
Experiments with Reinforcement Learning in Problems

with Continuous State and Action Spaces�

Juan C� Santamar��a
carlos�cc�gatech�edu

College of Computing

Georgia Institute of Technology

Atlanta� GA ����������

Phone� ����	 �
������

Fax� ����	 �
��
���

Richard S� Sutton
rich�cs�umass�edu

Lederle Graduate Research Center

University of Massachusetts

Amherst� MA �����

Phone� ����	
�
����

Ashwin Ram
ashwin�cc�gatech�edu

College of Computing

Georgia Institute of Technology

Atlanta� GA ����������

Phone� ����	 �
���

Abstract

A key element in the solution of reinforcement learning problems is the value function�
The purpose of this function is to measure the long�term utility or value of any given
state� The function is important because an agent can use this measure to decide what to
do next� A common problem in reinforcement learning when applied to systems having
continuous states and action spaces is that the value function must operate with a domain
consisting of real�valued variables� which means that it should be able to represent the
value of in�nitely many state and action pairs� For this reason� function approximators
are used to represent the value function when a close�form solution of the optimal policy
is not available� In this paper� we extend a previously proposed reinforcement learning
algorithm so that it can be used with function approximators that generalize the value of
individual experiences across both� state and action spaces� In particular� we discuss the
bene�ts of using sparse coarse�coded function approximators to represent value functions
and describe in detail three implementations� CMAC� instance�based� and case�based�
Additionally� we discuss how function approximators having di�erent degrees of resolution
in di�erent regions of the state and action spaces may in�uence the performance and
learning e�ciency of the agent� We propose a simple and modular technique that can
be used to implement function approximators with non�uniform degrees of resolution so
that it can represent the value function with higher accuracy in important regions of the
state and action spaces� We performed extensive experiments in the double integrator
and pendulum swing up systems to demonstrate the proposed ideas�

Kewords� Reinforcement learning� function approximation� memory�based methods� continu�
ous domains� optimal control� resource preallocation�

� Introduction

A wide class of sequential decision�making problems are those in which the states and actions of
the dynamic system must be described using real�valued variables� Common examples of these

�This work was supported by the NSF grant ECS�������� to Andrew G� Barto and Richard S� Sutton�

class of problems are found in robotics where agents are required to navigate around obstacles�
move manipulators� or grasp tools or objects to accomplish a task� The states of the system in
these examples corresponds to a set of variables representing positions and velocities of joints
or body parts and the actions are a set of forces or torques that can be applied to the actuators�
In this class of problems� an agent must select an action from in�nitely many alternatives after
every �xed time interval while basing its decision using the currently perceived state� which is
also one of in�nitively many possible states�

Reinforcement learning can be used to solve sequential decision�making problems� The main
idea consists of using experiences to progressively learn the optimal value function� which is
the function that predicts the best long�term outcome an agent could receive from a given
state when it applies a speci�c action and follows the optimal policy thereafter� An agent
can incrementally learn the optimal value function by continually exercising the current� non�
optimal estimate of the value function and improving such estimate after every experience�
More speci�cally� the agent can make a decision using the current� non�optimal estimate of the
value function by selecting the action leading to the best value at the current state� Then�
after observing the result of executing such action� the agent can use a reinforcement learning
algorithm such as Sutton�s TD��� algorithm ��Sutton� 	
���� or Watkins� Q�learning algorithm
��Watkins� 	
�
�� to improve the long�term estimate of the value function associated with such
state and action� However� in systems having continuous state and action spaces� the value
function must operate with real�valued variables representing states and actions� which means
that it should be able to represent the value for in�nitely many state and action pairs� This
makes the learning problem very di
cult because it is very unlikely that the agent would
experience exactly same situations it has experienced before� Thus� the agent must be able
to generalize the value of speci�c state�action combinations it has actually experienced to the
situation it is currently facing so that it can make a good decision about what to do next�
Unless a closed�form solution of the optimal value function is known in advance� the choice of
the value function�s representation is a real challenge� It should be able to handle real�valued
variables as inputs� precisely map the state�action pairs to their assigned values� use memory
resources e
ciently� support learning without too much computational burden� and generalize
the immediate outcome of speci�c state�action combinations to other regions of the state and
action spaces�

Value functions are typically represented using function approximators� which use �nite
resources to represent the value of continuous state�action pairs� Additionally� they have pa�
rameters that the agent can use to adjust the value estimates with experience and consequently
improve performance� There are several issues related to the design of function approximators�
In this research� we explore two issues related to the following two questions in the context of
reinforcement learning applied to systems with continuous state and action spaces�

How can the agent use function approximators to generalize the outcome of expe�
riences involving speci�c state�action pairs to other regions of the state and action
spaces�

A common approach that have been used to represent the value function is to quantize the
state and action spaces into a �nite number of cells and aggregate all states and actions within
each cell �e�g�� �Mahadevan and Connell� 	

	� Sutton� 	

�� Barto et al�� 	
���� This is one
of the simplest forms of generalization in which all the states and actions within a cell have

the same value� Thus� the value function is approximated as a table in which each cell has a
speci�c value� However� there is a compromise between the e
ciency and accuracy of this class
of tables that is di
cult to resolve at design time� In order to achieve accuracy� the cell size
should be small to provide enough resolution to approximate the value function� But as the cell
size gets smaller� the number of cells required to cover the entire state and action spaces grows
exponentially� which causes the e
ciency of the learning algorithm to deteriorate because more
data is required to estimate the value for all cells�

Another approach is to avoid the problems associated with quantityzing the state space
altogether by using other types of function approximators� such as neural networks� that do
not rely on quantization and can been used to generalize the value function across states �e�g��
�Lin� 	

�� Rummery and Niranjan� 	

���� The approach consists of associating one function
approximator to represent the value of all the states and one speci�c action� For this reason
it is useful for systems with continuous states and discrete actions� In this way� the agent can
generalize the value of one speci�c state and the given action to other states in the neighborhood
and the same action� The approach can be extended to systems with continuous states and
actions by quantizing the action space into a �nite number of cells and associating one function
approximator to each action cell as before� In this way� all actions within an action cell are
aggregated into one and assigned the same value� but keeping the state continuous� However� as
with the quantized table approach� when the number of action levels increases� more function
approximators are required� and the e
ciency of the learning algorithm deteriorates due to
the inability of the function approximator to generalize across action levels� Moreover� it is
not possible to use speci�c state�action experiences to improve the estimate of more than one
function approximator� even when the action value is near the boundary of two di�erent action
cells�

In this article� we propose an approach that extend the use of function approximators
to systems with continuous states and action spaces� The approach consists of using only
one function approximator over the combined state and action spaces� Therefore� it does not
require quantization of the state nor action spaces and it can be used to generalize state�action
experiences to other regions of the states and actions spaces� We evaluate the feasibility of
the proposed approach in two widely known systems with continuous state and action spaces�
double integrator and pendulum swing up�

What is the e�ect of designing function approximators with non�uniform resource
preallocation�

An important decision to consider when designing function approximators deals with re�
source preallocation across state and action spaces� Resource preallocation refers to the distri�
bution of adjustable memory elements across the input domain� This is an important decision
because such distribution a�ects the way the function approximator represents the value of
state�action pairs� In general� the more the adjustable memory elements are available� the
more the resolution of the function approximator� A good design strategy when no prior
knowledge about the system is available is to preallocate resources uniformly across the entire
state and action spaces� In this way� the function approximator will be able to represent the
value function with the same resolution everywhere� which is desirable since there is no reason
to favor some regions of the state�action space more than others� However� it is possible to
design function approximators with non�uniform distribution of resources in order to achieve

di�erent degrees of resolution in di�erent regions of the state�action space�

There are several reasons why designing non�uniform function approximators may be more
bene�cial than designing uniform ones� First� it is unlikely that there is absolutely no prior
knowledge of the system available� often the designers know� up to a certain degree� what
regions of the state�action space will be used more often� In such cases� the premise that lead
to the design of a function approximator with uniform resources preallocation no longer applies�
Presumably� it may be an advantage to design the function approximator such that it uses fewer
resources in regions of the state�action space that are known to be visited rarely while use more
resources in other� more heavily transited regions� Second� given �xed amount of resources� a
non�uniform function approximator may lead to better performance and learning e
ciency than
that achieved with a uniform function approximator just because the former is able to exploit
the resources more e
ciently than the later� Finally� it may be possible to design function
approximators that dynamically allocate more resources in certain regions of the state�action
space and increase the resolution in such regions as required to perform on�line�

In this article� we describe a modular method that can be used to implement a non�uniform
function approximator given the implementation of an uniform one� Thus� the method takes
advantage of the conceptually simple and computationally e
cient implementation of uniform
function approximators and yet produces results equivalent to the non�uniform ones� We explore
the feasibility of this idea by implementing uniform and non�uniform versions of three types
of sparse coarse�coded function approximators� CMAC� instance�based� and cased�based� and
compare the results in learning e
ciency and �nal performance on the double integrator and
the pendulum swing up�

Section � describes the problem formulation and introduces the concepts that will be used
later in the paper� Section � presents the role of function approximators in reinforcement learn�
ing and also describes in detail the two classes of sparse coarse�coded function approximators
used in the experiments� Section � introduces the topic of resource preallocation in function
approximators and describes a simple technique to obtain non�uniform resource preallocation
while keeping the simplicity and computational e
ciency of function approximators with uni�
form preallocation� The results of experiments performed with uniform and non�uniform sparse
coarse�coded function approximators in two di�erent reinforcement learning problems is pre�
sented in section � and section � analyzes these results� Section � concludes the paper�

� Reinforcement Learning

��� De�nition

In reinforcement learning problems� a decision�maker or agent attempts to control a dynamic
system by choosing actions in a sequential fashion� The agent receives a scalar value or reward
with every action it executes� The ultimate goal of the agent is to learn a strategy for selecting
actions or policy such that the expected sum of discounted rewards is maximized� The dynamic
system� often referred to as the environment� is characterized by a state� and its dynamics� a
function that describes the evolution of the state given the agent�s actions� The state of the
system captures all the information required to predict the future evolution of the system given

agent�s actions� It is assumed that the agent can perceive the state of the environment without
error and base its current decision using this information�

��� The State�Value Function or Value Function

A key element in the solution of reinforcement learning problem is the state�value function �or
simply� the value function� V ��x� associated with a given policy ��x�� which is de�ned as�

V ��xt� � E

�
�X
k��

�krt�k��

�
�	�

where xt is the state of the system at time t� rt�k�� is the reward received for performing
action ut�k � ��xt�k� at time t � k� and � is the discount factor �� � � � 	�� The state�value
function measures the expected discounted sum of rewards or expected return the agent will
receive when it starts from the given state and follows the given policy� therefore the name of
state�value function� In particular� the optimal value function� V ��x� measures the maximum
possible expected return the agent could receive when it starts from state x��

When the agent is controlling a deterministic system and knows the one�step reward function
rt�� � R�xt� ut�� the dynamics function xt�� � F �xt� ut�� and the optimal value function V ��x�
for every state x and action u� then it can decide the optimal action to perform at every decision
point by performing the following one�step lookahead search�

u�t � ���xt� � arg max
ut�U

fR�xt� ut� � �V ��F �xt� ut��g ���

The policy de�ned by Equation � is optimal because it selects the actions that maximizes
the expected return starting from the given state� Additionally� it is easy to design e
cient
implementations of the one�step search in most of the cases�

��� The Action�Value Function or Q�Function

The one�step search using the value function is useful only when the agent knows the one�step
reward and dynamics functions in advance� Alternatively� the action�value function �or simply�
the Q�function as Watkins �Watkins� 	
�
� de�nes it� measures the expected return of executing
action u at state xt� and then following the policy ���� for selecting actions in subsequent states�
therefore� the name of action�value function� The Q�function corresponding to policy ��x� is
de�ned as

Q��xt� ut� � rt�� � �Q��xt��� ��xt���� ���

The advantage of using the Q�function is that the agent is able to perform the one�step

�In some problems� the rewards are always negative and it is more convenient to express them as positive costs�
Then� to keep consistency� the agent should seek to minimize the discounted sum of costs instead of maximize
the discounted sum of rewards� However� one should keep in mind that both formulations are mathematically
equivalent�

lookahead search without knowing the one�step reward and dynamics functions� The disadvan�
tage is that the domain of the Q�function increases from the domain of states x � X to the
domain of state�action pairs �x� u� � X � U � When the agent knows the optimal Q�function�
Q�� it can select the optimal action using the following one�step search

u�t � ���xt� � arg max
ut�U

fQ��xt� ut�g ���

The optimal Q�function can be computed using dynamic programming ��Bellman� 	
����
when the one�step reward and dynamics functions are known in advance� However� we are
interested in methods the agent can use to learn the optimal policy using its own experience�
More speci�cally� in methods the agent can use to incrementally improve the estimates of the
Q�function using the outcome of its previous actions�

��� Temporal Di�erence Methods

Temporal di�erence methods ��Sutton� 	
���� exploit Equation � to create an update formula�
A formula an agent can use to asymptotically learn the Q�function function from observations�
More speci�cally� every time the agent selects action u and observes the next state y and reward
r� it can verify whether Equation � holds or not by computing the error between the predictions
Q��x� u� and r � �Q��y� ��y��� When the error is di�erent from zero� the update formula is
used to adjust the estimate of Q��x� u� such that the error is maximally reduced�

Sutton de�nes a whole family of update formulas for temporal di�erence learning called
TD���� where � � � � 	 is a weight used to measure the relevance of previous predictions
in the current error� The convergence of TD��� has been proved under di�erent conditions
and assumptions� Watkins �Watkins� 	
�
� shows that the Q�function estimates asymptotically
converge to their optimal values in systems having discrete and �nite state and action spaces
when TD��� is used to perform the updates� A condition for the convergence is that all states are
visited and all actions are executed in�nitely often� Tsitsiklis and Van Roy �Tsitsiklis and Van
Roy� 	

�� shows that the value function associated with a given policy converges for any linear
function approximator and TD��� updates� There is no proof showing the convergence of TD���
for more complex function approximators� but this has not stopped researchers for trying these
methods using di�erent classes of non�linear function approximators� Successful results have
been obtained with multi�layer neural networks �e�g�� �Lin� 	

��� �Rummery and Niranjan�
	

��� and sparse coarse coding methods such as Cerebellar Model Articulation Controllers
�CMACs� �e�g�� �Sutton� 	

��� �Tham� 	

���� The next section describes the role function
approximators in reinforcement learning problems with continuous state and action spaces�

� Function Approximators

The optimal Q�function is su
cient for an agent to optimally perform the given task since the
agent can use the one�step lookahead search �i�e�� Equation �� to select the optimal action at
any given state� However� the agent does not have the optimal Q�function readily available
from the beginning and it must learn such function using its own experience� Thus� the idea

is to provide the agent with an initial estimate of the Q�function and let it decide the best
action based on the current estimate� Then� the agent can use the outcome of each action to
asymptotically improve the estimate towards the optimal action value� One way to accomplish
this is to use a function approximators to represent Q�function� The function approximator
will provide the agent with estimates of the expected returns of every state�action pair even
when the state and action spaces are continuous� More speci�cally� a function approximator
for the Q�function of a given policy is of the form �Qw�x� u�� where x is the state� u is the
action� and w is a set of adjustable parameters or weights� Given a current estimate of �Q� the
agent can use the one�step search to select the best action at some state xt according to this
estimate� Additionally� the agent may adjust the current estimate by modifying the weights of
the function approximator using TD��� updates�

Function approximators are useful because they can generalize the expected return of state�
action pairs the agent actually experiences to other regions of the state�action space� In this way�
the agent can estimate the expected return of state�action pairs that it has never experienced
before� Also� function approximators are able to represent the Q�function even when state and
action spaces are continuous� However� note that a function approximator may not be able
to accurately represent the Q�function for the entire state and action space due to its �nite
resources�

There are many classes of function approximators� each with advantages and disadvantages�
The choice of a function approximator depends mainly in how accurate it is in generalizing the
values for unexplored state�action pairs� how expensive is to store it in memory� and how well
supports the computation of the one�step search and learning by TD��� updates�

��� One�Step Search

A function approximator for the Q�function can indicate the best action the agent can take at
any given state� Such action is determined by performing the following one�step search�

�u�t � arg max
ut�U

n
�Qwt�xt� ut�

o
���

The actual implementation of the one�step search depends on the function approximator�
A common technique used in problems with continuous state spaces is to use one function ap�
proximator for each action� Then� the one�step search can be performed by simply evaluating
each function approximator at the given state� The best action is the one associated with the
function producing the maximum value �see� for example� �Lin� 	

�� Rummery and Niranjan�
	

�� Sutton� 	

���� However� such technique becomes quickly impractical when the number
of actions increases due to storage implications and computational e
ciency because the num�
ber of function approximators is proportional to the number of actions� Additionally� since
each function approximators operates in isolation� the set of function approximators is able to
generalize the estimated return only across states� Also� the set must be evaluated using only
the action values from a �nite predetermined set�

It is possible to overcome the di
culties of this technique at expense of more elaborate
computation while performing the one�step search� The Q�function may be represented with
only one function approximator and the optimal action at a given state may be found using some

numerical optimization method may� For example� for function approximators that provide
a direct measure of ru

�Q� the best action could be found using a gradient descent method�
The details in the implementation of the one�step search depends on the class of function
approximator� However� the algorithm shown in Figure 	 is applicable for all classes of function
approximators�

Input� state xt and weights wt

Output� best action 	u�

Algorithm�

�� For every action ui from umin to umax at step
u�

�a� Evaluate 	Qwt
�xt� ui��

�b� Keep the action 	u�
 ui that produces the maximum value�

�� Return 	u��

Figure 	� One�Step Search Algorithm�

The computational complexity of the algorithm in Figure 	 depends on the step size �u�
the cost of evaluating �Qwt�xt� ut�� and the dimensionality of the action space� Additionally�
since the resolution of the search in the action space is �u� the resulting action value is not
truly continuous throughout the action space� However� the advantage is that only one function
approximator is being used to represent the Q�function instead of O�U��u�� Clearly� this is
not the most e
cient algorithm but is conceptually simple and widely applicable�

��� Learning

An agent following policy ��x� can improve the current estimate of �Qwt by adjusting the weights
after every state transition using TD��� updates� However� it is not possible to do so when the
agent always chooses the action suggested by the given policy� The agent must also perform
some exploratory actions to be able to determine their e�ect� For this purpose� every time the
agent selects action ut at state xt� and observes the next state xt�� and reward rt�� that results
from executing that action� it uses the following TD��� formula to update the weights of the
function approximator�

�wt � �
�
rt�� � � �Qt�� � �Qt

� tX
k��

����t�krwk
�Qk ���

where �Qt�� � �Qwt�xt��� ��xt����� �Qt � �Qwt�xt� ut�� rwk
�Qk is the gradient of �Q with respect w

and evaluated at the state�action pair �xk�uk�� and � is a learning rate� The interpretation of
Equation � is as follows� �Qt and �Qt�� represent the long�term outcome �i�e�� discounted sum
of rewards� associated with the current policy at states xt and xt�� respectively� The term�
rt�� � � �Qt�� � �Qt

�
represents the error incurred by �Qt in predicting the future according

to �Qt��� In other words� the Q�value of state xt should be equal to the immediate reward
r plus the Q�value of the next state xt�� properly discounted� In case of error� the weights

are proportionally modi�ed in the direction of the gradient rwt in order to maximally reduce
error� The discounted sum of the previous gradients rwk

are also credited for the current error
although their in�uence decays exponentially with ��

The rightmost sum has the following recursive property�

Wt�� �
t��X
k��

����t���krwk
�Qk

� rwt��
�Qt�� � ����

tX
k��

����t�krwk
�Qk

� rwt��
�Qt�� � ����Wt ���

An on�line implementation of the update rule given by Equation � is possible by taking
advantage of this recursive property� The idea is to maintain the value of the rightmost sum in
Equation � in a variable� Wt� which can be easily update at every step as Wt�� � rwt��

�Qt���
��Wt� Another approach to perform this computation is to store each component of the
multidimensional variable Wt separately in an eligibility trace� et� The variable et represents
the proportion of blame or �eligibility� the associated component in Wt has in the current error
taking into account past information �for details� see� �Singh and Sutton� 	

����

In order to improve the Q�values� the policy must be chosen in such a way that both improve
as the agent collects information� One way to accomplish this is to choose the action leading
to the best estimate �Q�x� �u�� most of the time with ties resolved randomly� However� a small
fraction� �� of the time� an action is chosen randomly uniformly from the operating range� This
policy is called ��greedy�policy �see �Sutton� 	

����

Both performing and learning are put together in the SARSA� algorithm ��Rummery and
Niranjan� 	

�� Sutton� 	

���� The algorithm uses the ��greedy�policy and the TD��� up�
dates to improve the estimates of the Q�function with every experience and consequently the
performance of the agent �see Figure ���

��� Sparse Coarse�Coded Function Approximators

The one�step search and SARSA algorithms outlined in the previous section apply to any kind
of function approximator� However� not all function approximators are equally e
cient� The
following are the main characteristics a function approximator should exhibit to be useful and
e
cient�

� Generalization� Refers to the ability of the function approximator to accurately gener�
alize the values for unexplored state�action pairs� In systems with continuous state and
action spaces� it is unlikely that the agent experiences exactly the same situation it has
experienced before� Thus� it is very important that the function approximator is able to
extrapolate the values of experienced state�action pairs to unseen state�action pairs�

�State�Action� Reward� State�Action�

Input� initial set of weights w�

Algorithm�

�� Initialization�

�a� perceive current state� xcurr

�b� select action� ucurr � ��greedy�policy�xcurr�

�� Accumulate gradient�
Wt �rw

	Q�xcurr� ucurr� � ��Wt��

�� Perform action�
Execute ucurr� observe resultant reward� r� and next state� xnext�

�� Select next action�
unext � ��greedy�policy�xnext�

�� Learn�
wt�� � wt � ��r � � 	Q�xnext� unext� � 	Q�xcurr� ucurr��Wt

�� Loop�
xcurr � xnext
ucurr � unext
If xcurr is a goal state then terminate else goto ��

Figure �� Gradient Descent version of the SARSA Algorithm�

� Resolution� Refers to the granularity of the function approximator and its capacity
to represent di�erent values in small areas of the input space� Thus� the ability of the
function approximator to be able to accurately represent the Q�function depends on the
resolution�

� Storage� Refers to the memory resources used to implement the function approximator�
The more storage the function approximator needs� the less usable becomes� owing to the
cost associated with its maintenance� Additionally� in most cases� the storage compromises
with the resolution of the function approximator� because the �ner resolution� the larger
the storage needs�

� Computational e�ciency� Refers to the complexity and e
ciency of the one�step
search and SARSA algorithms� An e
cient function approximator must provide sup�
port for simple and e
cient evaluation of state�action pairs and gradient computation
because the agent performs these two operations extensively during the action selection
and learning�

We concentrate our research in sparse coarse�coded function approximators because their
properties nicely support these basic characteristics� Sparse coarse�coded function approxima�
tors are the most basic model of associative memory� They represent the content associated
with some input using several physical memory locations and generalize the content by sharing
these memory locations� The more two di�erent inputs share memory locations� the similar
their contents will be� The resolution� storage� and computational e
ciency vary according to

the speci�c type of function approximator and its implementation� A detailed description of
sparse distributed memory and related models is available in �Kanerva� 	

���

The following subsections describe three types of sparse coarse�coded function approximators
and outline their advantages and disadvantages�

����	 Lookup Tables

The lookup table is one of the most common function approximators used to represent the Q�
function when the states and actions spaces are discrete� It represent the extreme in the class of
sparse coarse�coded memory function approximators because each input is associated with only
one memory location� More speci�cally� each state�action pair is an element of the table that is
used to store the current estimate of the value associated with that pair� The size of the lookup
table is O�NU�� where N and U are the number of states and actions respectively� Lookup
tables represent the extreme of sparse coarse�coded function approximators in which only one
memory location is used to represent the Q�value associated with every state�action pair� For
system characterized by continuous state and action spaces� each element of the lookup table is
mapped into a cell in the state and action spaces� Thus� all states and actions within a region
or cell are aggregated into one table element and are all assigned the same value� This is the
basic form of generalization that lookup tables implement�

Lookup tables quickly become impractical for several reasons� First� state and actions spaces
must be quantize into a �nite number of cells� It is often di
cult to determine an appropriate
quantization scheme to provide enough resolution �i�e�� accuracy� and low quantization error�
Second� the number of cells grows exponentially with the number of variables and geometrically
with the number of quantization levels� This creates storage and maintenance problems� Third�
the rate of convergence of the learning algorithm becomes extremely slow as the number of
states and actions increases� Additionally� the quantized state and action spaces often create
convergence problems because they form a non�Markovian representation of the dynamics of
the system �see �Moore and Atkeson� 	

����

Lookup tables e
ciently support one�step searches and TD updates� The best action at a
given state is found by indexing the table holding the state constant and performing a sweep
across all possible actions values �Equation ��� Since there is only one parameter associated
with every state�action pair in the lookup table� the TD updates are also easy to implement�
Equation � shows a TD��� update�

�Q�x� u� � ��rt�� � � max
a

�Q�y� a�� �Q�x� u�� ���

Watkins showed that under certain conditions this update rule can be used to asymptotically
learn the optimal Q�values in systems having discrete state and action spaces �Watkins� 	
�
��
Also� Peng and Williams described a way to use TD��� in a learning algorithm they call Q����
which results in a learning algorithm with faster convergence rate �Peng and Williams� 	

���
However� the conditions for convergence in these algorithms rarely hold in quantized versions
of continuous state and action spaces�

dimension 1

di
m

en
si

on
 2

tiling 1

tiling 2
query point

active tiles

Figure �� CMAC function approximator�
Every state�action pair� represented by the dot� activates one tile in each tiling� The sum of
the weights of all the activated tiles represents the vale associated with that state�action pair�

����
 Cerebellar Model Articulation Controller

Cerebellar Model Articulation Controllers� or CMACs� are a class of sparse coarse�coded mem�
ory that models cerebellar functionality �Albus� 	
���� Each input or state�action pair activates
a speci�c set of memory locations or features� the arithmetic sum of whose contents is the value
of the stored Q�value� The CMAC takes advantage of the continuous nature of the input and
is able to store the necessary data in a physical memory of practical size�

A CMAC consists of several overlapping tilings of the state�action space to produce the
feature representation� A query is performed by �rst activating all the features that contain
the state�action input and then summing the values of all the activated features� Figure �
shows a bidimensional example of a CMAC organization� CMACs have been widely used in
conjunction with reinforcement learning �Watkins� 	
�
� Sutton� 	

�� Tham� 	

���

The size of a CMAC depends on the number of tilings and the size of each tiling� Tilings
are usually large to provide enough resolution and they grow exponentially with the number of
variables� A common trick to avoid large tilings is to use a consistent random hashing function
to collapse a large number of tiles in a tiling into a smaller set� CMACs with uniform tilings
e
ciently support one�step searches since the evaluation of the Q�values is not computationally
expensive� In naives CMAC implementations� TD��� updates are proportional to the number
of tiles in the CMAC since each tile holds an eligibility trace� More e
cient implementations
keep a list of non�zero traces and perform the updates only on those tiles �e�g�� �Cishosz� 	

����
A description of the structure and basic operations of the CMAC follows�

� Tile structure� A CMAC consists of a set of N tilings� fTi� i � 	� � � � � N g� Each tiling
Ti consists of a set of Ni tiles or features that cover the entire input space of the tiling
contiguously and without overlapping� Ti � f fij� j � 	� � � � � Ni g� Each tile fij has a

weight wij and an eligibility eij�

� Tile selection� For each tiling Ti� the tile fij containing the query point �xq� uq� is
activated� All active tiles are aggregated in the set F �xq� uq��

F �xq� uq� � ffij � Ti j �xq� uq� � fijg �
�

� Function evaluation� All the weight associated with the tiles in F �xq� uq� are summed
together�

�Q�x� u� �
X

fij�F �x�u�

wij �	��

� TD��� update� The learning update is performed for each tile in the CMAC�

�wij � ��rt�� � � �Qt�� � �Qt� eij �fij � CMAC �		�

where �Qt and �Qt�� are the values of state�action pairs at �xt� ut� and �xt��� ut��� respec�
tively�

� Eligibility update� The eligibilities of all the tiles in the CMAC are updated according
to their current contribution to the value of the query point� In a query operation�
every tile in F �xq� uq� contributes equally to the value of the query point� therefore� the
contribution of each tile is the fraction of the total number of tiles in F �xq� uq���

eij 	
�

�
jF �xq�uq�j

if f � F �xq� uq�

�� eij otherwise
�	��

where jF �xq� uq�j is a constant� that represents the number of tiles in the set F �xq� uq��
Note that each tile in the CMAC represents a weight of the function approximator and
each active tile has a the same contribution� namely �

jF �x�u�j� in estimating the value for

�xq� uq��

The CMAC function approximator use computationally e
cient methods for the selection
of tiles when the size of each tile within each tiling is constant� The TD��� and the eligibilities
updates are proportional to the number of tiles in the CMAC� This may deteriorate the perfor�
mance of the CMAC in situations where some of the tiles are never used� The generalization
and resolution of the CMAC depends on the number of tilings and the number of tiles within
each tiling� The more number of tiles the better the resolution and the more number of tilings
the better the generalization� However� the storage is proportional to the total number of tiles�

�Equation �� corresponds to replacement of eligibilities �see �Singh and Sutton� ����� for an explanation of
the rationale behind the equation��

�In our CMAC implementation� there is only one active tile per tiling� Thus� the number of active tiles per
query point is always the same and equal to the total number of tilings in the CMAC �i�e�� jF �xq� uq�j
 N ��

τd

τk

di
m

en
si

on
 2

dimension 1

C3

C4

C5 C6

C2C1

query point

active cases

density parameter

smoothing parameter

Figure �� Memory�based function approximator�
Every state�action pair� represented by the dot� activates the cases that are close to it according
to some similarity metric such as Euclidean distance� The weighted average of the values of
all the activated cases represents the vale associated with that state�action pair� Cases that
are closer contribute more to the �nal value than cases that are farther� New cases are created
when nearest neighbors are too far away�

����� Memory�Based Function Approximators

Another class of sparse coarse�coded memory is memory�based� Although� memory�based func�
tion approximators have not been widely used in conjunction with reinforcement learning� they
are common in other tasks such as classi�cation �e�g�� �Kibler and Aha� 	
�
�� and robot con�
trol �e�g�� �Atkeson� 	

	�� �but see �Ram and Santamar��a� 	

�� Peng� 	

�� McCallum et al��
	

���� In a memory�based function approximator� each memory element represents some of
the state�action pairs or a case the agent has experienced before� A query is performed by �rst
retrieving the nearest neighbors to the query point according to some similarity metric and
then performing a weighted average of their Q�values� Additionally� new cases can be created
and added to the memory when the nearest neighbors are too far away from a query point� In
this way� the memory expands dynamically and on demand as new regions of the state�action
space are being explored�

The size of the memory�based function approximator is dynamic� The memory starts empty
and grows according to a density threshold� �d� that is used to determine when a new case should
be added to the memory� Thus� when the distance of the nearest neighbor to a query point
is greater than �d� a new case is added to the memory placed at the position of the query
point� Small thresholds tend to produce function approximators with high resolution but with
large amounts of memory due to the high density of cases� The choice of the density threshold
depends on the problem� Figure � shows a bidimensional example of a memory�based function
approximator�

The choice of the similarity metric depends on the application� A common measure of
similarity metric in continuous domains is the Euclidean distance� This metric is useful when
the Q�function is expected to be continuous and smooth throughout the state�action space� To
compute the value associate with some input� a weighted average among nearest neighbors is

performed using a kernel function �e�g�� Gaussian� with a smoothing parameter� �k� that controls
the blending of values of nearest neighbors in the average� Generalization in memory�based
function approximators results as a combination of the weighted average of nearest neighbors
as determined by �k and the density of cases in memory as determined by �d� A good design is
one in which the smoothing parameter is larger than the density parameter because in this way
several cases contribute to the value of the query point while� at the same time� large portions
of the domain are covered with fewer cases�

We describe the implementation of two memory�based function approximators� instance�
based and case�based� They di�er in the structure of the memory elements� the selection of the
nearest neighbors� and the procedures used to compute the weighted averages� The instance�
based version uses less storage and it is useful when the value function is smooth and continuous�
The case�based version uses more storage but it is able to perform better generalizations and
achieve greater resolution than the instance�based version� The description of the structure and
the basic operations each function approximator follows�

Instance�Based Function Approximator

The cases in the instance�based function approximator have a simple structure� Every
case consists of a state and action combination the agent has used in the past and stores the
approximated Q�value for such combination� Only one distance function is required to generalize
the values of cases across the combined state�action space� However� this may produce over�
generalization because only the cases that are similar to both� the query state and the query
action� are used to determine the Q�value of a state�action pair�

� Case structure� Every case consists of a some state�action pair �xi� ui� the agent has
experienced in the past� the associated value Qi� and the eligibility ei� That is� Ci �
�xi� ui� Qi� ei��

� Nearest neighbors selection� A similarity function is used to compute the distance di
from the query point �xq� uq� to the point �xi� ui� associated with each case Ci in memory�
Then� the set of nearest neighbors to the query point� NN q� is determined using the
following rule�

NN q � fCi � Memory j di � �kg �	��

� Function evaluation� A kernel function� K��� �e�g�� Gaussian K�di� � exp��d�i �� �k ���
is used to compute the relative contribution of case Ci in the value of the query point�
The �nal value is the average of the nearest�neighbor cases weighted using their relative
contributions�

�Q�xq� uq� �
X

�Ci�NN q

K�di�P
j K�dj�

Qi �	��

� TD��� update� The learning update is performed to each case in memory�

�Qi � ��rt�� � � �Qt�� � �Qt� ei �Ci � Memory �	��

where �Qt and �Qt�� are the values of state�action pairs at �xt� ut� and �xt��� ut��� respec�
tively�

� Eligibility update� The eligibilities of all the cases in memory are updated according
to their current contributions to the value of the query point� In a query operation� every
neighboring case contributes according to its distance to the query point modulated by
the kernel function� therefore� the contribution of each case is its weight in the weighted
average computation�	

ei 	
��
�

K�di�P
j
K�dj�

if Ci � NN �x� u�

�� ei otherwise
�	��

� Case addition criterion� A new case is added to the memory when the distance to the
closest neighbor� dmin � minfdig� is larger than the threshold parameter �d�

Case�Based Function Approximator

The case�based function approximator use cases that contain more information than state�
action pairs� Each case represents a region of the state space the agent has visited in the past�
a set of actions the agent may or may have not executed in that region of the state space� and
the set approximated Q�values associated to each action� Additionally� it uses two distance
functions and two kernel functions to generalize and blend the values across the state and
action spaces independently� For this reasons� the case�based function approximator has better
resolution and generalization capabilities than the instance�based function approximator and
may prove useful when the Q�function changes abruptly across actions within similar states�
However� the case�based version requires more computation to perform the function evaluation
and the TD��� updates than the instance�based version�

� Case structure� Every case consists of a some state point xi the agent has experienced
in the past� an associated value Qi that generalizes the Q�value across all the actions at
that state� and the eligibility ei� Additionally� the case stores a set of a set of Ni di�erent
actions uij� their associated Q�values Qij� and their eligibilities eij �j � 	� � � � � Ni�� That
is� Ci � �xi� Qi� ei� fuijg� fQijg� feijg j j � 	� � � � � Ni �� This case structure explicitly
separates the representation of the Q�value in two portions� one associated with the
state alone �Qi� that generalizes the Q�value across all actions within that state� and one
associated with the actions �Qij� alone that specializes the Q�value within the state�

� Nearest neighbors selection� A similarity function associated with the state space is
used to compute the distance dxi from the query state xq to the state xi of each case Ci in
memory� Then� the set of nearest neighbors to the query state� NN q� is determined using
the following rule�

NN q � fCi � Memory j dxi � �kg �	��

Thus� in the case�based version� only the similarity across the state space is considered
to �nd nearest neighbors� As a consequence� a case may be selected as a near neighbor
even when the query action is very di�erent than the one stored in the case� However�
each case can contribute with many di�erent values to determine the Q�value of the

�Equation �� corresponds to replace of eligibilities�

query action� This produces an increase in both� the generalization and the resolution of
the function approximator because the Q�value of an state�action pair may be estimated
approximately even when the agent has tried only a few number of actions at similar
states and� at the same time� there are several elements within each case to represent the
Q�value with higher accuracy for di�erent actions at the similar states�

� Function evaluation� The evaluation of the function approximator at query point
�xq� uq� requires two kernel functions� Kx��� and Ku���� The former one is used to de�
termine the relative contribution of each case Ci to the value of the query state xq� The
later one is used to determine the relative contribution of each action uij within each case
to the value of the query action uq�

The evaluation is performed in two phases� during the �rst phase a similarity function
associated with the action space is used to compute the distance duij from the query action
uq to the action uij for each action in case Ci in the nearest�neighbor set� Then� the Q�
value for the query action� Qi�uq�� is determined for each case using the following weighted
average�

Qi�uq� � �	� 	�Qi � 	

�
	 X
�uij�Ci

Ku�duij�P
j K

u�duij�
Qij

A �Ci � NN q �	��

where 	 is a parameter that controls the blending between the Q�value associated with
the state� Qi� and the Q�values associated with each action� Qij� When 	 is close to zero�
the value of Qi�uq� is close to the value associated with the state �Qi� and less sensitive
to the value of the actions �Qij� �i�e�� the Q�value of the state�action pair depends more
on the state rather than on the action�� On the other hand� when 	 is close to one� the
value of Qi�uq� is close to the value associated with the actions and less sensitive to the
value of the state �i�e�� the Q�value of the state�action pair depends more on the action
rather than on the state�� Thus� Qi�uq� represents the Q�value of the query point �xq� uq�
according to case Ci� which is a blend between the Q�value associated with the state and
the weighted average of the Q�values associated with the actions�

During the second phase the distances associated with state space �dxi jCi � NNq� and
the kernel function Kx��� are used to determined the relative contribution of each case
Ci and merge the �Qi�uq� jCi � NNq� into a weighted average� The following equation
shows the computation�

�Q�xq� uq� �
X

�Ci�NN q

Kx�dxi �P
j K

x�dxj �
Qi�uq� �	
�

� TD��� update� The learning update is performed to each case in memory and each
action within a case�

�Qi � ��rt�� � � �Qt�� � �Qt� ei �Ci � Memory ����

�Qij � ��rt�� � � �Qt�� � �Qt� eij �uij � Ci ��	�

where �Qt and �Qt�� are the values of state�action pairs at �xt� ut� and �xt��� ut��� respec�
tively�

� Eligibility update� The eligibilities of all the cases in memory and all the actions within
a case are updated according to their current contributions to the value of the query point�
In a query operation� every neighboring case contributes according to its distance to the
query point modulated by the kernel function� therefore� the contribution of each case is
its weight in the weighted average computation�

ei 	
��
� �	� 	�

Kx�dx
i
�P

j
Kx�dxj �

if Ci � NN �x� u�

�� ei otherwise
����

eij 	
��
� 	

Ku�dui �P
j
Ku�du

j
�

if Ci � NN �x� u�

�� eij otherwise
����

� Case addition criterion� A new case is added to the memory when the distance to the
closest neighbor� dxmin � minfdxi g� is larger than the threshold parameter �d�

Memory�based function approximators are more memory e
cient than CMACs but require
more computation to calculate the Q�value for a given state�action pair and to perform the
TD��� updates� However� the main advantage of memory�based function approximators is
their ability to dynamically allocate resources in regions of the state�action space that require
them the most�

� Non�uniform Preallocation of Resources

Function approximators may not have enough resolution to represent the Q�function in the
entire state�action space� However� each class of function approximator provide di�erent ways of
distributing resources non�uniformly across the state�action space so that some regions will have
more resolution than others� For example� CMACs may use tilings with non�uniform tile sizes�
while memory�based function approximators may use di�erent density thresholds in di�erent
regions of the state�action space� However� designing non�uniform function approximators
more complex than designing their uniform counterparts� Moreover� non�uniform designs often
hinder the computational e
ciency and memory storage of the function approximator� The
idea of distributing the resources non�uniformly is inspired by quantization techniques widely
used in digital communication theory� The objective is to approximate an analog signal with
a quantized version so that the error between the two is minimized� For that purpose� more
quantization levels are allocated to those regions where the amplitude of the signal is more
frequently used� which reduces the average error performed in the quantization process �see�
for example� �Shanmugam� 	
�
���

It is well�known in the �eld of machine learning that the representation of the input space has
a large impact on learning speed and accuracy� A common technique consists of preprocessing
the training examples to bene�t learning and performance� We implement this technique to
design function approximators that take advantage of the simplicity and e
ciency of the uniform
versions of function approximators and yet are equivalent to the more elaborate� but more

�Equations �� and �� corresponds to replace of eligibilities�

�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������

����
����
����
����

����
����
����
����

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������

���
���
���

���
���
���

����������������
����������������
����������������
����������������

����������������
����������������
����������������
����������������

original space skewed space

important region enlarged region

reduced region

Skewing Function

Uniform Function Approximatorunimportant region

Figure �� Non�uniform resource preallocaton�
The skewing function distributes the reousrce non�uniformly� The function skews the space
by expanding important regions and compressing unimportant ones� The skewed space is the
input to the uniform function approximator�

accurate non�uniform counterparts� The implementation consists in distorting the state�action
space by applying a skewing function and then use the skewed state�action space as the input to
the uniform function approximator� In this way� the skewing function can be designed to expand
or compress di�erent regions of the state�action space� Expanded regions cover more area in the
skewed state�action space� hence� they will use more resources of the function approximator and�
consequently� will have better resolution to map the value function� Conversely� compressed
regions cover less area� use fewer resources of the function approximator� and have less resolution
to map the value function� There are no restrictions on the skewing function besides being able
to map each point of the state�action space into some point on the skewed state�action space�
Figure � demonstrates the graphically the process of preallocating resources non�uniformly�

The design principle we will follow in this research to specify the skewing function is inspired
by optimization techniques used in digital communication theory� In that �eld� the skewing
function is determined so that it optimizes some design criterion such as mean square quanti�
zation error given the probability distribution of the input signal� The two main factors that
in�uence the mean square quantization error are the di�erence between the quantized and real
value at some input point and the the number of times such input point is evaluated� The mean
quantization error is proportional to the product of both the actual error at some input point
and the number of times that input point is used� Thus� the idea behind the optimization of
the mean squared quantization error is to reduce the error more heavily on the input points
that are more frequently used�

Following this principle� we can empirically design the skewing function such that the func�
tion approximator have more resolution on the regions of the state�action space that are more
frequently used� The increased resolution in those regions will allow the function approxima�
tor to be closer to the real value �given enough experience� and incur in less error� which is
desired� A priori knowledge of the system can guide the design of the skewing function� Al�
though the only knowledge that is required is about the expected frequency of use of regions in
the state�action space� The skewing function should be designed in such a way that expands
frequently used regions and compresses those that are used infrequently� Alternatively� the
function approximator could be design to dynamically allocate more resources in those regions

of the state�action space that are used more frequently� In this way� the resolution of the func�
tion approximator increases automatically without the need of prior knowledge� In Section ��
we describe the skewing function we used in the design of a non�uniform function approximator
used by agents acting on the double integrator and the swing up pendulum problems �see Fig�
ure 	��� In these two problems� it is known that the agents will perform near the origin of the
state�action space most of the time� This requires a function approximator having more reso�
lution near the origin of the state�action space� therefore� the skewing function is empirically
designed to expand that region in particular�

��� Implementation of Non�Uniform Functions Approximators

The one�step search and the SARSA algorithms require little modi�cation to accommodate
the use of non�uniform function approximators� In both cases� the standard implementation
of the uniform function approximator is used over the skewed state�action pair to accomplish
the e�ect of non�uniform resource preallocation� Figures � and � show the new versions of the
one�step search and the SARSA algorithms �additions shown in bold��

Input� state xt� weights wt� and skewing function s��� ���
Output� best action 	u��
Algorithm�

�� For every action ui from umin to umax at step
u�

�a� Compute skewed state�action pair� �xs� us�� s�xt� ui��

�b� Evaluate 	Qwt
�xs� us��

�c� Keep the action 	u�
 ui that produces the maximum value�

�� Return 	u��

Figure �� One�Step Search Algorithm with Skewing Function�

� Results

This section describes the results of using uniform and non�uniform versions of CMAC� instance�
based� and case�based function approximators in problems with continuous state and actions
spaces� The problems studied are the double integrator and the pendulum swing up� The �rst
one is a linear dynamics system and the second one is a non�linear one� both with quadratic
costs �i�e�� negative quadratic rewards� that depend on the state and action values� The func�
tion approximators used in both problems are the CMAC� instance�based� and case�based�
We obtained satisfactory convergence results in all experiments except in the agent using the
instance�based function approximator on the pendulum swing up� This is mainly because of the
lack of resolution this type of function approximator and the complextity of the problem� The
source code used to perform all the experiments is in a compressed tar �le available through
anonymous ftp at the following URL�

Input� initial set of weights w�� and skewing function s��� ��
Algorithm�

�� Initialization�

�a� perceive current state� xcurr

�b� select action� ucurr � ��greedy�policy�xcurr�

�� Compute skewed state�action pair� �xscurr� u
s
curr�� s�xcurr� ucurr��

�� Accumulate gradient�
Wt �rw

	Q�xscurr� u
s
curr� � ��Wt��

�� Perform action�
Execute ucurr� observe resultant reward� r� and next state� xnext�

�� Select next action�
unext � ��greedy�policy�xnext�

�� Compute skewed state�action pair� �xsnext� u
s
next�� s�xnext� unext��

�� Learn�
wt�� � wt � ��r � � 	Q�xsnext� u

s
next� � 	Q�xscurr� u

s
curr��Wt

�� Loop�
xcurr � xnext
ucurr � unext
If xcurr is a goal state then terminate else goto ��

Figure �� Gradient Descent version of SARSA Algorithm with Skewing Function�

m

position

velocity

acceleration

target

Figure �� The double integrator problem�
A car moving in a �at terrain subject to a the application of a single force�

ftp���ftp�cc�gatech�edu�pub�ai�students�carlos�RLI�experiments�tar�gz

The source code is in C�� and follows the standard software interface for reinforcement learning
problems developed by Richard S� Sutton and Juan C� Santamar��a��

��� Double Integrator

The double integrator is a system with linear dynamics and bidimensional state� It represents
a car of unit mass moving in a �at terrain and subject to the application of a single force
�see Figure ��� The state of the system consists of the current position� p� and velocity v of
the car� or x � �v p�T in vectorial representation� The action is the acceleration� a� applied
to the system� or u � �a� in vectorial representation� The objective is to move the car from
a given starting state to the origin �i�e�� xd � �� ��T � such that the sum of the rewards is
maximized� The one�step reward function is a negative quadratic function of the di�erence
between the current and desired position and the acceleration applied� rt�� � ��p�t � a�t � or
in vectorial representation� rt�� � ���xt � xd�TQ�xt � xd� � uTt Rut�� where Q and R are the

positive de�nite � � � and 	 � 	 matrices respectively de�ned as Q �

�
� �
� 	

�
and R � �	��

The one�step reward function penalizes the agent more heavily when the distance between the
current and desired states is large and also when the action applied is large� This type of reward
function is widely used in robotic applications because it speci�es policies that drive the system
to the desired state quickly while keeping the size of the driving control small� The tradeo�s
between the two can be speci�ed by appropriate selection of the Q and R matrices� This
formulation is standard in optimal control theory ��Stengel� 	

�� Narendra and Annaswamy�
	
�
��� in which the objective is to minimize costs instead of maximize rewards� However� both
formulations are mathematically equivalent�

The dynamics of the double integrator is very simple and it is described by the following

�The documentation for the standard software interface can be found in URL�
http���envy�cs�umass�edu�People�sutton�RLinterface�RLinterface�html�

equations�

dp

dt
� v ����

dv

dt
� a ����

The acceleration is bounded to be in the range between the minimum and maximum accel�
eration values �i�e�� a � �amin amax�� where amin � �	 and amax � 	�� The double integrator is
an instance of a more general class of linear dynamic systems and can be expressed using the
more convenient linear matrix equation�

xt�� �

�
vt��
pt��

�
�

�
vt
pt

�
�

�
� �
	 �

� �
vt
pt

�
�t �

�
	
�

�
�a��t � xt � Axt�t � But�t ����

The simulation used a time step of �t � �
�� seconds and new control actions were selected
every four time steps� A trial consists of starting the system at position p � 	 with velocity
v � � and running the system until either ��� decision steps had elapsed �i�e� �� simulated
seconds� or the state gets out of bounds �i�e�� when jpj � 	 or jvj � 	�� whichever comes �rst�
In the latter case� the agent receives a negative reward �i�e�� a punishment� of �� units to
discourage it from going out of bounds� An experiment consists of �� replications of �� trials
each� measuring the number of time steps and cumulative cost �i�e�� negative sum of rewards�
for each replication after each trial� The average number of time steps and cumulative cost
across replications are used as measures of performance�

�	�	 Optimal Solution

Systems with linear dynamics and quadratic cost functions have a simple closed�form so�
lution for the optimal policy known as Linear�Quadratic Regulator �LQR�� The derivation
follows from the solution to the Hamilton�Bellman�Jacobi partial di�erential equation �see�
for example� �Stengel� 	

�� or �Bertsekas� 	

�� for details�� Given a dynamical system
with an n�dimensional state vector� x� a m�dimensional action vector� u� a linear dynamic
function x � A�x � xd� � B�u � ud�� where A and B are n � n and n � m matri�
ces respectively� and a one�step quadratic cost �i�e�� negative reward� function of the form
r � ���x� xd�TQ�x� xd� � �u� ud�TR�u�ud��� where Q and R are positive de�nite n� n
and m�m matrices respectively�� then the optimal policy is given by u� � �K�x� xd� � ud
with an associated optimal value function given by V �x� � �x�xd�TP �x�xd�� where K and P
are m�n and n�n matrices given by Equations �� and ��� respectively� Equation �� is known
as the continuous�time Ricatti equation and it is used to �nd the unknown matrix P � which
then is used in Equation �� to �nd K also called the gain matrix �Bertsekas� 	

�� Richards�

	The constant xd corresponds to the desired goal state and the constant ud corresponds to the required force
to maintain the system at the desired state �i�e�� once the system is in xd� applying ud results in no change��

Figure
� Optimal value function for the double integrator�
The value function �vertical axis� is plotted against position and velocity �horizontal plane��
States near the origin have values closer to zero than states far from the origin because it takes
more time and cost to drive the system towards the origin�

	
�
��

K � R��BTP ����
 P � �Q�ATP � PA � PBR��BTP ����

In the double integrator� the values for A� B� Q� and R were described previously��� The

solution of P in the time�invariant case is P �

� p
� 	

	
p

�

�
� which produces an equation for

the optimal actions as u� � �Kx � ��
p

� v� p�� where v and p are the instantaneous velocity
and position respectively�

Figures
 and 	� show the optimal value function and the optimal trajectory generated
using the optimal policy� In the simulator the optimal controller achieves a performance of
�	
��
�
 V �x�� �

p
� when the initial state is x� � �� 	�T � The discrepancy between the

actual sum of rewards and the one predicted by the value function is due to the discretization
across time and it is not considered signi�cant� Figure 		 shows the optimal trajectory and the
cumulative reward of the controller at di�erent points of the trajectory�

The continuous�time Ricatti equation can be simpli�ed further for time�invariant policies� This is the case
when t � � and �P � �� Then the equation simpli�es to� Q � ATP � AP
 PBR��BTP � The resulting
optimal controller is referred to as the Linear�Quadratic Regulator of the system�

��In the double integrator xd
 �� ��T and ud
 ���

Figure 	�� Optimal trajectory for the double integrator�
The starting point is x� � �� 	�T �center right� and goal point is xd � �� ��T �center��

Figure 		� Optimal trajectory and discounted sum of rewards for the double integrator�
The discounted sum of rewards �vertical axis� decreases faster when the system is far from the
origin than when it is closer to the origin�

�	�
 Uniform and Non�uniform CMAC Agent Con�gurations

In these con�gurations the agent used a CMAC to approximate the Q�function� There are
three dimensions of interest� position� p� velocity� v� and acceleration� a� The CMAC used
�� tilings� Each of the three dimensions were divided into 	� intervals� 	� tilings depended
on all three variables� 	� other tilings depended on position and velocity pairs only� and the
remaining �nally 	� tilings depended on one dimension only �� for position and � for velocity��
The tilings sharing the same dimensions were uniformly o�seted across each dimension� Other
CMAC con�gurations were tried and compared empirically� the con�guration described here is
the one that produced best results� The SARSA algorithm in Figure � was used for updating
the weights of the CMAC using the traces indicated by Equation 	�� The values for the free
constants were � � �

� � � �
�� � � �
	� and � � �� The one�step search was performed using
�� equally spaced values for the acceleration between the minimum value� amin � �	� and the
maximum value� amax � �	 �i�e�� ���u � amax� amin�� Table 	 summarizes the agent�s design
for the uniform and non�uniform con�gurations�

Table 	� Summary of the design of the agents using the CMAC function approximator for the
double integrator�

Factor Description
Uniform Non�uniform

Variables ��
position� p � ��	 	�� 	� intervals
velocity� v � ��	 	�� 	� intervals
acceleration� a � ��	 	�� 	� intervals

Tilings ���
	� based on p� v� and a� uniformly o�seted�
	� based on p and v� uniformly o�seted�
� based on p� uniformly o�seted�
� based on v� uniformly o�seted�

Skewing functions ps � �
p
p

N!A vs �
p
v

as �
p
a

One�step search ��greedy policy �Figure 	�� ��greedy policy �Figure ���
� � � � � �
�u � amax�amin

�	 � �
�� �u � amax�amin

�	 � �
��
Learning SARSA algorithm �Figure ��� SARSA algorithm �Figure ���

� � �

 � � �

� � �
	 � � �
	
� � �
� � � �
�

The top rows of Figures 	� and 	� show the average number of time steps and accumulated
cost per trial for the agent using the uniform CMAC function approximator� respectively� The
error bars represent the �	 standard deviations of the mean across �� replications�

For the non�uniform con�guration� the agent used the same CMAC design as in the previ�
ous experiment� However� the CMAC used skewed versions of the three variables of interest�
position� velocity� and acceleration� The skewing functions were as follows� ps � �

p
p� vs �

p
v�

and as �
p
a� Figure 	� shows the e�ect of the skewing functions of the class s�x� � k

p
x for

k � �� �� The function expands the region near the origin so that the CMAC can use more tiles
to represent the value for the Q�function more accurately in that region� The larger the value of
k the larger the expansion� Thus� the dimension corresponding to the position is skewed more
heavily than the velocity and acceleration� We chose this skewing function design because we
knew the system will spend more time near the origin orbiting around the goal state in order to
reduce punishments� Thus� we inferred that the region near the origin of the state�action space
will require more resolution of the function approximator� Additionally� the one�step reward
function depends only with the position� which results in a Q�function that is more sensitive to
the position than to the velocity �refer to the Q matrix�� The learning algorithm and the free
constants were the same as with uniform CMAC�

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

variable

sk
ew

ed
 v

ar
ia

bl
e

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

variable

sk
ew

ed
 v

ar
ia

bl
e

Figure 	�� Skewing functions�
Left� skewing function s�x� �

p
x� Right� skewing function s�x� � �

p
x� Uniform intervals of the

skewed variable �vertical axis� correspond to non�uniform intervals for the variable �horizontal
axis�� The expansion near the origin is stronger as the value of k increases�

The top rows of Figures 	� and 	� show the average number of time steps and accumulated
cost per trial� for the agent using the non�uniform CMAC function approximator� respectively�
The error bars represent the �	 standard deviations of the mean across �� replications�

�	�� Uniform and Non�uniform Instance�Based Agent Con�gurations

In these con�gurations the agent used an instance�based representation of the Q�function� Each
case represents a point in the state�action space and holds its associated value� The density
threshold and the smoothing parameters were set to �d � �
�� and �k � �
�� respectively� The
similarity metric was the Euclidean distance and the kernel function was the Gaussian kernel�
These settings produces cases with spherical receptive �elds and blending of the Q�function
using a small number of cases� The SARSA algorithm in Figure � was used to update the
values of each case using the eligibility traces indicated by Equation 	�� The values for the free

constants were � � �

� � � �
�� � � �
�� and � � �� The one�step search was performed using
�� equally spaced values for the acceleration between the minimum value� amin � �	� and the
maximum value� amax � �	 �i�e�� ���u � amax� amin�� Table � summarizes the agent�s design
for the uniform and non�uniform con�gurations�

Table �� Summary of the design of the agents using the instance�based function approximator
for the double integrator�

Factor Description
Uniform Non�uniform

Variables ��
position� p � ��	 	�
velocity� v � ��	 	�
acceleration� a � ��	 	�

Distance function Euclidean�

d�xi� xq� �
q

�pi � pq�� � �vi � vq�� � �ai � qq��

density threshold� �d � �
��
Kernel function Gaussian�

K�di� � exp � di
�k

��

smoothing parameter� �k � �
��
Skewing functions ps � �

p
p

N!A vs �
p
v

as �
p
a

One�step search ��greedy policy �Figure 	�� ��greedy policy �Figure ���
� � � � � �
�u � amax�amin

�	 � �
�� �u � amax�amin

�	 � �
��
Learning SARSA algorithm �Figure ��� SARSA algorithm �Figure ���

� � �

 � � �

� � �
� � � �
�
� � �
� � � �
�

The middle rows of Figures 	� and 	� show the average number of time steps and accu�
mulated cost per trial for the agent using the uniform instance�based function approximator�
respectively� The error bars represent the �	 the standard deviations of the mean across ��
replications�

For the non�uniform con�guration� the agent used the same instance�based design as in the
previous experiment but using the skewed version of the three variables of interest� The skewing
functions are the same as the one used for the non�uniform CMAC �i�e�� ps � �

p
p� vs �

p
v�

and as �
p
a�� The e�ect of using the instance�based function approximator on the skewed

state�action space is similar to having variable density and smoothing parameters� Thus� the
density of cases increases near the origin because that region gets expanded by the skewing
function� Similarly� the smoothing parameter adjusts accordingly so that the increased density
of cases near the origin does not produce too much blending of their values�

The middle rows of Figures 	� and 	� show the average number of time steps and accumu�

lated cost per trial for the agent using the non�uniform instance�based function approximator�
respectively� The error bars represent the �	 the standard deviations of the mean across ��
replications�

�	�� Uniform and Non�uniform Case�Based Agent Con�gurations

In these con�gurations the agent used a case�based representation of the Q�function� The case�
based function approximator uses more resources and has better resolution than the instance�
based� Each case in the case�based function approximator represents a point in the state space
and the value of � equally spaced actions in the interval ��min �max�� The blending factor was set
to 	 � �
�� which means that during the Q�value computations each case contributes with ��"
according to the Q�value associated to the state and ��" according to the Q�values associated
with the actions� The density threshold was set to �d � �
���� The smoothing parameters
for the state space and the action space were set to �xk � �
��� and �uk � �
� respectively�
The similarity metric for the input space was a weighted Euclidean distance and the kernel
function was the Gaussian kernel� These settings produce cases with elliptical receptive �elds
with the major axis oriented diagonally in the state space and bias the function approximator to
generalize more in regions in which the position and the velocity of the car have the same sign�
This kind of bias proved to be very useful once the car reached the goal position� The similarity
metric for the output space was the Euclidean distance� The SARSA algorithm in Figure � was
used to update the values of each case using the eligibility traces indicated by Equations ��
and ��� The values for the free constants were � � �

� � � �
�� � � �
�� and � � �� The
one�step search was performed using �� equally spaced values for the acceleration between the
minimum value� amin � �	� and the maximum value� amax � �	 �i�e�� ���u � amax � amin��
Table � summarizes the agent�s design for the uniform and non�uniform con�gurations�

The bottom rows of Figures 	� and 	� show the average number of time steps and ac�
cumulated cost per trial for the agent using the uniform case�based function approximator�
respectively� The error bars represent the �	 standard deviations of the mean across �� repli�
cations�

For the non�uniform con�guration� the agent used the same case�based design as in the
previous experiment but using the skewed version of the three variables of interest� The skewing
functions were the same as the one used for the non�uniform CMAC �i�e�� ps � �

p
p� vs �

p
v�

and as �
p
a�� The e�ect of using the case�based function approximator on the skewed state�

action space is similar to having non�constant density and smoothing parameters� Thus� the
density of cases increases near the origin because that region gets expanded by the skewing
function� Similarly� the smoothing parameter adjusts accordingly so that the increased density
of cases near the origin does not produce too much blending of their values�

The bottom rows of Figures 	� and 	� show the average number of time steps and accu�
mulated cost per trial for the agent using the non�uniform case�based function approximator�
respectively� The error bars represent the �	 standard deviations of the mean across �� repli�
cations�

Table �� Summary of the design of the agents using the case�based function approximator for
the double integrator�

Factor Description
Uniform Non�uniform

Variables ��
position� p � ��	 	�
velocity� v � ��	 	�
acceleration� a � ��	 	�

Case structure Number of actions� �� equally spaced in ��	 	�
Blending factor� 	 � ��"

Distance functions Input space� Euclidean�

dM �xi� xq� �
q

�xi � xq�TMTM�xi � xq�

M �

�
	 	

�	
�� 	
��

�

density threshold� �d � �
���
Output space� Euclidean�
dM �ui� uq� � j�i � �qj

Kernel functions Input space� Gaussian�

Kx�dxi � � exp �
dxi
�x
k

��

smoothing parameter� �xk � �
���
Output space�

Ku�dui � � exp �
du
i

�u
k

��

smoothing parameter� �uk � �
�
Skewing functions ps � �

p
p

N!A vs �
p
v

as �
p
a

One�step search ��greedy policy �Figure 	�� ��greedy policy �Figure ���
� � � � � �
�u � amax�amin

�	 � �
�� �u � amax�amin

�	 � �
��
Learning SARSA algorithm �Figure ��� SARSA algorithm �Figure ���

� � �

 � � �

� � �
� � � �
�
� � �
� � � �
�

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

trial

st
ep

s

Double Integrator: UNIFORM CMAC

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

trial

st
ep

s

Double Integrator: NON−UNIFORM CMAC

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

trial

st
ep

s

Double Integrator: UNIFORM INSTANCE−BASED

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

trial

st
ep

s

Double Integrator: NON−UNIFORM INSTANCE−BASED

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

trial

st
ep

s

Double integrator: UNIFORM CASE−BASED

0 10 20 30 40 50 60
0

20

40

60

80

100

120

140

160

180

200

trial

st
ep

s

Double integrator: NON−UNIFORM CASE−BASED

Figure 	�� Average steps per trial in the double integrator problem�
The left and right columns show uniform and non�uniform con�guration� respectively� Top row�
CMAC� Middle row� instance�based� Bottom row� case�based�

0 10 20 30 40 50 60
0

10

20

30

40

50

60

trial

cu
m

ul
at

iv
e

co
st

Double Integrator: UNIFORM CMAC

0 10 20 30 40 50 60
0

10

20

30

40

50

60

trial

cu
m

ul
at

iv
e

co
st

Double Integrator: NON−UNIFORM CMAC

0 10 20 30 40 50 60
0

10

20

30

40

50

60

trial

cu
m

ul
at

iv
e

co
st

Double Integrator: INSTANCE−BASED UNIFORM

0 10 20 30 40 50 60
0

10

20

30

40

50

60

trial

cu
m

ul
at

iv
e

co
st

Double Integrator: NON−UNIFORM INSTANCE−BASED

0 10 20 30 40 50 60
0

10

20

30

40

50

60

trial

cu
m

ul
at

iv
e

co
st

Double integrator: UNIFORM CASE−BASED

0 10 20 30 40 50 60
0

10

20

30

40

50

60

trial

cu
m

ul
at

iv
e

co
st

Double integrator: NON−UNIFORM CASE−BASED

Figure 	�� Average cumulative cost in the double integrator problem�
The left and right columns show uniform and non�uniform con�guration� respectively� Top row�
CMAC� Middle row� instance�based� Bottom row� case�based�

��� Pendulum Swing Up

The pendulum is a non�linear dynamics system with a bidimensional state� It represents a
single bar held by one extremum and that can swing in a vertical plane� The bar is actuated
by a motor that applies a torque at the hanging point �see Figure	��� The state of the system
consists of the current angle� �� and angular velocity
 of the pendulum� or x � ��
�T in
vectorial representation� The action is the angular acceleration� �� applied to the system� or
u � ��� in vectorial representation� The objective is to move the pendulum from its rest position
�i�e�� hanging down with no velocity� to the origin of the state space �i�e�� bar facing up with
no velocity� xd � �� ��T � such that the sum of the rewards is maximized� The one�step reward
function is of the same class used for the double integrator� That is a negative quadratic function
of the di�erence between the current and desired angular position and angular velocity��� and
the angular acceleration applied� rt�� � �������t�� �
� � ��

t � or in vectorial representation�
rt�� � ���xTt Q�xt�uTt Rut�� where Q and R are the positive de�nite ��� and 	�	 matrices

respectively de�ned as Q �

�
	 �
� 	

�
and R � �	��

bar

l

mg

α
θ

Figure 	�� The pendulum swing up problem�
A bar hanging from one extremum and subject to gravity and the torque applied by a motor�

The dynamics of the pendulum is given by the following equations�

d

dt
�

�

�

	

ml�
�� � mlg sin����

d�

dt
�
 ��
�

where m � 	�� and l � ��� are the mass and length of the bar respectively� and g �

� is

��The di�erence between actual and desired angle positions must be performed using modulo �� and is
denoted by
����

the gravity� The angular acceleration is bounded to be in the range between the minimum
and maximum angular acceleration values �i�e�� � � ��min �max�� where �min � �� and �max �
��� This system is more di
cult to control than the ones with linear dynamics� Unlike the
double integrator� no closed�form analytical solution exist for the optimal solution and complex
numerical methods are required to compute it� Moreover� the maximum and minimum angular
acceleration values are not strong enough to move the pendulum straight up from the starting
state without �rst creating angular momentum� Thus� the optimal solution sometimes requires
to apply an action that moves the system in a direction oppositive to the goal state �rst in
order to build up enough momentum to be able to swing the bar up to the top� Additionally�
the equilibrium point at the goal state is unstable� which means that the agent not only needs
to manage to swing up the bar but actively balance it at the goal position as well�

As in the double integrator� the simulation used a time step of �t � �
�� seconds and new
control actions were selected every four time steps� A trial consists of starting the system at
position � � �� with angular velocity
 � � and running the system until ��� decision steps
has elapsed �i�e� �� simulated seconds� or the angular velocity of the pendulum gets out of
bounds �i�e��
 � ���� Thus� unlike the double integrator� the angle of the link can wrap
around without causing the trial to terminate� An experiment consists of �� replications of 	��
trials each and measuring the number of time steps and cumulative cost �i�e�� negative sum of
rewards� for each replication after each trial� The average number of time steps and cumulative
cost across replications is used as a measure of performance�

�
�	 Uniform and Non�uniform CMAC Agent Con�gurations

As in the double integrator problem� the agent used uniform and non�uniform CMACs to
approximate the Q�function� The CMAC consisted of �� tilings using the three state�action
variables arranged in the same con�guration as with the double integrator� 	� intervals along
each dimension� 	� tiling depending on all three variables� 	� other tilings depended on position
and velocity pairs only� and the remaining 	� tilings depended on one dimension only �� for
position and � for velocity�� The tilings sharing the same dimensions were uniformly o�seted
across each dimension� The SARSA algorithm was used for updating the weights� The values
for the free constants were � � �

� � � �
�� � � �
	� and � � �� The one�step search was
performed using �� equally spaced values for the angular acceleration between minimum value�
�min � ��� and the maximum value� �max � �� �i�e�� ���u � �max��min�� Table � summarizes
the agent�s design for the uniform and non�uniform con�gurations�

The top rows of Figures 	� and 	� show the average number of time steps and accumulated
cost per trial for the agent using the uniform CMAC function approximator� respectively� The
error bars represent the �	 standard deviations of the mean across �� replications�

For the non�uniform con�guration� the agent the same CMAC design as in the previous
experiment but using the skewed version of the three variables of interest� The skewing functions
for each of the three variables were as follows� �s �

p
��
s �

p

� and �s �

p
�� As in the

double integrator� the skewing functions expands the regions near the origin so that the CMAC
can use more tiles to represent the value for the Q�function with more resolution� We chose
this design because we knew the system will spend more time balancing the bar once it is up
and this corresponds to the region near the origin� Unlike in the double integrator� the same

Table �� Summary of the design of the agents using the CMAC for the function approximator
for the pendulum swing up�

Factor Description
Uniform Non�uniform

Variables ��
position� � � ��� ��� 	� intervals
velocity�
 � ���� ���� 	� intervals
acceleration� � � ��� ��� 	� intervals

Tilings ���
	� based on ��
� and �� uniformly o�seted�
	� based on � and
� uniformly o�seted�
� based on �� uniformly o�seted�
� based on
� uniformly o�seted�

Skewing functions �s �
p
�

N!A
s �
p

�s �
p
�

One�step search ��greedy policy �Figure 	�� ��greedy policy �Figure ���
� � � � � �
�u � �max��min

��
� �
�� �u � �max��min

��
� �
��

Learning SARSA algorithm �Figure ��� SARSA algorithm �Figure ���
� � �

 � � �

� � �
	 � � �
	
� � �
� � � �
�

skewing function is used for the position and velocity because the one�step reward function
depends equally on both variables �refer to the Q matrix�� The learning algorithm and the free
constants were the same as with the uniform CMAC�

The top rows of Figure 	� and 	� show the average number of time steps and accumulated
cost per trial for the agent using the non�uniform CMAC function approximator� respectively�
The error bars represent the �	 standard deviations of the mean across replications�

�
�
 Uniform and Non�uniform Case�Based Agent Con�gurations

In these con�gurations the agent used a case�based representation of the Q�function� We
performed several experiments using di�erent con�gurations of the instance�based function ap�
proximator but the agent was not able to successfully learn to maintain the bar balanced once
it reached the goal� It appears that the instance�based function approximator does not have
enough resolution to e�ectively represent the value function due to the complexity of the non�
linear dynamics of the pendulum� The case�based function approximator uses more resources
and has better resolution than the instance�based� Each case in the case�based function ap�
proximator represents a point in the state space and the value of � equally spaced actions in
the interval ��min �max�� The blending factor was set to 	 � �
�� which means that during the
Q�value computations each case contributes with ��" according to the Q�value associated to
the state and ��" according to the Q�values associated with the actions� The density threshold
was set to �d � �
��� The smoothing parameters for the state space and the action space
were set to �xk � �
�� and �uk � �
� respectively� The similarity metric for the input space
was a weighted Euclidean distance and the kernel function was the Gaussian� This produces
cases with elliptical receptive �elds with the major axis oriented diagonally in the state space�
which bias the function approximator to generalize more in regions in which the angle and the
velocity of the pendulum have the same sign� This kind of bias proved to be very useful once
the bar reached the goal position and the active balancing began� The similarity metric for
the output space was the Euclidean distance� The SARSA algorithm in Figure � was used to
update the values of each case using the eligibility traces indicated by Equations �� and ���
The values for the free constants were � � �

� � � �
�� � � �
�� and � � �� The one�step
search was performed using �� equally spaced values for the acceleration between the minimum
value� �min � ��� and the maximum value� �max � �� �i�e�� ���u � �max � �min�� Table �
summarizes the agent�s design for the uniform and non�uniform con�gurations�

The bottom row of Figures 	� and 	� show the average number of time steps and ac�
cumulated cost per trial for the agent using the uniform case�based function approximator�
respectively� The error bars represent the �	 standard deviations of the mean across �� repli�
cations�

For the non�uniform con�guration� the agent used the same case�based design as in the
previous experiment but using the skewed version of the three variables of interest� The skewing
functions are the same as the one used for the non�uniform CMAC �i�e�� ps �

p
p� vs �

p
v� and

as �
p
a�� The e�ect of using the case�based function approximator on the skewed state�action

space is similar to having non�constant density and smoothing parameters� Thus� the density
of cases increases near the origin because that region gets expanded by the skewing function�
Similarly� the smoothing parameter adjusts accordingly so that the increased density of cases

Table �� Summary of the design of the agent using case�based function approximator for the
pendulum swing up�

Factor Description
Uniform Non�uniform

Variables � inputs�
position� � � ��� ��
velocity�
 � ���� ���
	 output�
acceleration� � � ��� ��

Case structure Number of actions� �� equally spaced in ��� ��
Blending factor� 	 � ��"

Distance functions Input space� Weighted Euclidean�

dM �xi� xq� �
q

�xi � xq�TMTM�xi � xq�

M �

�
	 	

�	
�� 	
��

�

density threshold� �d � �
��
Output space� Euclidean�
dM �ui� uq� � j�i � �qj

Kernel functions Input space� Gaussian�

Kx�dxi � � exp �
dxi
�x
k

��

smoothing parameter� �xk � �
��
Output space�

Ku�dui � � exp �
dui
�u
k

��

smoothing parameter� �uk � �
�

Skewing functions �s �
p
�

N!A
s �
p

�s �
p
�

One�step search ��greedy policy �Figure 	�� ��greedy policy �Figure ���
� � � � � �
�u � �max��min

�� � �
�� �u � �max��min

�� � �
��
Learning SARSA algorithm �Figure ��� SARSA algorithm �Figure ���

� � �

 � � �

� � �
� � � �
�
� � �
� � � �
�

near the origin does not produce too much blending of their values�

The bottom row of Figures 	� and 	� show the average number of time steps and accu�
mulated cost per trial for the agent using the non�uniform case�based function approximator�
respectively� The error bars represent the �	 standard deviations of the mean across �� repli�
cations�

0 20 40 60 80 100 120
155

160

165

170

175

180

185

190

195

200

trial

st
ep

s

Single Pendulum: UNIFORM CMAC

0 20 40 60 80 100 120
155

160

165

170

175

180

185

190

195

200

trial
st

ep
s

Single Pendulum: NON−UNIFORM CMAC

0 20 40 60 80 100 120
155

160

165

170

175

180

185

190

195

200

trial

st
ep

s

Single Pendulum: UNIFORM CASE−BASED

0 20 40 60 80 100 120
155

160

165

170

175

180

185

190

195

200

trial

st
ep

s

Single Pendulum: NON−UNIFORM CASE−BASED

Figure 	�� Average steps per trial in the pendulum swing up problem�
The left and right columns show uniform and non�uniform con�guration� respectively� Top row�
CMAC� Bottom row� case�based�

� Discussion

We designed the previous experiments to contrast CMAC� instance�based� and case�based func�
tion approximators on the double integrator and pendulum swing up problems� This section
discusses in detail the results obtained in those experiments so that we can draw some con�
clusions about the robustness and e�ectiveness of each function approximator� Tables � and �
show the average and standard deviation of the cumulative cost and steps for the agents acting
in the double integrator and pendulum swing up problems at trials �� and 	��� respectively�

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

trial

cu
m

ul
at

iv
e

co
st

Single Pendulum: UNIFORM CMAC

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

trial

cu
m

ul
at

iv
e

co
st

Single Pendulum: NON−UNIFORM CMAC

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

trial

cu
m

ul
at

iv
e

co
st

Single Pendulum: UNIFORM CASE−BASED

0 20 40 60 80 100 120
0

200

400

600

800

1000

1200

1400

1600

1800

2000

trial

cu
m

ul
at

iv
e

co
st

Single Pendulum: NON−UNIFORM CASE−BASED

Figure 	�� Average cumulative cost in the pendulum swing up problem�
The left and right columns show uniform and non�uniform con�guration� respectively� Top row�
CMAC� Bottom row� case�based�

All the agents �i�e�� CMAC� instance�based� and case�based� were able to control the double
integrator� however� this is not the case for the pendulum swing up� In this problem� the agent
using the instance�based function approximator was not able to successfully learn to maintain
the bar balanced once it reached the goal� In both problems� the agent using the case�based
function approximator performed the best� It agent achieved the fastest learning rate and low�
est cumulative cost in the two problems� We discuss in detail the results of the experiments in
the following subsections�

Table �� Summary of results for the double integrator at trial ���

Function approximator Skewing Cumulative costa Stepsb

mean std� dev� mean std� dev
Optimal N!A 	���
� � ��� �
CMAC uniform ���	�� ��	��� ��� �

non�uniform ������ ���
�
 ��� �
Instance�Based uniform ������ ������ ��� �

non�uniform ������ ���
�� ��� �
Case�Based uniform ������ ��	��� ��� �

non�uniform ���	�� ��	�
	 ��� �

aCumulative cost is the sum of all the immediate cost the agent received at every step during the trial�
The lower values represent better solutions�

bSteps is the number of steps the agent took during the trial� The mean value ��� with � standard
deviation means that the agent completed all �� replications successfully�

Table �� Summary of results for the pendulum swing up at trial 	���

Function approximator Skewing Cumulative cost a Stepsb

mean std� dev� mean std� dev
CMAC uniform 	����
�� �����
 ��� �

non�uniform
������ ������ ��� �
Instance�Based uniform N!A N!A N!A N!A

non�uniform N!A N!A N!A N!A
Case�Based uniform 	�������
�	��� ��� �

non�uniform
����
� ������ ��� �

aCumulative cost is the sum of all the immediate cost the agent received at every step during the trial�
The lower values represent better solutions�

bSteps is the number of steps the agent took during the trial� The mean value ��� with � standard
deviation means that the agent completed all �� replications successfully�

	�� Double Integrator

The e�ect of preallocating resources through the use of skewing functions is clear with both�
CMAC and instance�based function approximators but not with the case�based� In the CMAC�
there is statistical evidence at the �" con�dence level at trial �� that the cumulative cost
achieved by the agent using the non�uniform version is smaller than the one achieved with the
uniform version �t� � �
��
� P�value � �
�	����� Additionally� the learning performance of
the agent using non�uniform CMAC stabilized faster �approximately trial 	�� than one using
the uniform CMAC �approximately trial ��� �see top row of Figure 	��� Similarly� the �rst
time the agent was able to stay in�bounds for the whole trial occurred at trial 	� when using
the non�uniform CMAC� The same event occured at trial �� for the agent using the uniform
CMAC �see top row of Figure 	��� Also� after �� trials� the agent using the non�uniform CMAC
was more consistent than the agent using uniform CMAC because of the smaller variance on
the performance �non�uniform� �� � �
�
�
� uniform� �� � �
	����� Summarizing� the main
e�ects of preallocating CMAC tiles more heavily near the origin of the state�action space are
improvement in learning performance� faster learning� and better consistency� These e�ect are
expected because the system spends most of the time around the origin trying to maximize
the rewards� This requires very small adjustments using small changes in acceleration and the
ability to represent the Q�function with enough resolution in that region of the state space� The
skewing functions used to represent the non�uniform CMAC were designed for that purpose�

The e�ect of resource preallocation is also signi�cant with the agent using the instance�based
function approximator� At trial ��� there is statistical evidence at the 	" con�dence level to
reject the hypothesis that both versions� uniform and non�uniform� perform similarly �t� �
�
���� P�value � �
����� Additionally� there is an improvement in the learning performance
achieved with the agent using the non�uniform version over the agent using the uniform one
because the former was able to stabilize the performance around trial �� while the later took
until trial �� �see middle row of Figure 	��� Also� the agent using the non�uniform version
learned to stay in�bounds for the whole trial at trail �	� The same event occurs at trial �� when
using the uniform version �see middle row of Figure 	��� As with the CMAC version� there is a
signi�cant di�erence in the consistency of the performance since the variance of the non�uniform
version is smaller than the variance of the uniform version �non�uniform� �� � �
�
��� uniform�
�� � �
������ In summary� the e�ect of resource preallocation in the instance�based function
approximator is similar than the one observed in the CMAC function approximator� Although
the instance�based version allocates resources dynamically by creating new cases when exploring

��All test of hypotheses assume unknown and di�erent variances for �X� and �X�� The statistic

t��

�X� � �X�q
S�

�

n�
�

S�

�

n�

can be used for testing H� � ��
 �� in this case and it is distributed approximately as t with degrees of freedom
given by

�

�
S�

�

n�
� S�

�

n�

��
�S�

�
�n���

n���
�

�S�

�
�n���

n���

� �

if the null hypothesis is true�

new regions of the state�action space� the e�ect of the skewing functions appears to show more
heavily than the advantage of dynamically allocating resources in this task�

Unlike the agents using the CMAC and instance�based function approximators� the e�ect
of resource preallocation does not appear to be signi�cant in the agent using the case�based
function approximator� At trial ��� there is not enough evidence to reject the hypothesis that
both versions� uniform and non�uniform� perform similarly �t� � ��
��	� P�value � �
�����
Additionally� the learning performance is similar because the agent is able to stabilize the
performance around trial 	� in both versions �see bottom row of Figure 	��� Also� the agent
learns to stay in�bounds for the whole trial at trial 		 for both versions �see bottom row of
Figure 	��� Unlike the CMAC and instance�based versions� there is not a signi�cant di�erence
in the consistency of the performance since the variance of the uniform and non�uniform versions
is about the same �non�uniform� �� � �
	�
	� uniform� �� � �
	����� In summary� the case�
based function approximator is less sensitive than the CMAC and instance�based to the e�ect of
resource preallocation� The case�based version allocates resources dynamically by creating new
cases when exploring new regions of the state�action space� Also� it has better resolution than
the instance�based version� Thus� the case�based function approximator is able to e�ectively
take advantage of dynamically allocating resources�

There appears to be no statistical signi�cant di�erence between the performance achieved
with the uniform versions of the CMAC and instance�based function approximators �t� �
��
	�	� P�value � �
����� However� there is a statistical signi�cant di�erence between the
performance achieved with the non�uniform versions� the instance�based version appears to
be an improvement over the CMAC �t� � �
���� P�value � �
����� This di�erence may be
dependent on the design decisions involved in both types of function approximators and the
sensibility of such decisions on the learning behavior of the agent� further research is needed into
this issue� Additionally� contrasting the performance curves of the agents using CMACs with
the agents using the instance�based function approximator� it appears that the agents using the
former are more consistent than the ones using the later� The increased consistency achieved
with the CMAC is� presumably� due to its capacity to smoothly generalize values to new regions
of the state�action space� This does not occur with the instance�based version because there is
an abrupt change or �peak� in the value function every time a new case is added to the library�
Finally� there is a statistical signi�cant di�erence between the performance achieved with the
uniform versions of the case�based and the CMAC �t� � �
���� P�value � �
����� and the
instance�based �t� � �
���� P�value � �
����� Both versions of case�based are an improvement
over both versions of CMAC and the uniform instance�based�

	�� Pendulum Swing Up

The e�ect of preallocating resources through the use of skewing functions shows more signif�
icantly in the CMAC than the case�based function approximators� In the CMAC� there is
statistical evidence at trial 	�� that the cumulative cost achieved with the non�uniform ver�
sion is better than the one achieved with the uniform version �t� � �
��
� P�value � �
�����
Additionally� the learning performance of the agent using non�uniform CMAC stabilized faster
�approximately at trial �	� than the one using uniform CMAC �approximately at trial ��� �see
top row of Figure 	��� Similarly� the �rst time the agent was able to stay in�bounds for the

whole trial across the �� replications occured at trial �� for the agent using the non�uniform
CMAC� The same event occured at trial �� for the agent using uniform CMAC �see top row
of Figure 	��� At trial 	��� the agents using the uniform and non�uniform CMAC achieved
similar level of consistency across replication �uniform� �� � �
���
� non�uniform� �� � �
������
Summarizing� the main e�ects of preallocating CMAC tiles more heavily near the origin of the
state�action space are improvement on learning performance and faster learning� These results
are similar to the ones achieved in the double integrator problem even though the pendulum
swing up problem is much more di
cult� The improvement in performance in the cumulative
cost from 	��
�
�� for the agent using uniform CMAC to
�
���� for the agent using non�
uniform CMAC reveals the importance using a function approximator with higher resolution in
the region near the goal state� The pendulum is highly unstable at this region and the agent is
required to perform very small adjustments using small changes in acceleration in order to keep
the bar balanced� Moreover� any mistake that causes the agent to loose control in the balance
of the bar produces a lot of cost because it makes the bar to fall and oscillate�

The e�ect of resource preallocation in the case�based function approximators does not show
as clearly as with the CMAC function approximators� At trial 	��� there is not enough statis�
tical evidence to reject the hypothesis that both versions� uniform and non�uniform� perform
similarly �t� � ��

��� P�value � �
��
�� Also� there is not noticeable di�erence in the learning
performance in both versions since they both take around �� trials to stabilize �see bottom row
of Figure 	�� and �� trials to learn to stay in�bounds �see bottom row of Figure 	��� There
is� however� a signi�cant di�erence in the consistency of the performance since at trial 	�� the
variance of the non�uniform version is smaller than the variance of the uniform version �non�
uniform� �� � �
����� uniform� �� �

	����� However� the agent using the uniform version
is able to stay in�bounds across all �� replications after trial �� whereas the agent using non�
uniform version has some replications that achieve less than ��� steps after trial �� �see bottom
row of Figure 	��� Presumably� this is because the skewing functions focus excess resources
in the region near the goal state� which produces insu
cient generalization for the agent to
regain control of the bar once it looses the balance and force the system to go out of bounds�
In summary� the e�ect of resource preallocation in the case�based function approximator is
less noticeable than in the CMAC function approximator� This is as expected because the
case�based version allocates resources dynamically by creating a new case when exploring new
regions of the state�action space� Thus� this type of function approximator is less sensitive than
CMAC to the e�ects of skewed variables of the state�action space�

There appears to be no strong di�erences in the performance at trial 	�� of the agents
using the non�uniform CMAC� uniform case�based� and non�uniform case�based function ap�
proximators� The cumulative cost achieved by the agents using these three types of function
approximators is around 	�� units whereas the one achieved by the agent using the uniform
CMAC is around 	�� units �see Table ��� In the context of learning rate and consistency of
performance across replications� the agents using the case�based versions appear to take a few
more trials to stabilize the performance and the agent using the non�uniform CMAC version
appears to incur in greater costs and less consistency at the earlier trials of the learning curve�
However� these di�erences are not as marked as the ones obtained when contrasting the �nal
performance of these agents with the performance of the agent using the uniform CMAC� In
summary� the learning performance achieved with the agents using the case�based versions is as
good as the learning performance achieved with the one using the non�uniform CMAC� The ef�

fect of resource preallocation shows more clearly in the agents using CMACs because that type
of function approximator cannot allocate resources dynamically in regions of the state�action
space that require them the most�

� Conclusions

Two di�erent types of function approximators� CMAC and memory�based� were tested in the
double integrator and the pendulum swing up problems� Both problems are characterized by
dynamical systems having continuous state and action spaces and the results obtained in these
experiments support the feasibility of using a function approximator to represent the Q�function
in the state�action space and generalizing the value of individual experiences across states and
actions�

The results obtained demonstrate the feasibility of the modular implementation of non�
uniform function approximators using skewing functions� The proposed approach appears to
bene�t the e
ciency of function approximators that use static resource allocation such as the
CMAC� On the other hand� the proposed approach does not appears to a�ect the e
ciency
of function approximators that use dynamic resource allocation such as the case�based� In
particular� the e�ect of non�uniform resource preallocation resulted in faster learning� better
performance� and improved consistency� These results showed more signi�cantly in the pendu�
lum swing up than in the double integrator presumably because it is more di
cult to actively
balance the pendulum than maintaining the car at the goal state� Therefore� the e�ect of using
a non�uniform function approximator with high resolution at the region containing the goal
state shows more signi�cantly than using an uniform function approximator when contrasting
the relative performance of the agent in the pendulum swing up and the double integrator
problems�

Two memory�based function approximator were evaluated� instance�based and case�based�
The instance�based function approximator uses only the state�action pairs the agent has actually
experienced to represent the Q�function and new state�action pairs are incorporated when the
distance to the nearest neighbor as measured by some metric function is larger than the density
threshold� The case�based function approximator uses memory elements more complex than
simply state�action pairs� Every case represents a state the agent has visited in the past and a
set of actions along with their associated Q�values� The actions within a case are actions that
the agent may or may have not experienced before� Nevertheless� this enhanced representation
better support credit assignment and generalization because the agent is able to update the
associated Q�values of actions it has never experienced before based on state�action pairs that
are similar according to the distance function� The case�based function approximator is able
to solve problems that the instance�based function approximator may not solve as is the case
of the pendulum swing up�

In this research� we explored two important issues related to reinforcement learning ap�
plied to systems described by continuous state and action spaces� The �rst question asked
about possible ways to generalize the outcome of experiences involving states and actions in
continuous spaces� We described some of the techniques researchers have used to represent
the value function and proposed an alternative method to represent and generalize the value

of states�actions pairs using the outcome of individual experiences� The idea consists of us�
ing only one function approximator to represent the Q�function on the combined state�action
space and use the already familiar SARSA learning algorithm to adapt the parameters of the
function approximator using TD��� backups� The disadvantage of this approach compared to
other simpler ones is that the one�step search is computationally expensive� However� more e
�
cient implementations of the one�step search may be possible by exploiting the class of function
approximator being used� Additionally� there is no theoretical guarantee that this approach
will converge to the correct Q�function �the function approximator may not even be able to
represent the exact value function across the entire state�action space�� but the results obtained
on two di�erent kinds of sparse coarse�coded function approximators on two di�erent classes of
continuous systems are encouraging� These results support the idea of using function approxi�
mators to solve reinforcement learning problems in systems with continuous state and actions�
Function approximators are able to generalize the value for unseen regions of the state�action
space based on the estimates of other regions of the state�action space� Also� they provide
a compact representation for the Q�function and can be trained incrementally as the agent
collects more data�

The second question asked about the e�ect of designing function approximators in which
resources are preallocated across the state�action space� This is an important design decision
because it directly a�ects the resolution capabilities of the function approximator in di�erent
regions of the state�action space� Usually� function approximators that uniformly distribute
resources are more e
cient and easier to implement than their non�uniform counterparts� We
hypothesized that the need for non�uniform function approximators is due to the better use
of the resources that can be obtained by increasing the resolution of the function approxima�
tor in important regions of the state�action space� The results obtained tend to support this
hypothesis� In addition� we used a technique common in machine learning that consists of pre�
processing the input data to bene�t learning performance� In our implementation� a skewing
function is used to transform the original state�action space into a deformed version� which
is then used as the domain of the uniform function approximator� The skewing function is
empirically designed in advance to expand important regions of the state�action space so that
the function approximator can use more resources to estimate the corresponding Q�values with
more resolution� The use of the skewing function adds little computational complexity to pro�
cedure� In the experiments described in this paper� we chose the skewing functions empirically�
however� further research is needed to explore the e�ect of the skewing functions in the learning
performance of the agent�

We also explored the feasibility of using memory�based function approximators in rein�
forcement learning problems with continuous state and action spaces� Memory�based function
approximators belong to the class of sparse coarse�coded function approximators and can dy�
namically allocate resources with experiences� The results obtained in this research showed that
the memory�based function approximator was less sensible to preallocation of resources than
the CMAC function approximator� We conjecture that this e�ect may be due to the capability
of allocating more resources in those regions of the state�action space that are used more often�
which allows them to dynamically adjust the resolution in those regions� This may serve as an
advantage when designers do not know in advance which regions of the state�action space the
function approximator should represent with higher resolution�

In the experiments presented in this paper� we used predesigned skewing functions that

remained constant throughout the experiment� However� it is also possible to use adaptive
skewing functions so that the agent can dynamically increase the resolution of the function
approximator as it collects more data� Future research will address this issue�

References

Albus� J� S� �	
���� A new approach to manipulator control� The cerebellar model articulation
controller �cmac�� Journal of Dynamic Systems� Measurement� and Control�
��������#����

Atkeson� C� G� �	

	�� Memory�based learning control� In Proceedings of the ���� American
Control Conference� volume �� pages �	�	#�	��� Boston� MA�

Barto� A� G�� Sutton� R� S�� and Anderson� C� W� �	
���� Neuronlike elements that can solve
di
cult learning control problems� IEEE Transactions on Systems� Man� and Cybernetics�
	�����#����

Bellman� R� �	
���� Dynamic Programming� Princeton University Press� Princeton� NJ�

Bertsekas� D� P� �	

��� Dynamic Programming and Optimal Control� volume 	� Athena
Scienti�c� Belmont� MA�

Cishosz� P� �	

��� Truncating temporal di�erences� on the e
cient implementation of td���
for reinforcement learning� Journal of Arti�cial Intelligence Research� �����#�	��

Kanerva� P� �	

��� Sparse distributed memory and related models� In Hassoun� M� H�� editor�
Associative Neural Memories� Theory and Implementation� chapter �� Oxford University
Press� New York� NY�

Kibler� D� and Aha� D� W� �	
�
�� Instance�based prediction of real�valued attributes� Com�
putational Intelligence� ������	#���

Lin� L� J� �	

��� Self�improving reactive agents based on reinforcement learning� Machine
Learning� ��������
�#��	�

Mahadevan� S� and Connell� J� �	

	�� Scaling reinforcement learning to robotics by exploiting
the subsumption architecture� In Proceedings of the Eight International Workshop on
Machine Learning� volume 	� pages ���#���� Morgan Kaufmann�

McCallum� R� A�� Tesauro� G�� Touretzky� D�� and Leen� T� �	

��� Instance�based state
identi�cation for reinforcement learning� In Tesauro� G�� Touretzky� D�� and Leen� T��
editors� Advances in Neural Information Processing Systems �� pages ���#���� MIT Press�
Cambridge� MA�

Moore� A� W� and Atkeson� C� G� �	

��� The parti�game algorithm for variable resolution
reinforcement learning in multidimensional state�spaces� Machine Learning� �	����	

#
����

Narendra� K� S� and Annaswamy� A� M� �	
�
�� Stable Adaptive Systems� Prentice Hall�
Englewood Cli�s� NJ�

Peng� J� �	

��� E	cient Dynamic Programming�Based Learning for Control� PhD thesis�
Department of Computer Science� Northeastern University�

Peng� J� and Williams� R� J� �	

��� Incremental multi�step q�learning� In Cohen� W� W� and
Hirsh� H�� editors� Machine Learning� Proceedings of the Eleventh International Confer�
ence� pages 	�
#	
�� Aberdeen� Scotland� Morgan Kaufmann�

Ram� A� and Santamar��a� J� C� �	

��� Continuous case�based reasoning� Arti�cial Intelligence�

��	������#���

Richards� R� J� �	
�
�� An Introduction to Dynamics and Control� Longman� New York� NY�

Rummery� G� A� and Niranjan� M� �	

��� On�line q�learning using connectionist systems�
Technical Report CUED!F�INFEG!TR��� Cambridge University Department�

Shanmugam� K� S� �	
�
�� Digital and Analog Communication Systems� John Wiley and Sons�
New York� NY�

Singh� S� P� and Sutton� R� S� �	

��� Reinforcement learning with replacing eligibility traces�
Machine Learning� ���	��#	���

Stengel� R� F� �	

��� Optimal Control and Estimation� Dover Publications� Mineola� NY�

Sutton� R� S� �	
���� Learning to predict by the methods of temporal di�erences� Machine
Learning� ��
#���

Sutton� R� S� �	

��� Generalization in reinforcement learning� Successful examples using sparse
coarse coding� In Tesauro� G�� Touretzky� D�� and Leen� T�� editors� Advances in Neural
Information Processing Systems
� pages 	���#	���� MIT Press� Cambridge� MA�

Tham� C� L� �	

��� Reinforcement learning of multiple tasks using a hierarchical cmac archi�
tecture� Robotics and Autonomous Systems� 	��������#����

Tsitsiklis� J� N� and Van Roy� B� �	

��� An analysis of temporal�di�erence learning with
function approximation� IEEE Transactions on Automatic Control� ���������#�
��

Watkins� C� J� C� H� �	
�
�� Learning from Delayed Rewards� PhD thesis� Univeristy of
Cambridge� England�

