD algorithm named RMSProp, described below, which nor-
malizes the gradient samples before they are accumulated in the weight vector. It does so with an
additional vector g; which maintains a component-wise moving average of the square of the gradient,

(VJy ('wt))z. RMSProp introduces a new scalar step-size parameter -, that sets how fast the average
g; tracks the square of the gradient. The average g, is then used to normalise the update applied to
the weight vector by dividing each component of the gradient by the square root ,/g; of the average.

A small constant € is added to g; for stability. Thus, the step-size vector a; for RMSProp becomes
n
Vgite’

RMSProp (Hinton et al., 2012)

Parameters:
7: step-size parameter for the weight update
g: step-size parameter for normalization
e: constant for numerical stability

Initialise weights wy

g1 <1

fort=1,2,...do

gir1 < (1 —9)g: + 4 (VJt(wt))2

Wit < Wi — ﬁ -V Ji(wy)

end

The Adam algorithm (Kingma and Ba, 2015), described below, adds two ideas to RMSProp. The
first idea is momentum, where Adam replaces the gradient VJ;(w;) in the weight update with a
tracking average of the gradient denoted m;. This tracking average is updated at every step given
an additional step-size parameter denoted +,,. Replacing the gradient with its average can be seen
as a form of gradient smoothing. Setting y,,, = 1 disables momentum. The average of the gradient
m, and the squared gradient g, are both initialized to zero. The second idea is to correct for the bias
in the estimates of g; and m; because of that initialization to zero. Adam adjusts g; and m; to 1y

and g, respectively and uses these unbiased estimates in the weight update. The equivalent step-size

vector oy, for Adam is —=2—.
t Vatte

Adam (Kingma and Ba, 2015)

Parameters:
7: step-size parameter for the weight update
Ym: step-size parameter for gradient smoothing
vg: step-size parameter for normalization
e: constant for numerical stability

Initialise weights w1

mq <0

g1 <0

fort=1,2,...do

M1 < (1= vm)my + 9m Vi (wy)

2
g1 — (1 =799t + 74 (Vi (wr))
~ M1
K e e
g1 #ﬁfyg)t

Wi — wy — \/ﬁ . mt+]_

end

3 Limitations of Step-size Normalization

This section highlights the limitations of step-size normalization on two simple learning problems,
namely weight-flipping and rate-tracking. For both problems, we examine a simple setting with a
linear least mean squared regression loss function. For ¢t = 1,2, ..., the losses J1, Jo, . .. are of the
form J;(w;) = (x]w; — y;)?, where x; € R? is the feature vector and y; € R is the label at time ¢.
In such setting, VJ;(w;) = 0 where 6y = @] w; — ;.

The weight-flipping problem.

The problem was first introduced in Sutton (1992) and is a larger version of the problem introduced
in Section 1. It defines a vector x; of 20 inputs where each input is sampled independently according
to a normal distribution with zero mean and unit variance. The first 15 components of the target
weight vector w; are all zeros. The last 5 components are either +1 or -1. To make it a continual
learning problem, one of the non-zero weights is selected every 20 samples and flipped from +1 to
-1 or vice-versa. Finally, the target prediction y* is defined as the linear combination of the weight
vector and the input y* = w; Tx;.

In this problem, a performance close to the optimal performance can be obtained by learning a
different but constant step-size per component; that is, a learning algorithm able to learn a low
step-size for the first 15 constant weights and a high step-size for the 5 flipping weights will perform
better than an algorithm using the same step-size for all weights.

The asymptotic performance of Classic SGD, RMSProp, and Adam on the weight-flipping problem
as a function of the step-size parameter is shown in Figure 2. We treated RMSProp as a special case
of Adam where ,,, = 1 because we considered that the problem is run for long enough to clear any
bias due to initialisation. We did a sweep over 7y, and 7. The performance for the best values of -,
and 7 are reported in the figure. As an additional baseline, we ran Oracle SGD where the weights and
step-sizes for the first 15 constant components are set to an optimal value of 0 and ran a sweep over
the step-size for the remaining non-constant last 5 components. Consequently, Oracle SGD shows
the best performance possible with a constant vector step-sizes in this problem setting. We report the
error averaged across all steps after running for 200,000 steps.

On this problem, Adam/RMSProp performed slightly worse than Classic SGD and much worse than
Oracle SGD. Their poor performance can be explained by looking at the algorithms. Adam/RMSProp
maintains an average of 6@?; however, because all components of x; are from the same normal
distribution, they have the same variance. Moreover, because the error §; is global, all components
end up with the same normalised step-size estimate \/ﬁ. Consequently, on such tracking problem,

4

10
Adam/RMSProp
Mean
squared Class
erroron ¢ | assic
) SGD
the weight
fioping | \
problem Oracle
2 IDBD SGD
1075 1074 1073 1072 107!

Step-size/Meta-step-size

Figure 2: On the weight-flipping problem, IDBD performs as well as Oracle SGD and better than
conventional methods.

Adam/RMSProp is not able to learn different step-sizes for each component. We conclude that
normalization, as done in Adam/RMSProp, is not enough to differentiate between weights that should
be fixed and weights that should change.

The 1D noisy rate-tracking problem.

In the previous problem, learning constant step-size parameters lead to an optimal solution. Generally,
in a continual learning setting, the optimal step-sizes may not be constant and may need to be adapted
over time. The noisy-tracking problem illustrates such a case. This problem is still a linear regression
problem of a single dimension where the feature x; equals 1, at all times ¢.

\ |
["’“JVJW 1

1.0 -

Step-size

0.2 1

00 02 04 06 08 10
Time steps (in millions)
Figure 3: On the noisy-tracking problem, step-size optimization (IDBD) can accurately track the
optimal step-size on a non-stationary single dimension problem. Step-size normalization, as done by

RMSProp, on the other hand, achieves exactly the opposite—it increases the step-size when it should
be decreased and vice-versa.

The learner aims to predict the target y that changes at every step as:
Yt = 2t +N(071)
Zt4+1 = 2t +N(0,0't2)

where o; is sampled every 50,000 steps from a uniform distribution from 0 to 3. Sutton (1981)
showed that the optimal step-size a; for this problem can be computed as:

—0? +\/o} + 4o}
5)

o) =

@)

Figure 3 shows that Classic SGD and RMSProp are not able to track the optimal step-size o on the
1D noisy rate-tracking problem. Indeed, because x; is always equals to 1, RMSProp will decrease
the step-size every time the magnitude of the error increases. However, the opposite is needed for this
problem. The increase in the magnitude of the error is due to a faster rate of drift in the target, which
requires a larger step-size. Figure 3 shows that RMSProp does the opposite of what needs to be done:
increases the step-size when it should be decreased and vice-versa.

The experimental protocol is similar to the weight-flipping problem. We ran the experiment for 1
million steps. The trajectory reported in Figure 3 is for Adam with v,, = 1, where momentum is
disabled, which is why we labeled the algorithm RMSProp. As before, we consider the correction of
the bias at the start of the trajectory to be negligible. Results are reported for the best hyper-parameter
configuration.

4 Step-size Optimization with IDBD

The Increment-Delta-Bar-Delta (IDBD) algorithm (Sutton, 1992), presented next, is a step-size
optimization method. Like RMSProp and Adam, IDBD is a two-level learning process: a base level
and a meta level. The base level learns the weight vector w; used in the loss J;(w;). The meta level
learns meta-parameters, that is the step-size vector a; in Equation 1, used in the base level to update
the weights w;. The key difference between a step-size optimization method (e.g. IDBD) and a
step-size normalization method (e.g. RMSProp) is that a step-size optimization method has an update
rule for the meta level optimizing for the same loss J;(-) than the base level, as opposed to a step-size
normalization method that uses a heuristic, normalization, to update the step-size vector o at the
meta level.

Increment-Delta-Bar-Delta (IDBD) (Sutton, 1992)

Parameters:
«vo: initial step-size
0: meta step-size for the step-size update
Initialise weights w;
Initialise step-sizes in log space 31 = log(ayp)
Initialise average vector h; = 0
fort=1,2,...do
Yi < wpTay
O < Y — Ut
Bt+1 < Bt + 001 - hy
at+1 < eﬁt+1
Wip1 & W + Oy - (St:l}t
hipr + (1 — aqr - CB%)+ “hy + g - 0y
end

To optimize at the meta level for the same loss than the base level, the general idea of meta-gradient
proposes to derive the update rule of the meta level by taking the gradient of the loss with respect to
the meta-parameters used in the update of the base level. In the case of IDBD, the step-size vector
is defined as o, = €, that is the exponential of a vector 3;. Updating the step-sizes in log-space
guarantees that o, is always positive, and enables fast geometric updates. Other representation could
have been chosen, like a sigmoid for example. Consequently, the IDBD algorithm is derived by taking
the gradient of the linear least mean squared regression loss J;(w;) = (] w; — y;)? with respect
to the step-size vector 3; in log-space. Additionally, IDBD uses approximations in its derivation to
keep the same complexity than Classic-SGD. See Sutton (1992) for a complete description of that
derivation.

We now give a mechanistic description of the IDBD algorithm to explain how it works. As with
previous methods, IDBD first computes the error §,. IDBD also keeps an average h; of the gradient
0z, for each component of the input ;. For a component ¢ at time ¢, the absolute value of the
average h; ;) will be high for a weight wy; ;) if the recent gradients d;x ; ;) always have the same
sign (moving in the same direction) and low if recent gradient oscillates around 0. Then, the step-size
in log space B3y, is increased if the last gradient §;x(, ;) correlates with the average h(; ;), and

decreased otherwise. Consequently, the step-size a(y,;) increases if the weight w(; ;) moves in a
consistent direction over time (meaning the step-size was too small) and decreases when the direction

oscillates (meaning the step-size was too high). The notation (-)* guarantees that (1 — a1 - :cf)+
is between 0 and 1 to discount the previous value h;.

The performance of IDBD on the weight-flipping and rate-tracking problems is shown on Figure 2
and Figure 3 respectively. On both cases, IDBD outperformed Classic SGD, RMSProp, and Adam.
On the weight-flipping problem, IDBD learns to decrease the step-sizes for the inputs with constant
weights and to keep the step-size high for inputs with flipping weights. On the 1D noisy rate-tracking
problem, IDBD is able to track the optimal step-size.

5 Limitations of IDBD

The next step would be to use IDBD to learn the step-sizes in deep neural networks. A few open
questions remain to be solved for such an endeavor. The first is how to generalize IDBD such that
it be used to optimize all hyper-parameters. The second is that the main parameter of IDBD, the
meta-step-size hyper-parameter, is sensitive to the magnitude of the gradients as shown in Figure 4.
In addition to the weights flipping between -1 and +1, labelled “Medium” target weights, we also run
a “Small” target weights and a “Large” target weights variants, respectively flipping from -.1 and +.1
and -10 and +10. Other parameters are the same. These two variants shifted the best meta-step-size
for IDBD by 5 orders of magnitudes. Classic SGD on the other hand did not shift. Such sensitivity of
the meta-step-size parameter to the variance of the inputs, the gradients, or the updates in general,
makes it difficult to use IDBD in many common settings.

/J Classic SGD

. _,,./'TIDBD Large target weights
Mean 10"]

squared Classic SGD
assIC
error on DBD Medium target weights
the weight 100 -

flipping

problem Cle Small target weights

IDBD

10° 104 10% 102 10! 10°
Step-size/Meta-step-size

Figure 4: Shift of the best meta step-size parameter of the IDBD algorithm.

6 Existing Extensions of IDBD

IDBD was originally designed for linear regression but the idea of stochastic meta-gradient descent
introduced in the paper is general. Indeed, a general formulation of meta-gradient in online optimiza-
tion problems has been derived in Xu et al. (2018). Meta-gradient in general has been used in a wide
variety of settings, see Andrychowicz et al. (2016) or Xu et al. (2020) for examples.

There are different extensions of the IDBD algorithm, more specifically to different learning settings
and problems. For example, Koop (2008) extends IDBD to classification problems over linear
regression problems. Kearney et al. (2019), Thill (2015), and Young et al. (2018) extended the IDBD
algorithm for temporal-difference (TD) learning in a reinforcement learning context. Schraudolph
(1999) extends the IDBD algorithm to multi-layer neural network with the SMD algorithm. SMD has
been later applied to areas like independent component analysis (Schraudolph and Giannakopoulos,
2000) and complex human motion tracking (Kehl and Van Gool, 2006).

To address the sensitivity of IDBD and SMD to the meta-step-size parameter, Mahmood et al. (2012)
proposed the Autostep algorithm as a tuning-free extension. Sutton (2022) summarizes the history
and recent success of meta-learning algorithms in step-size adaptation methods.

7 Other Step-size Adaptation Algorithms

There are numerous optimization techniques developed for improving convergence or tracking of
optimal parameters in stationary or online optimization problems (Amari et al., 2000; Roux and
Fitzgibbon, 2010; Schaul et al., 2013; Desjardins et al., 2015; Bernacchia et al., 2018). These
techniques include (but are not limited to) second order optimization methods, variance reduction
methods, and step-size normalization techniques. General meta-gradient step-size updates, like IDBD,
are conceptually different from the aforementioned methods. For example, second order optimization
methods such as Newton and quasi-Newton methods leverage information about the curvature of the
loss landscape in weights space to obtain an improved direction (Kochenderfer and Wheeler, 2019).
In contrast, meta-gradient algorithms like IDBD perform updates in hyper parameters space (such as
step-sizes) instead of the weight space (as demonstrated in Figure 1). Note also that in the example
problems of Section 3, second order methods have almost no advantage over first order methods
because the average curvature in these problems is independent of the weights and is almost constant
over different dimensions.

Other approaches include the work of van Erven and Koolen (2016), which introduces an online
algorithm that runs multiple sub-algorithms, each with a different step-size, and learns to use the
best step-size for online convex optimization problems. Wu et al. (2020) proposes to adapt the
step-size according to accumulating gradients for L-Lipschitz continuous objectives. Koolen et al.
(2014) proposes to use a grid of step-size and runs in linear time for prediction problems with expert
knowledge. Jacobsen et al. (2019) introduces AdaGain. AdaGain was designed to work alongside
other step-size adaptation methods. To that end, Adagain optimizes a generic proxy objective function
independent of the base objective function: the vector of step-size is optimized so that the norm of
the gradient of the base objective function becomes small. They show that AdaGain with RMSProp,
for example, can outperform other methods in a continual learning setting.

Finally, variance reduction techniques such as SVRG (Johnson and Zhang, 2013) and SAGA (Defazio
et al., 2014) try to smooth out the noise and obtain lower-variance approximations of gradient of
expected loss in stationary problems. This limits the application of these methods to online learning
problems where such expected loss function does not exist.

8 A Promising Research Direction: Normalized Step-size Optimization

Adam and RMSProp are step-size normalization methods widely used in deep learning. They use
momentum and normalization techniques to adapt the step-size vectors, often providing more stable
updates compared to Classic SGD. These methods have been successful and are now ubiquitous.
This paper has shown that they may not be enough, in the context of continual learning. On the other
hand, meta-gradient algorithms like IDBD optimize the step-sizes with respect to the loss, but have
other limitations such as stability and sensitivity to its step-size parameter. Optimizing step-sizes
in deep neural-networks in a practical way for continual learning is still an open research question.
Consequently, we see that combining normalization and optimization seem a promising research
direction towards better step-size adaptation methods in deep networks. The Autostep algorithm
(Mahmood et al., 2012) can be seen as a possible attempt towards such direction.

Finally, it is possible that a good step-size adaptation method will improve learning in the continual
learning setting but also in other setting. For example, a good step-size adaptation method may
remove the need for a manually tuned step-size schedule, having to sweep over constant step-size
parameters, or better learning in long training of large models.

References

Amari, S., Park, H., and Fukumizu, K. (2000). Adaptive method of realizing natural gradient learning
for multilayer perceptrons. Neural Computation, 12(6):1399—-1409.

Andrychowicz, M., Denil, M., Gémez, S., Hoffman, M. W., Pfau, D., Schaul, T., Shillingford, B.,
and de Freitas, N. (2016). Learning to learn by gradient descent by gradient descent. In Advances
in Neural Information Processing Systems, volume 29.

Bernacchia, A., Lengyel, M., and Hennequin, G. (2018). Exact natural gradient in deep linear
networks and its application to the nonlinear case. In Advances in Neural Information Processing
Systems, pages 5945-5954.

Defazio, A., Bach, F., and Lacoste-Julien, S. (2014). Saga: A fast incremental gradient method with
support for non-strongly convex composite objectives. Advances in Neural Information Processing
Systems, 27.

Desjardins, G., Simonyan, K., Pascanu, R., and Kavukcuoglu, K. (2015). Natural neural networks. In
Advances in Neural Information Processing Systems, pages 2071-2079.

French, R. M. (1999). Catastrophic forgetting in connectionist networks. Trends in cognitive sciences,
3(4):128-135.

Hinton, G., Srivastava, N., and Swersky, K. (2012). RMSProp: Divide the gradient by a running
average of its recent magnitude. Coursera Neural Networks for Machine Learning, 6e:26-31.

Jacobsen, A., Schlegel, M., Linke, C., Degris, T., White, A., and White, M. (2019). Meta-descent for
online, continual prediction.

Johnson, R. and Zhang, T. (2013). Accelerating stochastic gradient descent using predictive variance
reduction. Advances in Neural Information Processing Systems, 26.

Kearney, A., Veeriah, V., Travnik, J. B., Pilarski, P. M., and Sutton, R. S. (2019). Learning feature
relevance through step size adaptation in temporal-difference learning. CoRR, abs/1903.03252.

Kehl, R. and Van Gool, L. (2006). Markerless tracking of complex human motions from multiple
views. Computer Vision and Image Understanding, 104(2):190-209.

Kingma, D. P. and Ba, J. (2015). Adam: A method for stochastic optimization. In 3rd International
Conference on Learning Representations, ICLR.

Kochenderfer, M. J. and Wheeler, T. A. (2019). Algorithms for optimization. The MIT Press,
Cambridge, MA.

Koolen, W. M., van Erven, T., and Griinwald, P. (2014). Learning the learning rate for prediction
with expert advice. In Ghahramani, Z., Welling, M., Cortes, C., Lawrence, N., and Weinberger, K.,
editors, Advances in Neural Information Processing Systems, volume 27. Curran Associates, Inc.

Koop, A. (2008). Investigating Experience: Temporal Coherence and Empirical Knowledge Repre-
sentation. PhD thesis, University of Alberta.

Mahmood, A. R., Sutton, R. S., Degris, T., and Pilarski, P. M. (2012). Tuning-free step-size adaptation.
In 2012 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2012,
Kyoto, Japan, March 25-30, 2012, pages 2121-2124. IEEE.

Roux, N. L. and Fitzgibbon, A. W. (2010). A fast natural newton method. In Proceedings of the 27th
International Conference on Machine Learning (ICML-10), June 21-24, 2010, Haifa, Israel, pages
623—-630. Omnipress.

Schaul, T., Zhang, S., and LeCun, Y. (2013). No more pesky learning rates. In Proceedings of the
30th International Conference on Machine Learning, ICML 2013, Atlanta, GA, USA, 16-21 June
2013, volume 28 of JMLR Workshop and Conference Proceedings, pages 343-351. JMLR.org.

Schraudolph, N. N. (1999). Online Learning with Adaptive Local Step Sizes. In Neural Nets — WIRN
Vietri-99: Proc. 11" Italian Workshop on Neural Networks, Perspectives in Neural Computing,
pages 151-156, Vietri sul Mare, Salerno, Italy. Springer Verlag, Berlin.

Schraudolph, N. N. and Giannakopoulos, X. (2000). Online Independent Component Analysis
With Local Learning Rate Adaptation. In Advances in Neural Information Processing Systems,
volume 12, pages 789—795. The MIT Press, Cambridge, MA.

Sutton, R. S. (1981). Adaptation of learning rate parameters. In Goal Seeking Components for
Adaptive Intelligence: An Initial Assessment.

http://nic.schraudolph.org/pubs/Schraudolph99c.pdf
http://www.springer.de/
http://nic.schraudolph.org/pubs/SchGia00.pdf
http://nic.schraudolph.org/pubs/SchGia00.pdf

Sutton, R. S. (1992). Adapting bias by gradient descent: An incremental version of delta-bar-delta.
In Proceedings of the 10th National Conference on Artificial Intelligence, pages 171-176. AAAI
Press / The MIT Press.

Sutton, R. S. (2022). A history of meta-gradient: Gradient methods for meta-learning.

Sutton, R. S., Koop, A., and Silver, D. (2007). On the role of tracking in stationary environments. In
Proceedings of the 24th international conference on Machine learning, pages 871-878.

Thill, M. (2015). Temporal difference learning methods with automatic step-size adaption for strategic
board games: Connect-4 and dots-and-boxes. Cologne University of Applied Sciences Masters
thesis.

van Erven, T. and Koolen, W. M. (2016). Metagrad: Multiple learning rates in online learning. CoRR,
abs/1604.08740.

Wu, X., Ward, R., and Bottou, L. (2020). Wngrad: Learn the learning rate in gradient descent.

Xu, Z., van Hasselt, H. P., Hessel, M., Oh, J., Singh, S., and Silver, D. (2020). Meta-gradient
reinforcement learning with an objective discovered online. In Advances in Neural Information
Processing Systems, volume 33, pages 15254-15264.

Xu, Z., van Hasselt, H. P., and Silver, D. (2018). Meta-gradient reinforcement learning. Advances in
Neural Information Processing Systems, 31.

Young, K., Wang, B., and Taylor, M. E. (2018). Metatrace: Online step-size tuning by meta-gradient
descent for reinforcement learning control. CoRR, abs/1805.04514.

10

	The Role of Step-size in Continual Learning
	Setting
	Limitations of Step-size Normalization
	Step-size Optimization with IDBD
	Limitations of IDBD
	Existing Extensions of IDBD
	Other Step-size Adaptation Algorithms
	A Promising Research Direction: Normalized Step-size Optimization

